summaryrefslogtreecommitdiff
path: root/kernel/cpu.c
Commit message (Collapse)AuthorAgeFilesLines
* random: clear fast pool, crng, and batches in cpuhp bring upJason A. Donenfeld2022-06-251-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | commit 3191dd5a1179ef0fad5a050a1702ae98b6251e8f upstream. For the irq randomness fast pool, rather than having to use expensive atomics, which were visibly the most expensive thing in the entire irq handler, simply take care of the extreme edge case of resetting count to zero in the cpuhp online handler, just after workqueues have been reenabled. This simplifies the code a bit and lets us use vanilla variables rather than atomics, and performance should be improved. As well, very early on when the CPU comes up, while interrupts are still disabled, we clear out the per-cpu crng and its batches, so that it always starts with fresh randomness. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Sultan Alsawaf <sultan@kerneltoast.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Cure the cpusets trainwreckThomas Gleixner2021-07-201-0/+49
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit b22afcdf04c96ca58327784e280e10288cfd3303 upstream. Alexey and Joshua tried to solve a cpusets related hotplug problem which is user space visible and results in unexpected behaviour for some time after a CPU has been plugged in and the corresponding uevent was delivered. cpusets delegate the hotplug work (rebuilding cpumasks etc.) to a workqueue. This is done because the cpusets code has already a lock nesting of cgroups_mutex -> cpu_hotplug_lock. A synchronous callback or waiting for the work to finish with cpu_hotplug_lock held can and will deadlock because that results in the reverse lock order. As a consequence the uevent can be delivered before cpusets have consistent state which means that a user space invocation of sched_setaffinity() to move a task to the plugged CPU fails up to the point where the scheduled work has been processed. The same is true for CPU unplug, but that does not create user observable failure (yet). It's still inconsistent to claim that an operation is finished before it actually is and that's the real issue at hand. uevents just make it reliably observable. Obviously the problem should be fixed in cpusets/cgroups, but untangling that is pretty much impossible because according to the changelog of the commit which introduced this 8 years ago: 3a5a6d0c2b03("cpuset: don't nest cgroup_mutex inside get_online_cpus()") the lock order cgroups_mutex -> cpu_hotplug_lock is a design decision and the whole code is built around that. So bite the bullet and invoke the relevant cpuset function, which waits for the work to finish, in _cpu_up/down() after dropping cpu_hotplug_lock and only when tasks are not frozen by suspend/hibernate because that would obviously wait forever. Waiting there with cpu_add_remove_lock, which is protecting the present and possible CPU maps, held is not a problem at all because neither work queues nor cpusets/cgroups have any lockchains related to that lock. Waiting in the hotplug machinery is not problematic either because there are already state callbacks which wait for hardware queues to drain. It makes the operations slightly slower, but hotplug is slow anyway. This ensures that state is consistent before returning from a hotplug up/down operation. It's still inconsistent during the operation, but that's a different story. Add a large comment which explains why this is done and why this is not a dump ground for the hack of the day to work around half thought out locking schemes. Document also the implications vs. hotplug operations and serialization or the lack of it. Thanks to Alexy and Joshua for analyzing why this temporary sched_setaffinity() failure happened. Fixes: 3a5a6d0c2b03("cpuset: don't nest cgroup_mutex inside get_online_cpus()") Reported-by: Alexey Klimov <aklimov@redhat.com> Reported-by: Joshua Baker <jobaker@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Alexey Klimov <aklimov@redhat.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/87tuowcnv3.ffs@nanos.tec.linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* kernel/cpu: add arch override for clear_tasks_mm_cpumask() mm handlingNicholas Piggin2020-12-291-1/+5
| | | | | | | | | | | | | | | | | | | [ Upstream commit 8ff00399b153440c1c83e20c43020385b416415b ] powerpc/64s keeps a counter in the mm which counts bits set in mm_cpumask as well as other things. This means it can't use generic code to clear bits out of the mask and doesn't adjust the arch specific counter. Add an arch override that allows powerpc/64s to use clear_tasks_mm_cpumask(). Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126102530.691335-4-npiggin@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
* x86/speculation: Remove redundant arch_smt_update() invocationZhenzhong Duan2020-04-241-4/+1
| | | | | | | | | | | | | | | | | | | | | | | | commit 34d66caf251df91ff27b24a3a786810d29989eca upstream. With commit a74cfffb03b7 ("x86/speculation: Rework SMT state change"), arch_smt_update() is invoked from each individual CPU hotplug function. Therefore the extra arch_smt_update() call in the sysfs SMT control is redundant. Fixes: a74cfffb03b7 ("x86/speculation: Rework SMT state change") Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: <konrad.wilk@oracle.com> Cc: <dwmw@amazon.co.uk> Cc: <bp@suse.de> Cc: <srinivas.eeda@oracle.com> Cc: <peterz@infradead.org> Cc: <hpa@zytor.com> Link: https://lkml.kernel.org/r/e2e064f2-e8ef-42ca-bf4f-76b612964752@default Cc: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug, stop_machine: Fix stop_machine vs hotplug orderPeter Zijlstra2020-02-281-4/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 45178ac0cea853fe0e405bf11e101bdebea57b15 ] Paul reported a very sporadic, rcutorture induced, workqueue failure. When the planets align, the workqueue rescuer's self-migrate fails and then triggers a WARN for running a work on the wrong CPU. Tejun then figured that set_cpus_allowed_ptr()'s stop_one_cpu() call could be ignored! When stopper->enabled is false, stop_machine will insta complete the work, without actually doing the work. Worse, it will not WARN about this (we really should fix this). It turns out there is a small window where a freshly online'ed CPU is marked 'online' but doesn't yet have the stopper task running: BP AP bringup_cpu() __cpu_up(cpu, idle) --> start_secondary() ... cpu_startup_entry() bringup_wait_for_ap() wait_for_ap_thread() <-- cpuhp_online_idle() while (1) do_idle() ... available to run kthreads ... stop_machine_unpark() stopper->enable = true; Close this by moving the stop_machine_unpark() into cpuhp_online_idle(), such that the stopper thread is ready before we start the idle loop and schedule. Reported-by: "Paul E. McKenney" <paulmck@kernel.org> Debugged-by: Tejun Heo <tj@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: "Paul E. McKenney" <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* cpu/SMT: State SMT is disabled even with nosmt and without "=force"Borislav Petkov2019-11-241-0/+1
| | | | | | | | | | | | | | | | | | [ Upstream commit d0e7d14455d41163126afecd0fcce935463cc512 ] When booting with "nosmt=force" a message is issued into dmesg to confirm that SMT has been force-disabled but such a message is not issued when only "nosmt" is on the kernel command line. Fix that. Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20181004172227.10094-1-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* cpu/speculation: Uninline and export CPU mitigations helpersTyler Hicks2019-11-121-1/+26
| | | | | | | | | | | | | | | | | | | commit 731dc9df975a5da21237a18c3384f811a7a41cc6 upstream. A kernel module may need to check the value of the "mitigations=" kernel command line parameter as part of its setup when the module needs to perform software mitigations for a CPU flaw. Uninline and export the helper functions surrounding the cpu_mitigations enum to allow for their usage from a module. Lastly, privatize the enum and cpu_mitigations variable since the value of cpu_mitigations can be checked with the exported helper functions. Signed-off-by: Tyler Hicks <tyhicks@canonical.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Fix out-of-bounds read when setting fail stateEiichi Tsukata2019-07-211-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 33d4a5a7a5b4d02915d765064b2319e90a11cbde ] Setting invalid value to /sys/devices/system/cpu/cpuX/hotplug/fail can control `struct cpuhp_step *sp` address, results in the following global-out-of-bounds read. Reproducer: # echo -2 > /sys/devices/system/cpu/cpu0/hotplug/fail KASAN report: BUG: KASAN: global-out-of-bounds in write_cpuhp_fail+0x2cd/0x2e0 Read of size 8 at addr ffffffff89734438 by task bash/1941 CPU: 0 PID: 1941 Comm: bash Not tainted 5.2.0-rc6+ #31 Call Trace: write_cpuhp_fail+0x2cd/0x2e0 dev_attr_store+0x58/0x80 sysfs_kf_write+0x13d/0x1a0 kernfs_fop_write+0x2bc/0x460 vfs_write+0x1e1/0x560 ksys_write+0x126/0x250 do_syscall_64+0xc1/0x390 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7f05e4f4c970 The buggy address belongs to the variable: cpu_hotplug_lock+0x98/0xa0 Memory state around the buggy address: ffffffff89734300: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00 ffffffff89734380: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00 >ffffffff89734400: 00 00 00 00 fa fa fa fa 00 00 00 00 fa fa fa fa ^ ffffffff89734480: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffffffff89734500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Add a sanity check for the value written from user space. Fixes: 1db49484f21ed ("smp/hotplug: Hotplug state fail injection") Signed-off-by: Eiichi Tsukata <devel@etsukata.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: peterz@infradead.org Link: https://lkml.kernel.org/r/20190627024732.31672-1-devel@etsukata.com Signed-off-by: Sasha Levin <sashal@kernel.org>
* cpu/speculation: Warn on unsupported mitigations= parameterGeert Uytterhoeven2019-07-031-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | commit 1bf72720281770162c87990697eae1ba2f1d917a upstream. Currently, if the user specifies an unsupported mitigation strategy on the kernel command line, it will be ignored silently. The code will fall back to the default strategy, possibly leaving the system more vulnerable than expected. This may happen due to e.g. a simple typo, or, for a stable kernel release, because not all mitigation strategies have been backported. Inform the user by printing a message. Fixes: 98af8452945c5565 ("cpu/speculation: Add 'mitigations=' cmdline option") Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190516070935.22546-1-geert@linux-m68k.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/power: Fix 'nosmt' vs hibernation triple fault during resumeJiri Kosina2019-06-111-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit ec527c318036a65a083ef68d8ba95789d2212246 upstream. As explained in 0cc3cd21657b ("cpu/hotplug: Boot HT siblings at least once") we always, no matter what, have to bring up x86 HT siblings during boot at least once in order to avoid first MCE bringing the system to its knees. That means that whenever 'nosmt' is supplied on the kernel command-line, all the HT siblings are as a result sitting in mwait or cpudile after going through the online-offline cycle at least once. This causes a serious issue though when a kernel, which saw 'nosmt' on its commandline, is going to perform resume from hibernation: if the resume from the hibernated image is successful, cr3 is flipped in order to point to the address space of the kernel that is being resumed, which in turn means that all the HT siblings are all of a sudden mwaiting on address which is no longer valid. That results in triple fault shortly after cr3 is switched, and machine reboots. Fix this by always waking up all the SMT siblings before initiating the 'restore from hibernation' process; this guarantees that all the HT siblings will be properly carried over to the resumed kernel waiting in resume_play_dead(), and acted upon accordingly afterwards, based on the target kernel configuration. Symmetricaly, the resumed kernel has to push the SMT siblings to mwait again in case it has SMT disabled; this means it has to online all the siblings when resuming (so that they come out of hlt) and offline them again to let them reach mwait. Cc: 4.19+ <stable@vger.kernel.org> # v4.19+ Debugged-by: Thomas Gleixner <tglx@linutronix.de> Fixes: 0cc3cd21657b ("cpu/hotplug: Boot HT siblings at least once") Signed-off-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Pavel Machek <pavel@ucw.cz> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/speculation: Add 'mitigations=' cmdline optionJosh Poimboeuf2019-05-141-0/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 98af8452945c55652de68536afdde3b520fec429 upstream Keeping track of the number of mitigations for all the CPU speculation bugs has become overwhelming for many users. It's getting more and more complicated to decide which mitigations are needed for a given architecture. Complicating matters is the fact that each arch tends to have its own custom way to mitigate the same vulnerability. Most users fall into a few basic categories: a) they want all mitigations off; b) they want all reasonable mitigations on, with SMT enabled even if it's vulnerable; or c) they want all reasonable mitigations on, with SMT disabled if vulnerable. Define a set of curated, arch-independent options, each of which is an aggregation of existing options: - mitigations=off: Disable all mitigations. - mitigations=auto: [default] Enable all the default mitigations, but leave SMT enabled, even if it's vulnerable. - mitigations=auto,nosmt: Enable all the default mitigations, disabling SMT if needed by a mitigation. Currently, these options are placeholders which don't actually do anything. They will be fleshed out in upcoming patches. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86) Reviewed-by: Jiri Kosina <jkosina@suse.cz> Cc: Borislav Petkov <bp@alien8.de> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Waiman Long <longman@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jon Masters <jcm@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: linuxppc-dev@lists.ozlabs.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux-s390@vger.kernel.org Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-arch@vger.kernel.org Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Tyler Hicks <tyhicks@canonical.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Steven Price <steven.price@arm.com> Cc: Phil Auld <pauld@redhat.com> Link: https://lkml.kernel.org/r/b07a8ef9b7c5055c3a4637c87d07c296d5016fe0.1555085500.git.jpoimboe@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Mute hotplug lockdep during initValentin Schneider2019-04-051-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit ce48c457b95316b9a01b5aa9d4456ce820df94b4 ] Since we've had: commit cb538267ea1e ("jump_label/lockdep: Assert we hold the hotplug lock for _cpuslocked() operations") we've been getting some lockdep warnings during init, such as on HiKey960: [ 0.820495] WARNING: CPU: 4 PID: 0 at kernel/cpu.c:316 lockdep_assert_cpus_held+0x3c/0x48 [ 0.820498] Modules linked in: [ 0.820509] CPU: 4 PID: 0 Comm: swapper/4 Tainted: G S 4.20.0-rc5-00051-g4cae42a #34 [ 0.820511] Hardware name: HiKey960 (DT) [ 0.820516] pstate: 600001c5 (nZCv dAIF -PAN -UAO) [ 0.820520] pc : lockdep_assert_cpus_held+0x3c/0x48 [ 0.820523] lr : lockdep_assert_cpus_held+0x38/0x48 [ 0.820526] sp : ffff00000a9cbe50 [ 0.820528] x29: ffff00000a9cbe50 x28: 0000000000000000 [ 0.820533] x27: 00008000b69e5000 x26: ffff8000bff4cfe0 [ 0.820537] x25: ffff000008ba69e0 x24: 0000000000000001 [ 0.820541] x23: ffff000008fce000 x22: ffff000008ba70c8 [ 0.820545] x21: 0000000000000001 x20: 0000000000000003 [ 0.820548] x19: ffff00000a35d628 x18: ffffffffffffffff [ 0.820552] x17: 0000000000000000 x16: 0000000000000000 [ 0.820556] x15: ffff00000958f848 x14: 455f3052464d4d34 [ 0.820559] x13: 00000000769dde98 x12: ffff8000bf3f65a8 [ 0.820564] x11: 0000000000000000 x10: ffff00000958f848 [ 0.820567] x9 : ffff000009592000 x8 : ffff00000958f848 [ 0.820571] x7 : ffff00000818ffa0 x6 : 0000000000000000 [ 0.820574] x5 : 0000000000000000 x4 : 0000000000000001 [ 0.820578] x3 : 0000000000000000 x2 : 0000000000000001 [ 0.820582] x1 : 00000000ffffffff x0 : 0000000000000000 [ 0.820587] Call trace: [ 0.820591] lockdep_assert_cpus_held+0x3c/0x48 [ 0.820598] static_key_enable_cpuslocked+0x28/0xd0 [ 0.820606] arch_timer_check_ool_workaround+0xe8/0x228 [ 0.820610] arch_timer_starting_cpu+0xe4/0x2d8 [ 0.820615] cpuhp_invoke_callback+0xe8/0xd08 [ 0.820619] notify_cpu_starting+0x80/0xb8 [ 0.820625] secondary_start_kernel+0x118/0x1d0 We've also had a similar warning in sched_init_smp() for every asymmetric system that would enable the sched_asym_cpucapacity static key, although that was singled out in: commit 40fa3780bac2 ("sched/core: Take the hotplug lock in sched_init_smp()") Those warnings are actually harmless, since we cannot have hotplug operations at the time they appear. Instead of starting to sprinkle useless hotplug lock operations in the init codepaths, mute the warnings until they start warning about real problems. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: cai@gmx.us Cc: daniel.lezcano@linaro.org Cc: dietmar.eggemann@arm.com Cc: linux-arm-kernel@lists.infradead.org Cc: longman@redhat.com Cc: marc.zyngier@arm.com Cc: mark.rutland@arm.com Link: https://lkml.kernel.org/r/1545243796-23224-2-git-send-email-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* cpu/hotplug: Prevent crash when CPU bringup fails on CONFIG_HOTPLUG_CPU=nThomas Gleixner2019-04-031-2/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 206b92353c839c0b27a0b9bec24195f93fd6cf7a upstream. Tianyu reported a crash in a CPU hotplug teardown callback when booting a kernel which has CONFIG_HOTPLUG_CPU disabled with the 'nosmt' boot parameter. It turns out that the SMP=y CONFIG_HOTPLUG_CPU=n case has been broken forever in case that a bringup callback fails. Unfortunately this issue was not recognized when the CPU hotplug code was reworked, so the shortcoming just stayed in place. When a bringup callback fails, the CPU hotplug code rolls back the operation and takes the CPU offline. The 'nosmt' command line argument uses a bringup failure to abort the bringup of SMT sibling CPUs. This partial bringup is required due to the MCE misdesign on Intel CPUs. With CONFIG_HOTPLUG_CPU=y the rollback works perfectly fine, but CONFIG_HOTPLUG_CPU=n lacks essential mechanisms to exercise the low level teardown of a CPU including the synchronizations in various facilities like RCU, NOHZ and others. As a consequence the teardown callbacks which must be executed on the outgoing CPU within stop machine with interrupts disabled are executed on the control CPU in interrupt enabled and preemptible context causing the kernel to crash and burn. The pre state machine code has a different failure mode which is more subtle and resulting in a less obvious use after free crash because the control side frees resources which are still in use by the undead CPU. But this is not a x86 only problem. Any architecture which supports the SMP=y HOTPLUG_CPU=n combination suffers from the same issue. It's just less likely to be triggered because in 99.99999% of the cases all bringup callbacks succeed. The easy solution of making HOTPLUG_CPU mandatory for SMP is not working on all architectures as the following architectures have either no hotplug support at all or not all subarchitectures support it: alpha, arc, hexagon, openrisc, riscv, sparc (32bit), mips (partial). Crashing the kernel in such a situation is not an acceptable state either. Implement a minimal rollback variant by limiting the teardown to the point where all regular teardown callbacks have been invoked and leave the CPU in the 'dead' idle state. This has the following consequences: - the CPU is brought down to the point where the stop_machine takedown would happen. - the CPU stays there forever and is idle - The CPU is cleared in the CPU active mask, but not in the CPU online mask which is a legit state. - Interrupts are not forced away from the CPU - All facilities which only look at online mask would still see it, but that is the case during normal hotplug/unplug operations as well. It's just a (way) longer time frame. This will expose issues, which haven't been exposed before or only seldom, because now the normally transient state of being non active but online is a permanent state. In testing this exposed already an issue vs. work queues where the vmstat code schedules work on the almost dead CPU which ends up in an unbound workqueue and triggers 'preemtible context' warnings. This is not a problem of this change, it merily exposes an already existing issue. Still this is better than crashing fully without a chance to debug it. This is mainly thought as workaround for those architectures which do not support HOTPLUG_CPU. All others should enforce HOTPLUG_CPU for SMP. Fixes: 2e1a3483ce74 ("cpu/hotplug: Split out the state walk into functions") Reported-by: Tianyu Lan <Tianyu.Lan@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Tianyu Lan <Tianyu.Lan@microsoft.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Konrad Wilk <konrad.wilk@oracle.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Mukesh Ojha <mojha@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Rik van Riel <riel@surriel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Micheal Kelley <michael.h.kelley@microsoft.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: K. Y. Srinivasan <kys@microsoft.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190326163811.503390616@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Fix "SMT disabled by BIOS" detection for KVMJosh Poimboeuf2019-02-121-29/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit b284909abad48b07d3071a9fc9b5692b3e64914b upstream. With the following commit: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") ... the hotplug code attempted to detect when SMT was disabled by BIOS, in which case it reported SMT as permanently disabled. However, that code broke a virt hotplug scenario, where the guest is booted with only primary CPU threads, and a sibling is brought online later. The problem is that there doesn't seem to be a way to reliably distinguish between the HW "SMT disabled by BIOS" case and the virt "sibling not yet brought online" case. So the above-mentioned commit was a bit misguided, as it permanently disabled SMT for both cases, preventing future virt sibling hotplugs. Going back and reviewing the original problems which were attempted to be solved by that commit, when SMT was disabled in BIOS: 1) /sys/devices/system/cpu/smt/control showed "on" instead of "notsupported"; and 2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning. I'd propose that we instead consider #1 above to not actually be a problem. Because, at least in the virt case, it's possible that SMT wasn't disabled by BIOS and a sibling thread could be brought online later. So it makes sense to just always default the smt control to "on" to allow for that possibility (assuming cpuid indicates that the CPU supports SMT). The real problem is #2, which has a simple fix: change vmx_vm_init() to query the actual current SMT state -- i.e., whether any siblings are currently online -- instead of looking at the SMT "control" sysfs value. So fix it by: a) reverting the original "fix" and its followup fix: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") bc2d8d262cba ("cpu/hotplug: Fix SMT supported evaluation") and b) changing vmx_vm_init() to query the actual current SMT state -- instead of the sysfs control value -- to determine whether the L1TF warning is needed. This also requires the 'sched_smt_present' variable to exported, instead of 'cpu_smt_control'. Fixes: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") Reported-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Joe Mario <jmario@redhat.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: kvm@vger.kernel.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Rework SMT state changeThomas Gleixner2018-12-051-6/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit a74cfffb03b73d41e08f84c2e5c87dec0ce3db9f upstream arch_smt_update() is only called when the sysfs SMT control knob is changed. This means that when SMT is enabled in the sysfs control knob the system is considered to have SMT active even if all siblings are offline. To allow finegrained control of the speculation mitigations, the actual SMT state is more interesting than the fact that siblings could be enabled. Rework the code, so arch_smt_update() is invoked from each individual CPU hotplug function, and simplify the update function while at it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185004.521974984@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Enable cross-hyperthread spectre v2 STIBP mitigationJiri Kosina2018-12-051-1/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 53c613fe6349994f023245519265999eed75957f upstream STIBP is a feature provided by certain Intel ucodes / CPUs. This feature (once enabled) prevents cross-hyperthread control of decisions made by indirect branch predictors. Enable this feature if - the CPU is vulnerable to spectre v2 - the CPU supports SMT and has SMT siblings online - spectre_v2 mitigation autoselection is enabled (default) After some previous discussion, this leaves STIBP on all the time, as wrmsr on crossing kernel boundary is a no-no. This could perhaps later be a bit more optimized (like disabling it in NOHZ, experiment with disabling it in idle, etc) if needed. Note that the synchronization of the mask manipulation via newly added spec_ctrl_mutex is currently not strictly needed, as the only updater is already being serialized by cpu_add_remove_lock, but let's make this a little bit more future-proof. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "WoodhouseDavid" <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: "SchauflerCasey" <casey.schaufler@intel.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1809251438240.15880@cbobk.fhfr.pm Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* Revert "x86/speculation: Enable cross-hyperthread spectre v2 STIBP mitigation"Greg Kroah-Hartman2018-11-231-10/+1
| | | | | | | | | | | | | | | | | | | This reverts commit 8a13906ae519b3ed95cd0fb73f1098b46362f6c4 which is commit 53c613fe6349994f023245519265999eed75957f upstream. It's not ready for the stable trees as there are major slowdowns involved with this patch. Reported-by: Jiri Kosina <jkosina@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "WoodhouseDavid" <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: "SchauflerCasey" <casey.schaufler@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Enable cross-hyperthread spectre v2 STIBP mitigationJiri Kosina2018-11-131-1/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 53c613fe6349994f023245519265999eed75957f upstream. STIBP is a feature provided by certain Intel ucodes / CPUs. This feature (once enabled) prevents cross-hyperthread control of decisions made by indirect branch predictors. Enable this feature if - the CPU is vulnerable to spectre v2 - the CPU supports SMT and has SMT siblings online - spectre_v2 mitigation autoselection is enabled (default) After some previous discussion, this leaves STIBP on all the time, as wrmsr on crossing kernel boundary is a no-no. This could perhaps later be a bit more optimized (like disabling it in NOHZ, experiment with disabling it in idle, etc) if needed. Note that the synchronization of the mask manipulation via newly added spec_ctrl_mutex is currently not strictly needed, as the only updater is already being serialized by cpu_add_remove_lock, but let's make this a little bit more future-proof. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "WoodhouseDavid" <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: "SchauflerCasey" <casey.schaufler@intel.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1809251438240.15880@cbobk.fhfr.pm Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Prevent state corruption on error rollbackThomas Gleixner2018-09-191-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 69fa6eb7d6a64801ea261025cce9723d9442d773 upstream. When a teardown callback fails, the CPU hotplug code brings the CPU back to the previous state. The previous state becomes the new target state. The rollback happens in undo_cpu_down() which increments the state unconditionally even if the state is already the same as the target. As a consequence the next CPU hotplug operation will start at the wrong state. This is easily to observe when __cpu_disable() fails. Prevent the unconditional undo by checking the state vs. target before incrementing state and fix up the consequently wrong conditional in the unplug code which handles the failure of the final CPU take down on the control CPU side. Fixes: 4dddfb5faa61 ("smp/hotplug: Rewrite AP state machine core") Reported-by: Neeraj Upadhyay <neeraju@codeaurora.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Tested-by: Sudeep Holla <sudeep.holla@arm.com> Tested-by: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: josh@joshtriplett.org Cc: peterz@infradead.org Cc: jiangshanlai@gmail.com Cc: dzickus@redhat.com Cc: brendan.jackman@arm.com Cc: malat@debian.org Cc: sramana@codeaurora.org Cc: linux-arm-msm@vger.kernel.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1809051419580.1416@nanos.tec.linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> ----
* cpu/hotplug: Adjust misplaced smb() in cpuhp_thread_fun()Neeraj Upadhyay2018-09-191-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | commit f8b7530aa0a1def79c93101216b5b17cf408a70a upstream. The smp_mb() in cpuhp_thread_fun() is misplaced. It needs to be after the load of st->should_run to prevent reordering of the later load/stores w.r.t. the load of st->should_run. Fixes: 4dddfb5faa61 ("smp/hotplug: Rewrite AP state machine core") Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infraded.org> Cc: josh@joshtriplett.org Cc: peterz@infradead.org Cc: jiangshanlai@gmail.com Cc: dzickus@redhat.com Cc: brendan.jackman@arm.com Cc: malat@debian.org Cc: mojha@codeaurora.org Cc: sramana@codeaurora.org Cc: linux-arm-msm@vger.kernel.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/1536126727-11629-1-git-send-email-neeraju@codeaurora.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Non-SMP machines do not make use of booted_onceAbel Vesa2018-08-151-0/+2
| | | | | | | | | | | | | | | | | | | | commit 269777aa530f3438ec1781586cdac0b5fe47b061 upstream. Commit 0cc3cd21657b ("cpu/hotplug: Boot HT siblings at least once") breaks non-SMP builds. [ I suspect the 'bool' fields should just be made to be bitfields and be exposed regardless of configuration, but that's a separate cleanup that I'll leave to the owners of this file for later. - Linus ] Fixes: 0cc3cd21657b ("cpu/hotplug: Boot HT siblings at least once") Cc: Dave Hansen <dave.hansen@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Abel Vesa <abelvesa@linux.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Fix SMT supported evaluationThomas Gleixner2018-08-151-13/+28
| | | | | | | | | | | | | | | | | | | | | | | | commit bc2d8d262cba5736332cbc866acb11b1c5748aa9 upstream Josh reported that the late SMT evaluation in cpu_smt_state_init() sets cpu_smt_control to CPU_SMT_NOT_SUPPORTED in case that 'nosmt' was supplied on the kernel command line as it cannot differentiate between SMT disabled by BIOS and SMT soft disable via 'nosmt'. That wreckages the state and makes the sysfs interface unusable. Rework this so that during bringup of the non boot CPUs the availability of SMT is determined in cpu_smt_allowed(). If a newly booted CPU is not a 'primary' thread then set the local cpu_smt_available marker and evaluate this explicitely right after the initial SMP bringup has finished. SMT evaulation on x86 is a trainwreck as the firmware has all the information _before_ booting the kernel, but there is no interface to query it. Fixes: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") Reported-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: detect SMT disabled by BIOSJosh Poimboeuf2018-08-151-0/+9
| | | | | | | | | | | | | | | | | | | | | commit 73d5e2b472640b1fcdb61ae8be389912ef211bda upstream If SMT is disabled in BIOS, the CPU code doesn't properly detect it. The /sys/devices/system/cpu/smt/control file shows 'on', and the 'l1tf' vulnerabilities file shows SMT as vulnerable. Fix it by forcing 'cpu_smt_control' to CPU_SMT_NOT_SUPPORTED in such a case. Unfortunately the detection can only be done after bringing all the CPUs online, so we have to overwrite any previous writes to the variable. Reported-by: Joe Mario <jmario@redhat.com> Tested-by: Jiri Kosina <jkosina@suse.cz> Fixes: f048c399e0f7 ("x86/topology: Provide topology_smt_supported()") Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Set CPU_SMT_NOT_SUPPORTED earlyThomas Gleixner2018-08-151-3/+10
| | | | | | | | | | | | | | | | | | | | commit fee0aede6f4739c87179eca76136f83210953b86 upstream The CPU_SMT_NOT_SUPPORTED state is set (if the processor does not support SMT) when the sysfs SMT control file is initialized. That was fine so far as this was only required to make the output of the control file correct and to prevent writes in that case. With the upcoming l1tf command line parameter, this needs to be set up before the L1TF mitigation selection and command line parsing happens. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142323.121795971@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Expose SMT control init functionJiri Kosina2018-08-151-3/+13
| | | | | | | | | | | | | | | | | | | | commit 8e1b706b6e819bed215c0db16345568864660393 upstream The L1TF mitigation will gain a commend line parameter which allows to set a combination of hypervisor mitigation and SMT control. Expose cpu_smt_disable() so the command line parser can tweak SMT settings. [ tglx: Split out of larger patch and made it preserve an already existing force off state ] Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142323.039715135@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Online siblings when SMT control is turned onThomas Gleixner2018-08-151-2/+24
| | | | | | | | | | | | | commit 215af5499d9e2b55f111d2431ea20218115f29b3 upstream Writing 'off' to /sys/devices/system/cpu/smt/control offlines all SMT siblings. Writing 'on' merily enables the abilify to online them, but does not online them automatically. Make 'on' more useful by onlining all offline siblings. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/KVM: Warn user if KVM is loaded SMT and L1TF CPU bug being presentKonrad Rzeszutek Wilk2018-08-151-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | commit 26acfb666a473d960f0fd971fe68f3e3ad16c70b upstream If the L1TF CPU bug is present we allow the KVM module to be loaded as the major of users that use Linux and KVM have trusted guests and do not want a broken setup. Cloud vendors are the ones that are uncomfortable with CVE 2018-3620 and as such they are the ones that should set nosmt to one. Setting 'nosmt' means that the system administrator also needs to disable SMT (Hyper-threading) in the BIOS, or via the 'nosmt' command line parameter, or via the /sys/devices/system/cpu/smt/control. See commit 05736e4ac13c ("cpu/hotplug: Provide knobs to control SMT"). Other mitigations are to use task affinity, cpu sets, interrupt binding, etc - anything to make sure that _only_ the same guests vCPUs are running on sibling threads. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Boot HT siblings at least onceThomas Gleixner2018-08-151-24/+48
| | | | | | | | | | | | | | | | | | commit 0cc3cd21657be04cb0559fe8063f2130493f92cf upstream Due to the way Machine Check Exceptions work on X86 hyperthreads it's required to boot up _all_ logical cores at least once in order to set the CR4.MCE bit. So instead of ignoring the sibling threads right away, let them boot up once so they can configure themselves. After they came out of the initial boot stage check whether its a "secondary" sibling and cancel the operation which puts the CPU back into offline state. Reported-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Provide knobs to control SMTThomas Gleixner2018-08-151-0/+170
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 05736e4ac13c08a4a9b1ef2de26dd31a32cbee57 upstream Provide a command line and a sysfs knob to control SMT. The command line options are: 'nosmt': Enumerate secondary threads, but do not online them 'nosmt=force': Ignore secondary threads completely during enumeration via MP table and ACPI/MADT. The sysfs control file has the following states (read/write): 'on': SMT is enabled. Secondary threads can be freely onlined 'off': SMT is disabled. Secondary threads, even if enumerated cannot be onlined 'forceoff': SMT is permanentely disabled. Writes to the control file are rejected. 'notsupported': SMT is not supported by the CPU The command line option 'nosmt' sets the sysfs control to 'off'. This can be changed to 'on' to reenable SMT during runtime. The command line option 'nosmt=force' sets the sysfs control to 'forceoff'. This cannot be changed during runtime. When SMT is 'on' and the control file is changed to 'off' then all online secondary threads are offlined and attempts to online a secondary thread later on are rejected. When SMT is 'off' and the control file is changed to 'on' then secondary threads can be onlined again. The 'off' -> 'on' transition does not automatically online the secondary threads. When the control file is set to 'forceoff', the behaviour is the same as setting it to 'off', but the operation is irreversible and later writes to the control file are rejected. When the control status is 'notsupported' then writes to the control file are rejected. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Split do_cpu_down()Thomas Gleixner2018-08-151-9/+8
| | | | | | | | | | | | | | commit cc1fe215e1efa406b03aa4389e6269b61342dec5 upstream Split out the inner workings of do_cpu_down() to allow reuse of that function for the upcoming SMT disabling mechanism. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Make bringup/teardown of smp threads symmetricThomas Gleixner2018-08-151-2/+1
| | | | | | | | | | | | | | commit c4de65696d865c225fda3b9913b31284ea65ea96 upstream The asymmetry caused a warning to trigger if the bootup was stopped in state CPUHP_AP_ONLINE_IDLE. The warning no longer triggers as kthread_park() can now be invoked on already or still parked threads. But there is still no reason to have this be asymmetric. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* init: rename and re-order boot_cpu_state_init()Linus Torvalds2018-08-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit b5b1404d0815894de0690de8a1ab58269e56eae6 upstream. This is purely a preparatory patch for upcoming changes during the 4.19 merge window. We have a function called "boot_cpu_state_init()" that isn't really about the bootup cpu state: that is done much earlier by the similarly named "boot_cpu_init()" (note lack of "state" in name). This function initializes some hotplug CPU state, and needs to run after the percpu data has been properly initialized. It even has a comment to that effect. Except it _doesn't_ actually run after the percpu data has been properly initialized. On x86 it happens to do that, but on at least arm and arm64, the percpu base pointers are initialized by the arch-specific 'smp_prepare_boot_cpu()' hook, which ran _after_ boot_cpu_state_init(). This had some unexpected results, and in particular we have a patch pending for the merge window that did the obvious cleanup of using 'this_cpu_write()' in the cpu hotplug init code: - per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE; + this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); which is obviously the right thing to do. Except because of the ordering issue, it actually failed miserably and unexpectedly on arm64. So this just fixes the ordering, and changes the name of the function to be 'boot_cpu_hotplug_init()' to make it obvious that it's about cpu hotplug state, because the core CPU state was supposed to have already been done earlier. Marked for stable, since the (not yet merged) patch that will show this problem is marked for stable. Reported-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Mian Yousaf Kaukab <yousaf.kaukab@suse.com> Suggested-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* timers: Reinitialize per cpu bases on hotplugThomas Gleixner2018-01-021-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | commit 26456f87aca7157c057de65c9414b37f1ab881d1 upstream. The timer wheel bases are not (re)initialized on CPU hotplug. That leaves them with a potentially stale clk and next_expiry valuem, which can cause trouble then the CPU is plugged. Add a prepare callback which forwards the clock, sets next_expiry to far in the future and reset the control flags to a known state. Set base->must_forward_clk so the first timer which is queued will try to forward the clock to current jiffies. Fixes: 500462a9de65 ("timers: Switch to a non-cascading wheel") Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712272152200.2431@nanos Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* smp/hotplug: Move step CPUHP_AP_SMPCFD_DYING to the correct placeLai Jiangshan2017-12-141-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | commit 46febd37f9c758b05cd25feae8512f22584742fe upstream. Commit 31487f8328f2 ("smp/cfd: Convert core to hotplug state machine") accidently put this step on the wrong place. The step should be at the cpuhp_ap_states[] rather than the cpuhp_bp_states[]. grep smpcfd /sys/devices/system/cpu/hotplug/states 40: smpcfd:prepare 129: smpcfd:dying "smpcfd:dying" was missing before. So was the invocation of the function smpcfd_dying_cpu(). Fixes: 31487f8328f2 ("smp/cfd: Convert core to hotplug state machine") Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Link: https://lkml.kernel.org/r/20171128131954.81229-1-jiangshanlai@gmail.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Reset node state after operationThomas Gleixner2017-10-211-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | The recent rework of the cpu hotplug internals changed the usage of the per cpu state->node field, but missed to clean it up after usage. So subsequent hotplug operations use the stale pointer from a previous operation and hand it into the callback functions. The callbacks then dereference a pointer which either belongs to a different facility or points to freed and potentially reused memory. In either case data corruption and crashes are the obvious consequence. Reset the node and the last pointers in the per cpu state to NULL after the operation which set them has completed. Fixes: 96abb968549c ("smp/hotplug: Allow external multi-instance rollback") Reported-by: Tvrtko Ursulin <tursulin@ursulin.net> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1710211606130.3213@nanos
* Merge branch 'core-watchdog-for-linus' of ↵Linus Torvalds2017-10-061-0/+6
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull watchddog clean-up and fixes from Thomas Gleixner: "The watchdog (hard/softlockup detector) code is pretty much broken in its current state. The patch series addresses this by removing all duct tape and refactoring it into a workable state. The reasons why I ask for inclusion that late in the cycle are: 1) The code causes lockdep splats vs. hotplug locking which get reported over and over. Unfortunately there is no easy fix. 2) The risk of breakage is minimal because it's already broken 3) As 4.14 is a long term stable kernel, I prefer to have working watchdog code in that and the lockdep issues resolved. I wouldn't ask you to pull if 4.14 wouldn't be a LTS kernel or if the solution would be easy to backport. 4) The series was around before the merge window opened, but then got delayed due to the UP failure caused by the for_each_cpu() surprise which we discussed recently. Changes vs. V1: - Addressed your review points - Addressed the warning in the powerpc code which was discovered late - Changed two function names which made sense up to a certain point in the series. Now they match what they do in the end. - Fixed a 'unused variable' warning, which got not detected by the intel robot. I triggered it when trying all possible related config combinations manually. Randconfig testing seems not random enough. The changes have been tested by and reviewed by Don Zickus and tested and acked by Micheal Ellerman for powerpc" * 'core-watchdog-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits) watchdog/core: Put softlockup_threads_initialized under ifdef guard watchdog/core: Rename some softlockup_* functions powerpc/watchdog: Make use of watchdog_nmi_probe() watchdog/core, powerpc: Lock cpus across reconfiguration watchdog/core, powerpc: Replace watchdog_nmi_reconfigure() watchdog/hardlockup/perf: Fix spelling mistake: "permanetely" -> "permanently" watchdog/hardlockup/perf: Cure UP damage watchdog/hardlockup: Clean up hotplug locking mess watchdog/hardlockup/perf: Simplify deferred event destroy watchdog/hardlockup/perf: Use new perf CPU enable mechanism watchdog/hardlockup/perf: Implement CPU enable replacement watchdog/hardlockup/perf: Implement init time detection of perf watchdog/hardlockup/perf: Implement init time perf validation watchdog/core: Get rid of the racy update loop watchdog/core, powerpc: Make watchdog_nmi_reconfigure() two stage watchdog/sysctl: Clean up sysctl variable name space watchdog/sysctl: Get rid of the #ifdeffery watchdog/core: Clean up header mess watchdog/core: Further simplify sysctl handling watchdog/core: Get rid of the thread teardown/setup dance ...
| * watchdog/hardlockup/perf: Prevent CPU hotplug deadlockThomas Gleixner2017-09-141-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The following deadlock is possible in the watchdog hotplug code: cpus_write_lock() ... takedown_cpu() smpboot_park_threads() smpboot_park_thread() kthread_park() ->park() := watchdog_disable() watchdog_nmi_disable() perf_event_release_kernel(); put_event() _free_event() ->destroy() := hw_perf_event_destroy() x86_release_hardware() release_ds_buffers() get_online_cpus() when a per cpu watchdog perf event is destroyed which drops the last reference to the PMU hardware. The cleanup code there invokes get_online_cpus() which instantly deadlocks because the hotplug percpu rwsem is write locked. To solve this add a deferring mechanism: cpus_write_lock() kthread_park() watchdog_nmi_disable(deferred) perf_event_disable(event); move_event_to_deferred(event); .... cpus_write_unlock() cleaup_deferred_events() perf_event_release_kernel() This is still properly serialized against concurrent hotplug via the cpu_add_remove_lock, which is held by the task which initiated the hotplug event. This is also used to handle event destruction when the watchdog threads are parked via other mechanisms than CPU hotplug. Analyzed-by: Peter Zijlstra <peterz@infradead.org> Reported-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194146.884469246@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | smp/hotplug: Hotplug state fail injectionPeter Zijlstra2017-09-251-1/+59
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a sysfs file to one-time fail a specific state. This can be used to test the state rollback code paths. Something like this (hotplug-up.sh): #!/bin/bash echo 0 > /debug/sched_debug echo 1 > /debug/tracing/events/cpuhp/enable ALL_STATES=`cat /sys/devices/system/cpu/hotplug/states | cut -d':' -f1` STATES=${1:-$ALL_STATES} for state in $STATES do echo 0 > /sys/devices/system/cpu/cpu1/online echo 0 > /debug/tracing/trace echo Fail state: $state echo $state > /sys/devices/system/cpu/cpu1/hotplug/fail cat /sys/devices/system/cpu/cpu1/hotplug/fail echo 1 > /sys/devices/system/cpu/cpu1/online cat /debug/tracing/trace > hotfail-${state}.trace sleep 1 done Can be used to test for all possible rollback (barring multi-instance) scenarios on CPU-up, CPU-down is a trivial modification of the above. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: bigeasy@linutronix.de Cc: efault@gmx.de Cc: rostedt@goodmis.org Cc: max.byungchul.park@gmail.com Link: https://lkml.kernel.org/r/20170920170546.972581715@infradead.org
* | smp/hotplug: Differentiate the AP completion between up and downPeter Zijlstra2017-09-251-17/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With lockdep-crossrelease we get deadlock reports that span cpu-up and cpu-down chains. Such deadlocks cannot possibly happen because cpu-up and cpu-down are globally serialized. takedown_cpu() irq_lock_sparse() wait_for_completion(&st->done) cpuhp_thread_fun cpuhp_up_callback cpuhp_invoke_callback irq_affinity_online_cpu irq_local_spare() irq_unlock_sparse() complete(&st->done) Now that we have consistent AP state, we can trivially separate the AP completion between up and down using st->bringup. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: max.byungchul.park@gmail.com Cc: bigeasy@linutronix.de Cc: efault@gmx.de Cc: rostedt@goodmis.org Link: https://lkml.kernel.org/r/20170920170546.872472799@infradead.org
* | smp/hotplug: Differentiate the AP-work lockdep class between up and downPeter Zijlstra2017-09-251-9/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With lockdep-crossrelease we get deadlock reports that span cpu-up and cpu-down chains. Such deadlocks cannot possibly happen because cpu-up and cpu-down are globally serialized. CPU0 CPU1 CPU2 cpuhp_up_callbacks: takedown_cpu: cpuhp_thread_fun: cpuhp_state irq_lock_sparse() irq_lock_sparse() wait_for_completion() cpuhp_state complete() Now that we have consistent AP state, we can trivially separate the AP-work class between up and down using st->bringup. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: max.byungchul.park@gmail.com Cc: bigeasy@linutronix.de Cc: efault@gmx.de Cc: rostedt@goodmis.org Link: https://lkml.kernel.org/r/20170920170546.922524234@infradead.org
* | smp/hotplug: Callback vs state-machine consistencyPeter Zijlstra2017-09-251-4/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | While the generic callback functions have an 'int' return and thus appear to be allowed to return error, this is not true for all states. Specifically, what used to be STARTING/DYING are ran with IRQs disabled from critical parts of CPU bringup/teardown and are not allowed to fail. Add WARNs to enforce this rule. But since some callbacks are indeed allowed to fail, we have the situation where a state-machine rollback encounters a failure, in this case we're stuck, we can't go forward and we can't go back. Also add a WARN for that case. AFAICT this is a fundamental 'problem' with no real obvious solution. We want the 'prepare' callbacks to allow failure on either up or down. Typically on prepare-up this would be things like -ENOMEM from resource allocations, and the typical usage in prepare-down would be something like -EBUSY to avoid CPUs being taken away. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: bigeasy@linutronix.de Cc: efault@gmx.de Cc: rostedt@goodmis.org Cc: max.byungchul.park@gmail.com Link: https://lkml.kernel.org/r/20170920170546.819539119@infradead.org
* | smp/hotplug: Rewrite AP state machine corePeter Zijlstra2017-09-251-115/+206
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is currently no explicit state change on rollback. That is, st->bringup, st->rollback and st->target are not consistent when doing the rollback. Rework the AP state handling to be more coherent. This does mean we have to do a second AP kick-and-wait for rollback, but since rollback is the slow path of a slowpath, this really should not matter. Take this opportunity to simplify the AP thread function to only run a single callback per invocation. This unifies the three single/up/down modes is supports. The looping it used to do for up/down are achieved by retaining should_run and relying on the main smpboot_thread_fn() loop. (I have most of a patch that does the same for the BP state handling, but that's not critical and gets a little complicated because CPUHP_BRINGUP_CPU does the AP handoff from a callback, which gets recursive @st usage, I still have de-fugly that.) [ tglx: Move cpuhp_down_callbacks() et al. into the HOTPLUG_CPU section to avoid gcc complaining about unused functions. Make the HOTPLUG_CPU one piece instead of having two consecutive ifdef sections of the same type. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: bigeasy@linutronix.de Cc: efault@gmx.de Cc: rostedt@goodmis.org Cc: max.byungchul.park@gmail.com Link: https://lkml.kernel.org/r/20170920170546.769658088@infradead.org
* | smp/hotplug: Allow external multi-instance rollbackPeter Zijlstra2017-09-251-15/+32
|/ | | | | | | | | | | | | | | | | | | | Currently the rollback of multi-instance states is handled inside cpuhp_invoke_callback(). The problem is that when we want to allow an explicit state change for rollback, we need to return from the function without doing the rollback. Change cpuhp_invoke_callback() to optionally return the multi-instance state, such that rollback can be done from a subsequent call. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: bigeasy@linutronix.de Cc: efault@gmx.de Cc: rostedt@goodmis.org Cc: max.byungchul.park@gmail.com Link: https://lkml.kernel.org/r/20170920170546.720361181@infradead.org
* Merge branch 'smp-hotplug-for-linus' of ↵Linus Torvalds2017-09-041-1/+11
|\ | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull CPU hotplug fix from Thomas Gleixner: "A single fix to handle the removal of the first dynamic CPU hotplug state correctly" * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: smp/hotplug: Handle removal correctly in cpuhp_store_callbacks()
| * smp/hotplug: Handle removal correctly in cpuhp_store_callbacks()Ethan Barnes2017-07-201-1/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If cpuhp_store_callbacks() is called for CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, which are the indicators for dynamically allocated states, then cpuhp_store_callbacks() allocates a new dynamic state. The first allocation in each range returns CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN. If cpuhp_remove_state() is invoked for one of these states, then there is no protection against the allocation mechanism. So the removal, which should clear the callbacks and the name, gets a new state assigned and clears that one. As a consequence the state which should be cleared stays initialized. A consecutive CPU hotplug operation dereferences the state callbacks and accesses either freed or reused memory, resulting in crashes. Add a protection against this by checking the name argument for NULL. If it's NULL it's a removal. If not, it's an allocation. [ tglx: Added a comment and massaged changelog ] Fixes: 5b7aa87e0482 ("cpu/hotplug: Implement setup/removal interface") Signed-off-by: Ethan Barnes <ethan.barnes@sandisk.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.or> Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu> Cc: Sebastian Siewior <bigeasy@linutronix.d> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/DM2PR04MB398242FC7776D603D9F99C894A60@DM2PR04MB398.namprd04.prod.outlook.com
* | rcu: Migrate callbacks earlier in the CPU-offline timelinePaul E. McKenney2017-07-251-0/+1
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | RCU callbacks must be migrated away from an outgoing CPU, and this is done near the end of the CPU-hotplug operation, after the outgoing CPU is long gone. Unfortunately, this means that other CPU-hotplug callbacks can execute while the outgoing CPU's callbacks are still immobilized on the long-gone CPU's callback lists. If any of these CPU-hotplug callbacks must wait, either directly or indirectly, for the invocation of any of the immobilized RCU callbacks, the system will hang. This commit avoids such hangs by migrating the callbacks away from the outgoing CPU immediately upon its departure, shortly after the return from __cpu_die() in takedown_cpu(). Thus, RCU is able to advance these callbacks and invoke them, which allows all the after-the-fact CPU-hotplug callbacks to wait on these RCU callbacks without risk of a hang. While in the neighborhood, this commit also moves rcu_send_cbs_to_orphanage() and rcu_adopt_orphan_cbs() under a pre-existing #ifdef to avoid including dead code on the one hand and to avoid define-without-use warnings on the other hand. Reported-by: Jeffrey Hugo <jhugo@codeaurora.org> Link: http://lkml.kernel.org/r/db9c91f6-1b17-6136-84f0-03c3c2581ab4@codeaurora.org Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Richard Weinberger <richard@nod.at>
* smp/hotplug: Replace BUG_ON and react usefulThomas Gleixner2017-07-111-1/+2
| | | | | | | | | | | | | | The move of the unpark functions to the control thread moved the BUG_ON() there as well. While it made some sense in the idle thread of the upcoming CPU, it's bogus to crash the control thread on the already online CPU, especially as the function has a return value and the callsite is prepared to handle an error return. Replace it with a WARN_ON_ONCE() and return a proper error code. Fixes: 9cd4f1a4e7a8 ("smp/hotplug: Move unparking of percpu threads to the control CPU") Rightfully-ranted-at-by: Linux Torvalds <torvalds@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* smp/hotplug: Move unparking of percpu threads to the control CPUThomas Gleixner2017-07-061-18/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Vikram reported the following backtrace: BUG: scheduling while atomic: swapper/7/0/0x00000002 CPU: 7 PID: 0 Comm: swapper/7 Not tainted 4.9.32-perf+ #680 schedule schedule_hrtimeout_range_clock schedule_hrtimeout wait_task_inactive __kthread_bind_mask __kthread_bind __kthread_unpark kthread_unpark cpuhp_online_idle cpu_startup_entry secondary_start_kernel He analyzed correctly that a parked cpu hotplug thread of an offlined CPU was still on the runqueue when the CPU came back online and tried to unpark it. This causes the thread which invoked kthread_unpark() to call wait_task_inactive() and subsequently schedule() with preemption disabled. His proposed workaround was to "make sure" that a parked thread has scheduled out when the CPU goes offline, so the situation cannot happen. But that's still wrong because the root cause is not the fact that the percpu thread is still on the runqueue and neither that preemption is disabled, which could be simply solved by enabling preemption before calling kthread_unpark(). The real issue is that the calling thread is the idle task of the upcoming CPU, which is not supposed to call anything which might sleep. The moron, who wrote that code, missed completely that kthread_unpark() might end up in schedule(). The solution is simpler than expected. The thread which controls the hotplug operation is waiting for the CPU to call complete() on the hotplug state completion. So the idle task of the upcoming CPU can set its state to CPUHP_AP_ONLINE_IDLE and invoke complete(). This in turn wakes the control task on a different CPU, which then can safely do the unpark and kick the now unparked hotplug thread of the upcoming CPU to complete the bringup to the final target state. Control CPU AP bringup_cpu(); __cpu_up() ------------> bringup_ap(); bringup_wait_for_ap() wait_for_completion(); cpuhp_online_idle(); <------------ complete(); unpark(AP->stopper); unpark(AP->hotplugthread); while(1) do_idle(); kick(AP->hotplugthread); wait_for_completion(); hotplug_thread() run_online_callbacks(); complete(); Fixes: 8df3e07e7f21 ("cpu/hotplug: Let upcoming cpu bring itself fully up") Reported-by: Vikram Mulukutla <markivx@codeaurora.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Sewior <bigeasy@linutronix.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1707042218020.2131@nanos Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* Merge branch 'smp-hotplug-for-linus' of ↵Linus Torvalds2017-07-031-148/+93
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull SMP hotplug updates from Thomas Gleixner: "This update is primarily a cleanup of the CPU hotplug locking code. The hotplug locking mechanism is an open coded RWSEM, which allows recursive locking. The main problem with that is the recursive nature as it evades the full lockdep coverage and hides potential deadlocks. The rework replaces the open coded RWSEM with a percpu RWSEM and establishes full lockdep coverage that way. The bulk of the changes fix up recursive locking issues and address the now fully reported potential deadlocks all over the place. Some of these deadlocks have been observed in the RT tree, but on mainline the probability was low enough to hide them away." * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits) cpu/hotplug: Constify attribute_group structures powerpc: Only obtain cpu_hotplug_lock if called by rtasd ARM/hw_breakpoint: Fix possible recursive locking for arch_hw_breakpoint_init cpu/hotplug: Remove unused check_for_tasks() function perf/core: Don't release cred_guard_mutex if not taken cpuhotplug: Link lock stacks for hotplug callbacks acpi/processor: Prevent cpu hotplug deadlock sched: Provide is_percpu_thread() helper cpu/hotplug: Convert hotplug locking to percpu rwsem s390: Prevent hotplug rwsem recursion arm: Prevent hotplug rwsem recursion arm64: Prevent cpu hotplug rwsem recursion kprobes: Cure hotplug lock ordering issues jump_label: Reorder hotplug lock and jump_label_lock perf/tracing/cpuhotplug: Fix locking order ACPI/processor: Use cpu_hotplug_disable() instead of get_online_cpus() PCI: Replace the racy recursion prevention PCI: Use cpu_hotplug_disable() instead of get_online_cpus() perf/x86/intel: Drop get_online_cpus() in intel_snb_check_microcode() x86/perf: Drop EXPORT of perf_check_microcode ...
| * cpu/hotplug: Constify attribute_group structuresArvind Yadav2017-06-301-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | attribute_groups are not supposed to change at runtime. All functions working with attribute_groups provided by <linux/sysfs.h> work with const attribute_group. So mark the non-const structs as const: File size before: text data bss dec hex filename 12582 15361 20 27963 6d3b kernel/cpu.o File size After adding 'const': text data bss dec hex filename 12710 15265 20 27995 6d5b kernel/cpu.o Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: anna-maria@linutronix.de Cc: bigeasy@linutronix.de Cc: boris.ostrovsky@oracle.com Cc: rcochran@linutronix.de Link: http://lkml.kernel.org/r/f9079e94e12b36d245e7adbf67d312bc5d0250c6.1498737970.git.arvind.yadav.cs@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>