summaryrefslogtreecommitdiff
path: root/kernel/rcutree.c
Commit message (Collapse)AuthorAgeFilesLines
* rcu: Eliminate softirq processing from rcutreePaul E. McKenney2015-01-161-14/+99
| | | | | | | | | | | | | | | | | | Running RCU out of softirq is a problem for some workloads that would like to manage RCU core processing independently of other softirq work, for example, setting kthread priority. This commit therefore moves the RCU core work from softirq to a per-CPU/per-flavor SCHED_OTHER kthread named rcuc. The SCHED_OTHER approach avoids the scalability problems that appeared with the earlier attempt to move RCU core processing to from softirq to kthreads. That said, kernels built with RCU_BOOST=y will run the rcuc kthreads at the RCU-boosting priority. Cc: stable-rt@vger.kernel.org Reported-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Mike Galbraith <bitbucket@online.de> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
* rcutree/rcu_bh_qs: disable irq while calling rcu_preempt_qs()Tiejun Chen2015-01-161-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Any callers to the function rcu_preempt_qs() must disable irqs in order to protect the assignment to ->rcu_read_unlock_special. In RT case, rcu_bh_qs() as the wrapper of rcu_preempt_qs() is called in some scenarios where irq is enabled, like this path, do_single_softirq() | + local_irq_enable(); + handle_softirq() | | | + rcu_bh_qs() | | | + rcu_preempt_qs() | + local_irq_disable() So here we'd better disable irq directly inside of rcu_bh_qs() to fix this, otherwise the kernel may be freezable sometimes as observed. And especially this way is also kind and safe for the potential rcu_bh_qs() usage elsewhere in the future. Cc: stable-rt@vger.kernel.org Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com> Signed-off-by: Bin Jiang <bin.jiang@windriver.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
* rcu: Don't activate RCU core on NO_HZ_FULL CPUsPaul E. McKenney2015-01-161-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Whenever a CPU receives a scheduling-clock interrupt, RCU checks to see if the RCU core needs anything from this CPU. If so, RCU raises RCU_SOFTIRQ to carry out any needed processing. This approach has worked well historically, but it is undesirable on NO_HZ_FULL CPUs. Such CPUs are expected to spend almost all of their time in userspace, so that scheduling-clock interrupts can be disabled while there is only one runnable task on the CPU in question. Unfortunately, raising any softirq has the potential to wake up ksoftirqd, which would provide the second runnable task on that CPU, preventing disabling of scheduling-clock interrupts. What is needed instead is for RCU to leave NO_HZ_FULL CPUs alone, relying on the grace-period kthreads' quiescent-state forcing to do any needed RCU work on behalf of those CPUs. This commit therefore refrains from raising RCU_SOFTIRQ on any NO_HZ_FULL CPUs during any grace periods that have been in effect for less than one second. The one-second limit handles the case where an inappropriate workload is running on a NO_HZ_FULL CPU that features lots of scheduling-clock interrupts, but no idle or userspace time. Cc: stable-rt@vger.kernel.org Reported-by: Mike Galbraith <bitbucket@online.de> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Mike Galbraith <bitbucket@online.de> Tested-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
* kernel/treercu: use a simple waitqueueSebastian Andrzej Siewior2015-01-161-6/+7
| | | | Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
* rcu: Make ksoftirqd do RCU quiescent statesPaul E. McKenney2015-01-161-1/+8
| | | | | | | | | | | | | | | | | | | | | | Implementing RCU-bh in terms of RCU-preempt makes the system vulnerable to network-based denial-of-service attacks. This patch therefore makes __do_softirq() invoke rcu_bh_qs(), but only when __do_softirq() is running in ksoftirqd context. A wrapper layer in interposed so that other calls to __do_softirq() avoid invoking rcu_bh_qs(). The underlying function __do_softirq_common() does the actual work. The reason that rcu_bh_qs() is bad in these non-ksoftirqd contexts is that there might be a local_bh_enable() inside an RCU-preempt read-side critical section. This local_bh_enable() can invoke __do_softirq() directly, so if __do_softirq() were to invoke rcu_bh_qs() (which just calls rcu_preempt_qs() in the PREEMPT_RT_FULL case), there would be an illegal RCU-preempt quiescent state in the middle of an RCU-preempt read-side critical section. Therefore, quiescent states can only happen in cases where __do_softirq() is invoked directly from ksoftirqd. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20111005184518.GA21601@linux.vnet.ibm.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* rcu: Merge RCU-bh into RCU-preemptThomas Gleixner2015-01-161-0/+10
| | | | | | | | | | | | | | | | | | | | | | | The Linux kernel has long RCU-bh read-side critical sections that intolerably increase scheduling latency under mainline's RCU-bh rules, which include RCU-bh read-side critical sections being non-preemptible. This patch therefore arranges for RCU-bh to be implemented in terms of RCU-preempt for CONFIG_PREEMPT_RT_FULL=y. This has the downside of defeating the purpose of RCU-bh, namely, handling the case where the system is subjected to a network-based denial-of-service attack that keeps at least one CPU doing full-time softirq processing. This issue will be fixed by a later commit. The current commit will need some work to make it appropriate for mainline use, for example, it needs to be extended to cover Tiny RCU. [ paulmck: Added a useful changelog ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20111005185938.GA20403@linux.vnet.ibm.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* rcu: Fix deadlock with CPU hotplug, RCU GP init, and timer migrationPaul E. McKenney2013-06-101-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In Steven Rostedt's words: > I've been debugging the last couple of days why my tests have been > locking up. One of my tracing tests, runs all available tracers. The > lockup always happened with the mmiotrace, which is used to trace > interactions between priority drivers and the kernel. But to do this > easily, when the tracer gets registered, it disables all but the boot > CPUs. The lockup always happened after it got done disabling the CPUs. > > Then I decided to try this: > > while :; do > for i in 1 2 3; do > echo 0 > /sys/devices/system/cpu/cpu$i/online > done > for i in 1 2 3; do > echo 1 > /sys/devices/system/cpu/cpu$i/online > done > done > > Well, sure enough, that locked up too, with the same users. Doing a > sysrq-w (showing all blocked tasks): > > [ 2991.344562] task PC stack pid father > [ 2991.344562] rcu_preempt D ffff88007986fdf8 0 10 2 0x00000000 > [ 2991.344562] ffff88007986fc98 0000000000000002 ffff88007986fc48 0000000000000908 > [ 2991.344562] ffff88007986c280 ffff88007986ffd8 ffff88007986ffd8 00000000001d3c80 > [ 2991.344562] ffff880079248a40 ffff88007986c280 0000000000000000 00000000fffd4295 > [ 2991.344562] Call Trace: > [ 2991.344562] [<ffffffff815437ba>] schedule+0x64/0x66 > [ 2991.344562] [<ffffffff81541750>] schedule_timeout+0xbc/0xf9 > [ 2991.344562] [<ffffffff8154bec0>] ? ftrace_call+0x5/0x2f > [ 2991.344562] [<ffffffff81049513>] ? cascade+0xa8/0xa8 > [ 2991.344562] [<ffffffff815417ab>] schedule_timeout_uninterruptible+0x1e/0x20 > [ 2991.344562] [<ffffffff810c980c>] rcu_gp_kthread+0x502/0x94b > [ 2991.344562] [<ffffffff81062791>] ? __init_waitqueue_head+0x50/0x50 > [ 2991.344562] [<ffffffff810c930a>] ? rcu_gp_fqs+0x64/0x64 > [ 2991.344562] [<ffffffff81061cdb>] kthread+0xb1/0xb9 > [ 2991.344562] [<ffffffff81091e31>] ? lock_release_holdtime.part.23+0x4e/0x55 > [ 2991.344562] [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58 > [ 2991.344562] [<ffffffff8154c1dc>] ret_from_fork+0x7c/0xb0 > [ 2991.344562] [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58 > [ 2991.344562] kworker/0:1 D ffffffff81a30680 0 47 2 0x00000000 > [ 2991.344562] Workqueue: events cpuset_hotplug_workfn > [ 2991.344562] ffff880078dbbb58 0000000000000002 0000000000000006 00000000000000d8 > [ 2991.344562] ffff880078db8100 ffff880078dbbfd8 ffff880078dbbfd8 00000000001d3c80 > [ 2991.344562] ffff8800779ca5c0 ffff880078db8100 ffffffff81541fcf 0000000000000000 > [ 2991.344562] Call Trace: > [ 2991.344562] [<ffffffff81541fcf>] ? __mutex_lock_common+0x3d4/0x609 > [ 2991.344562] [<ffffffff815437ba>] schedule+0x64/0x66 > [ 2991.344562] [<ffffffff81543a39>] schedule_preempt_disabled+0x18/0x24 > [ 2991.344562] [<ffffffff81541fcf>] __mutex_lock_common+0x3d4/0x609 > [ 2991.344562] [<ffffffff8103d11b>] ? get_online_cpus+0x3c/0x50 > [ 2991.344562] [<ffffffff8103d11b>] ? get_online_cpus+0x3c/0x50 > [ 2991.344562] [<ffffffff815422ff>] mutex_lock_nested+0x3b/0x40 > [ 2991.344562] [<ffffffff8103d11b>] get_online_cpus+0x3c/0x50 > [ 2991.344562] [<ffffffff810af7e6>] rebuild_sched_domains_locked+0x6e/0x3a8 > [ 2991.344562] [<ffffffff810b0ec6>] rebuild_sched_domains+0x1c/0x2a > [ 2991.344562] [<ffffffff810b109b>] cpuset_hotplug_workfn+0x1c7/0x1d3 > [ 2991.344562] [<ffffffff810b0ed9>] ? cpuset_hotplug_workfn+0x5/0x1d3 > [ 2991.344562] [<ffffffff81058e07>] process_one_work+0x2d4/0x4d1 > [ 2991.344562] [<ffffffff81058d3a>] ? process_one_work+0x207/0x4d1 > [ 2991.344562] [<ffffffff8105964c>] worker_thread+0x2e7/0x3b5 > [ 2991.344562] [<ffffffff81059365>] ? rescuer_thread+0x332/0x332 > [ 2991.344562] [<ffffffff81061cdb>] kthread+0xb1/0xb9 > [ 2991.344562] [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58 > [ 2991.344562] [<ffffffff8154c1dc>] ret_from_fork+0x7c/0xb0 > [ 2991.344562] [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58 > [ 2991.344562] bash D ffffffff81a4aa80 0 2618 2612 0x10000000 > [ 2991.344562] ffff8800379abb58 0000000000000002 0000000000000006 0000000000000c2c > [ 2991.344562] ffff880077fea140 ffff8800379abfd8 ffff8800379abfd8 00000000001d3c80 > [ 2991.344562] ffff8800779ca5c0 ffff880077fea140 ffffffff81541fcf 0000000000000000 > [ 2991.344562] Call Trace: > [ 2991.344562] [<ffffffff81541fcf>] ? __mutex_lock_common+0x3d4/0x609 > [ 2991.344562] [<ffffffff815437ba>] schedule+0x64/0x66 > [ 2991.344562] [<ffffffff81543a39>] schedule_preempt_disabled+0x18/0x24 > [ 2991.344562] [<ffffffff81541fcf>] __mutex_lock_common+0x3d4/0x609 > [ 2991.344562] [<ffffffff81530078>] ? rcu_cpu_notify+0x2f5/0x86e > [ 2991.344562] [<ffffffff81530078>] ? rcu_cpu_notify+0x2f5/0x86e > [ 2991.344562] [<ffffffff815422ff>] mutex_lock_nested+0x3b/0x40 > [ 2991.344562] [<ffffffff81530078>] rcu_cpu_notify+0x2f5/0x86e > [ 2991.344562] [<ffffffff81091c99>] ? __lock_is_held+0x32/0x53 > [ 2991.344562] [<ffffffff81548912>] notifier_call_chain+0x6b/0x98 > [ 2991.344562] [<ffffffff810671fd>] __raw_notifier_call_chain+0xe/0x10 > [ 2991.344562] [<ffffffff8103cf64>] __cpu_notify+0x20/0x32 > [ 2991.344562] [<ffffffff8103cf8d>] cpu_notify_nofail+0x17/0x36 > [ 2991.344562] [<ffffffff815225de>] _cpu_down+0x154/0x259 > [ 2991.344562] [<ffffffff81522710>] cpu_down+0x2d/0x3a > [ 2991.344562] [<ffffffff81526351>] store_online+0x4e/0xe7 > [ 2991.344562] [<ffffffff8134d764>] dev_attr_store+0x20/0x22 > [ 2991.344562] [<ffffffff811b3c5f>] sysfs_write_file+0x108/0x144 > [ 2991.344562] [<ffffffff8114c5ef>] vfs_write+0xfd/0x158 > [ 2991.344562] [<ffffffff8114c928>] SyS_write+0x5c/0x83 > [ 2991.344562] [<ffffffff8154c494>] tracesys+0xdd/0xe2 > > As well as held locks: > > [ 3034.728033] Showing all locks held in the system: > [ 3034.728033] 1 lock held by rcu_preempt/10: > [ 3034.728033] #0: (rcu_preempt_state.onoff_mutex){+.+...}, at: [<ffffffff810c9471>] rcu_gp_kthread+0x167/0x94b > [ 3034.728033] 4 locks held by kworker/0:1/47: > [ 3034.728033] #0: (events){.+.+.+}, at: [<ffffffff81058d3a>] process_one_work+0x207/0x4d1 > [ 3034.728033] #1: (cpuset_hotplug_work){+.+.+.}, at: [<ffffffff81058d3a>] process_one_work+0x207/0x4d1 > [ 3034.728033] #2: (cpuset_mutex){+.+.+.}, at: [<ffffffff810b0ec1>] rebuild_sched_domains+0x17/0x2a > [ 3034.728033] #3: (cpu_hotplug.lock){+.+.+.}, at: [<ffffffff8103d11b>] get_online_cpus+0x3c/0x50 > [ 3034.728033] 1 lock held by mingetty/2563: > [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8 > [ 3034.728033] 1 lock held by mingetty/2565: > [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8 > [ 3034.728033] 1 lock held by mingetty/2569: > [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8 > [ 3034.728033] 1 lock held by mingetty/2572: > [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8 > [ 3034.728033] 1 lock held by mingetty/2575: > [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8 > [ 3034.728033] 7 locks held by bash/2618: > [ 3034.728033] #0: (sb_writers#5){.+.+.+}, at: [<ffffffff8114bc3f>] file_start_write+0x2a/0x2c > [ 3034.728033] #1: (&buffer->mutex#2){+.+.+.}, at: [<ffffffff811b3b93>] sysfs_write_file+0x3c/0x144 > [ 3034.728033] #2: (s_active#54){.+.+.+}, at: [<ffffffff811b3c3e>] sysfs_write_file+0xe7/0x144 > [ 3034.728033] #3: (x86_cpu_hotplug_driver_mutex){+.+.+.}, at: [<ffffffff810217c2>] cpu_hotplug_driver_lock+0x17/0x19 > [ 3034.728033] #4: (cpu_add_remove_lock){+.+.+.}, at: [<ffffffff8103d196>] cpu_maps_update_begin+0x17/0x19 > [ 3034.728033] #5: (cpu_hotplug.lock){+.+.+.}, at: [<ffffffff8103cfd8>] cpu_hotplug_begin+0x2c/0x6d > [ 3034.728033] #6: (rcu_preempt_state.onoff_mutex){+.+...}, at: [<ffffffff81530078>] rcu_cpu_notify+0x2f5/0x86e > [ 3034.728033] 1 lock held by bash/2980: > [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8 > > Things looked a little weird. Also, this is a deadlock that lockdep did > not catch. But what we have here does not look like a circular lock > issue: > > Bash is blocked in rcu_cpu_notify(): > > 1961 /* Exclude any attempts to start a new grace period. */ > 1962 mutex_lock(&rsp->onoff_mutex); > > > kworker is blocked in get_online_cpus(), which makes sense as we are > currently taking down a CPU. > > But rcu_preempt is not blocked on anything. It is simply sleeping in > rcu_gp_kthread (really rcu_gp_init) here: > > 1453 #ifdef CONFIG_PROVE_RCU_DELAY > 1454 if ((prandom_u32() % (rcu_num_nodes * 8)) == 0 && > 1455 system_state == SYSTEM_RUNNING) > 1456 schedule_timeout_uninterruptible(2); > 1457 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */ > > And it does this while holding the onoff_mutex that bash is waiting for. > > Doing a function trace, it showed me where it happened: > > [ 125.940066] rcu_pree-10 3.... 28384115273: schedule_timeout_uninterruptible <-rcu_gp_kthread > [...] > [ 125.940066] rcu_pree-10 3d..3 28384202439: sched_switch: prev_comm=rcu_preempt prev_pid=10 prev_prio=120 prev_state=D ==> next_comm=watchdog/3 next_pid=38 next_prio=120 > > The watchdog ran, and then: > > [ 125.940066] watchdog-38 3d..3 28384692863: sched_switch: prev_comm=watchdog/3 prev_pid=38 prev_prio=120 prev_state=P ==> next_comm=modprobe next_pid=2848 next_prio=118 > > Not sure what modprobe was doing, but shortly after that: > > [ 125.940066] modprobe-2848 3d..3 28385041749: sched_switch: prev_comm=modprobe prev_pid=2848 prev_prio=118 prev_state=R+ ==> next_comm=migration/3 next_pid=40 next_prio=0 > > Where the migration thread took down the CPU: > > [ 125.940066] migratio-40 3d..3 28389148276: sched_switch: prev_comm=migration/3 prev_pid=40 prev_prio=0 prev_state=P ==> next_comm=swapper/3 next_pid=0 next_prio=120 > > which finally did: > > [ 125.940066] <idle>-0 3...1 28389282142: arch_cpu_idle_dead <-cpu_startup_entry > [ 125.940066] <idle>-0 3...1 28389282548: native_play_dead <-arch_cpu_idle_dead > [ 125.940066] <idle>-0 3...1 28389282924: play_dead_common <-native_play_dead > [ 125.940066] <idle>-0 3...1 28389283468: idle_task_exit <-play_dead_common > [ 125.940066] <idle>-0 3...1 28389284644: amd_e400_remove_cpu <-play_dead_common > > > CPU 3 is now offline, the rcu_preempt thread that ran on CPU 3 is still > doing a schedule_timeout_uninterruptible() and it registered it's > timeout to the timer base for CPU 3. You would think that it would get > migrated right? The issue here is that the timer migration happens at > the CPU notifier for CPU_DEAD. The problem is that the rcu notifier for > CPU_DOWN is blocked waiting for the onoff_mutex to be released, which is > held by the thread that just put itself into a uninterruptible sleep, > that wont wake up until the CPU_DEAD notifier of the timer > infrastructure is called, which wont happen until the rcu notifier > finishes. Here's our deadlock! This commit breaks this deadlock cycle by substituting a shorter udelay() for the previous schedule_timeout_uninterruptible(), while at the same time increasing the probability of the delay. This maintains the intensity of the testing. Reported-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Steven Rostedt <rostedt@goodmis.org>
* rcu: Don't call wakeup() with rcu_node structure ->lock heldSteven Rostedt2013-06-101-2/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit fixes a lockdep-detected deadlock by moving a wake_up() call out from a rnp->lock critical section. Please see below for the long version of this story. On Tue, 2013-05-28 at 16:13 -0400, Dave Jones wrote: > [12572.705832] ====================================================== > [12572.750317] [ INFO: possible circular locking dependency detected ] > [12572.796978] 3.10.0-rc3+ #39 Not tainted > [12572.833381] ------------------------------------------------------- > [12572.862233] trinity-child17/31341 is trying to acquire lock: > [12572.870390] (rcu_node_0){..-.-.}, at: [<ffffffff811054ff>] rcu_read_unlock_special+0x9f/0x4c0 > [12572.878859] > but task is already holding lock: > [12572.894894] (&ctx->lock){-.-...}, at: [<ffffffff811390ed>] perf_lock_task_context+0x7d/0x2d0 > [12572.903381] > which lock already depends on the new lock. > > [12572.927541] > the existing dependency chain (in reverse order) is: > [12572.943736] > -> #4 (&ctx->lock){-.-...}: > [12572.960032] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0 > [12572.968337] [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80 > [12572.976633] [<ffffffff8113c987>] __perf_event_task_sched_out+0x2e7/0x5e0 > [12572.984969] [<ffffffff81088953>] perf_event_task_sched_out+0x93/0xa0 > [12572.993326] [<ffffffff816ea0bf>] __schedule+0x2cf/0x9c0 > [12573.001652] [<ffffffff816eacfe>] schedule_user+0x2e/0x70 > [12573.009998] [<ffffffff816ecd64>] retint_careful+0x12/0x2e > [12573.018321] > -> #3 (&rq->lock){-.-.-.}: > [12573.034628] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0 > [12573.042930] [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80 > [12573.051248] [<ffffffff8108e6a7>] wake_up_new_task+0xb7/0x260 > [12573.059579] [<ffffffff810492f5>] do_fork+0x105/0x470 > [12573.067880] [<ffffffff81049686>] kernel_thread+0x26/0x30 > [12573.076202] [<ffffffff816cee63>] rest_init+0x23/0x140 > [12573.084508] [<ffffffff81ed8e1f>] start_kernel+0x3f1/0x3fe > [12573.092852] [<ffffffff81ed856f>] x86_64_start_reservations+0x2a/0x2c > [12573.101233] [<ffffffff81ed863d>] x86_64_start_kernel+0xcc/0xcf > [12573.109528] > -> #2 (&p->pi_lock){-.-.-.}: > [12573.125675] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0 > [12573.133829] [<ffffffff816ebe9b>] _raw_spin_lock_irqsave+0x4b/0x90 > [12573.141964] [<ffffffff8108e881>] try_to_wake_up+0x31/0x320 > [12573.150065] [<ffffffff8108ebe2>] default_wake_function+0x12/0x20 > [12573.158151] [<ffffffff8107bbf8>] autoremove_wake_function+0x18/0x40 > [12573.166195] [<ffffffff81085398>] __wake_up_common+0x58/0x90 > [12573.174215] [<ffffffff81086909>] __wake_up+0x39/0x50 > [12573.182146] [<ffffffff810fc3da>] rcu_start_gp_advanced.isra.11+0x4a/0x50 > [12573.190119] [<ffffffff810fdb09>] rcu_start_future_gp+0x1c9/0x1f0 > [12573.198023] [<ffffffff810fe2c4>] rcu_nocb_kthread+0x114/0x930 > [12573.205860] [<ffffffff8107a91d>] kthread+0xed/0x100 > [12573.213656] [<ffffffff816f4b1c>] ret_from_fork+0x7c/0xb0 > [12573.221379] > -> #1 (&rsp->gp_wq){..-.-.}: > [12573.236329] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0 > [12573.243783] [<ffffffff816ebe9b>] _raw_spin_lock_irqsave+0x4b/0x90 > [12573.251178] [<ffffffff810868f3>] __wake_up+0x23/0x50 > [12573.258505] [<ffffffff810fc3da>] rcu_start_gp_advanced.isra.11+0x4a/0x50 > [12573.265891] [<ffffffff810fdb09>] rcu_start_future_gp+0x1c9/0x1f0 > [12573.273248] [<ffffffff810fe2c4>] rcu_nocb_kthread+0x114/0x930 > [12573.280564] [<ffffffff8107a91d>] kthread+0xed/0x100 > [12573.287807] [<ffffffff816f4b1c>] ret_from_fork+0x7c/0xb0 Notice the above call chain. rcu_start_future_gp() is called with the rnp->lock held. Then it calls rcu_start_gp_advance, which does a wakeup. You can't do wakeups while holding the rnp->lock, as that would mean that you could not do a rcu_read_unlock() while holding the rq lock, or any lock that was taken while holding the rq lock. This is because... (See below). > [12573.295067] > -> #0 (rcu_node_0){..-.-.}: > [12573.309293] [<ffffffff810b8d36>] __lock_acquire+0x1786/0x1af0 > [12573.316568] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0 > [12573.323825] [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80 > [12573.331081] [<ffffffff811054ff>] rcu_read_unlock_special+0x9f/0x4c0 > [12573.338377] [<ffffffff810760a6>] __rcu_read_unlock+0x96/0xa0 > [12573.345648] [<ffffffff811391b3>] perf_lock_task_context+0x143/0x2d0 > [12573.352942] [<ffffffff8113938e>] find_get_context+0x4e/0x1f0 > [12573.360211] [<ffffffff811403f4>] SYSC_perf_event_open+0x514/0xbd0 > [12573.367514] [<ffffffff81140e49>] SyS_perf_event_open+0x9/0x10 > [12573.374816] [<ffffffff816f4dd4>] tracesys+0xdd/0xe2 Notice the above trace. perf took its own ctx->lock, which can be taken while holding the rq lock. While holding this lock, it did a rcu_read_unlock(). The perf_lock_task_context() basically looks like: rcu_read_lock(); raw_spin_lock(ctx->lock); rcu_read_unlock(); Now, what looks to have happened, is that we scheduled after taking that first rcu_read_lock() but before taking the spin lock. When we scheduled back in and took the ctx->lock, the following rcu_read_unlock() triggered the "special" code. The rcu_read_unlock_special() takes the rnp->lock, which gives us a possible deadlock scenario. CPU0 CPU1 CPU2 ---- ---- ---- rcu_nocb_kthread() lock(rq->lock); lock(ctx->lock); lock(rnp->lock); wake_up(); lock(rq->lock); rcu_read_unlock(); rcu_read_unlock_special(); lock(rnp->lock); lock(ctx->lock); **** DEADLOCK **** > [12573.382068] > other info that might help us debug this: > > [12573.403229] Chain exists of: > rcu_node_0 --> &rq->lock --> &ctx->lock > > [12573.424471] Possible unsafe locking scenario: > > [12573.438499] CPU0 CPU1 > [12573.445599] ---- ---- > [12573.452691] lock(&ctx->lock); > [12573.459799] lock(&rq->lock); > [12573.467010] lock(&ctx->lock); > [12573.474192] lock(rcu_node_0); > [12573.481262] > *** DEADLOCK *** > > [12573.501931] 1 lock held by trinity-child17/31341: > [12573.508990] #0: (&ctx->lock){-.-...}, at: [<ffffffff811390ed>] perf_lock_task_context+0x7d/0x2d0 > [12573.516475] > stack backtrace: > [12573.530395] CPU: 1 PID: 31341 Comm: trinity-child17 Not tainted 3.10.0-rc3+ #39 > [12573.545357] ffffffff825b4f90 ffff880219f1dbc0 ffffffff816e375b ffff880219f1dc00 > [12573.552868] ffffffff816dfa5d ffff880219f1dc50 ffff88023ce4d1f8 ffff88023ce4ca40 > [12573.560353] 0000000000000001 0000000000000001 ffff88023ce4d1f8 ffff880219f1dcc0 > [12573.567856] Call Trace: > [12573.575011] [<ffffffff816e375b>] dump_stack+0x19/0x1b > [12573.582284] [<ffffffff816dfa5d>] print_circular_bug+0x200/0x20f > [12573.589637] [<ffffffff810b8d36>] __lock_acquire+0x1786/0x1af0 > [12573.596982] [<ffffffff810918f5>] ? sched_clock_cpu+0xb5/0x100 > [12573.604344] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0 > [12573.611652] [<ffffffff811054ff>] ? rcu_read_unlock_special+0x9f/0x4c0 > [12573.619030] [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80 > [12573.626331] [<ffffffff811054ff>] ? rcu_read_unlock_special+0x9f/0x4c0 > [12573.633671] [<ffffffff811054ff>] rcu_read_unlock_special+0x9f/0x4c0 > [12573.640992] [<ffffffff811390ed>] ? perf_lock_task_context+0x7d/0x2d0 > [12573.648330] [<ffffffff810b429e>] ? put_lock_stats.isra.29+0xe/0x40 > [12573.655662] [<ffffffff813095a0>] ? delay_tsc+0x90/0xe0 > [12573.662964] [<ffffffff810760a6>] __rcu_read_unlock+0x96/0xa0 > [12573.670276] [<ffffffff811391b3>] perf_lock_task_context+0x143/0x2d0 > [12573.677622] [<ffffffff81139070>] ? __perf_event_enable+0x370/0x370 > [12573.684981] [<ffffffff8113938e>] find_get_context+0x4e/0x1f0 > [12573.692358] [<ffffffff811403f4>] SYSC_perf_event_open+0x514/0xbd0 > [12573.699753] [<ffffffff8108cd9d>] ? get_parent_ip+0xd/0x50 > [12573.707135] [<ffffffff810b71fd>] ? trace_hardirqs_on_caller+0xfd/0x1c0 > [12573.714599] [<ffffffff81140e49>] SyS_perf_event_open+0x9/0x10 > [12573.721996] [<ffffffff816f4dd4>] tracesys+0xdd/0xe2 This commit delays the wakeup via irq_work(), which is what perf and ftrace use to perform wakeups in critical sections. Reported-by: Dave Jones <davej@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
* Merge commit '8700c95adb03' into timers/nohzFrederic Weisbecker2013-05-021-63/+197
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | The full dynticks tree needs the latest RCU and sched upstream updates in order to fix some dependencies. Merge a common upstream merge point that has these updates. Conflicts: include/linux/perf_event.h kernel/rcutree.h kernel/rcutree_plugin.h Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
| * Merge branch 'core-rcu-for-linus' of ↵Linus Torvalds2013-04-301-63/+197
| |\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull RCU updates from Ingo Molnar: "The main changes in this cycle are mostly related to preparatory work for the full-dynticks work: - Remove restrictions on no-CBs CPUs, make RCU_FAST_NO_HZ take advantage of numbered callbacks, do callback accelerations based on numbered callbacks. Posted to LKML at https://lkml.org/lkml/2013/3/18/960 - RCU documentation updates. Posted to LKML at https://lkml.org/lkml/2013/3/18/570 - Miscellaneous fixes. Posted to LKML at https://lkml.org/lkml/2013/3/18/594" * 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits) rcu: Make rcu_accelerate_cbs() note need for future grace periods rcu: Abstract rcu_start_future_gp() from rcu_nocb_wait_gp() rcu: Rename n_nocb_gp_requests to need_future_gp rcu: Push lock release to rcu_start_gp()'s callers rcu: Repurpose no-CBs event tracing to future-GP events rcu: Rearrange locking in rcu_start_gp() rcu: Make RCU_FAST_NO_HZ take advantage of numbered callbacks rcu: Accelerate RCU callbacks at grace-period end rcu: Export RCU_FAST_NO_HZ parameters to sysfs rcu: Distinguish "rcuo" kthreads by RCU flavor rcu: Add event tracing for no-CBs CPUs' grace periods rcu: Add event tracing for no-CBs CPUs' callback registration rcu: Introduce proper blocking to no-CBs kthreads GP waits rcu: Provide compile-time control for no-CBs CPUs rcu: Tone down debugging during boot-up and shutdown. rcu: Add softirq-stall indications to stall-warning messages rcu: Documentation update rcu: Make bugginess of code sample more evident rcu: Fix hlist_bl_set_first_rcu() annotation rcu: Delete unused rcu_node "wakemask" field ...
| | *-. Merge branches 'doc.2013.03.12a', 'fixes.2013.03.13a' and ↵Paul E. McKenney2013-03-261-63/+197
| | |\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 'idlenocb.2013.03.26b' into HEAD doc.2013.03.12a: Documentation changes. fixes.2013.03.13a: Miscellaneous fixes. idlenocb.2013.03.26b: Remove restrictions on no-CBs CPUs, make RCU_FAST_NO_HZ take advantage of numbered callbacks, add callback acceleration based on numbered callbacks.
| | | | * rcu: Make rcu_accelerate_cbs() note need for future grace periodsPaul E. McKenney2013-03-261-18/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that rcu_start_future_gp() has been abstracted from rcu_nocb_wait_gp(), rcu_accelerate_cbs() can invoke rcu_start_future_gp() so as to register the need for any future grace periods needed by a CPU about to enter dyntick-idle mode. This commit makes this change. Note that some refactoring of rcu_start_gp() is carried out to avoid recursion and subsequent self-deadlocks. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | | * rcu: Abstract rcu_start_future_gp() from rcu_nocb_wait_gp()Paul E. McKenney2013-03-261-4/+119
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CPUs going idle will need to record the need for a future grace period, but won't actually need to block waiting on it. This commit therefore splits rcu_start_future_gp(), which does the recording, from rcu_nocb_wait_gp(), which now invokes rcu_start_future_gp() to do the recording, after which rcu_nocb_wait_gp() does the waiting. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | | * rcu: Push lock release to rcu_start_gp()'s callersPaul E. McKenney2013-03-261-14/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If CPUs are to give prior notice of needed grace periods, it will be necessary to invoke rcu_start_gp() without dropping the root rcu_node structure's ->lock. This commit takes a second step in this direction by moving the release of this lock to rcu_start_gp()'s callers. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | | * rcu: Rearrange locking in rcu_start_gp()Paul E. McKenney2013-03-261-4/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If CPUs are to give prior notice of needed grace periods, it will be necessary to invoke rcu_start_gp() without dropping the root rcu_node structure's ->lock. This commit takes a first step in this direction by moving the release of this lock to the end of rcu_start_gp(). Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | | * rcu: Make RCU_FAST_NO_HZ take advantage of numbered callbacksPaul E. McKenney2013-03-261-11/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Because RCU callbacks are now associated with the number of the grace period that they must wait for, CPUs can now take advance callbacks corresponding to grace periods that ended while a given CPU was in dyntick-idle mode. This eliminates the need to try forcing the RCU state machine while entering idle, thus reducing the CPU intensiveness of RCU_FAST_NO_HZ, which should increase its energy efficiency. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | | * rcu: Accelerate RCU callbacks at grace-period endPaul E. McKenney2013-03-261-8/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that callback acceleration is idempotent, it is safe to accelerate callbacks during grace-period cleanup on any CPUs that the kthread happens to be running on. This commit therefore propagates the completion of the grace period to the per-CPU data structures, and also adds an rcu_advance_cbs() just before the cpu_needs_another_gp() check in order to reduce false-positive grace periods. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | | * rcu: Distinguish "rcuo" kthreads by RCU flavorPaul E. McKenney2013-03-261-3/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, the per-no-CBs-CPU kthreads are named "rcuo" followed by the CPU number, for example, "rcuo". This is problematic given that there are either two or three RCU flavors, each of which gets a per-CPU kthread with exactly the same name. This commit therefore introduces a one-letter abbreviation for each RCU flavor, namely 'b' for RCU-bh, 'p' for RCU-preempt, and 's' for RCU-sched. This abbreviation is used to distinguish the "rcuo" kthreads, for example, for CPU 0 we would have "rcuob/0", "rcuop/0", and "rcuos/0". Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
| | | | * rcu: Introduce proper blocking to no-CBs kthreads GP waitsPaul E. McKenney2013-03-261-1/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, the no-CBs kthreads do repeated timed waits for grace periods to elapse. This is crude and energy inefficient, so this commit allows no-CBs kthreads to specify exactly which grace period they are waiting for and also allows them to block for the entire duration until the desired grace period completes. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | | * rcu: Remove restrictions on no-CBs CPUsPaul E. McKenney2013-03-121-8/+6
| | | |/ | | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, CPU 0 is constrained to not be a no-CBs CPU, and furthermore at least one no-CBs CPU must remain online at any given time. These restrictions are problematic in some situations, such as cases where all CPUs must run a real-time workload that needs to be insulated from OS jitter and latencies due to RCU callback invocation. This commit therefore provides no-CBs CPUs a (very crude and energy-inefficient) way to start and to wait for grace periods independently of the normal RCU callback mechanisms. This approach allows any or all of the CPUs to be designated as no-CBs CPUs, and allows any proper subset of the CPUs (whether no-CBs CPUs or not) to be offlined. This commit also provides a fix for a locking bug spotted by Xie ChanglongX <changlongx.xie@intel.com>. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | * rcu: Tone down debugging during boot-up and shutdown.Paul E. McKenney2013-03-131-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In some situations, randomly delaying RCU grace-period initialization can cause more trouble than help. This commit therefore restricts this type of RCU self-torture to runtime, giving it a rest during boot and shutdown. Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | * rcu: Remove comment referring to __stop_machine()Srivatsa S. Bhat2013-03-121-5/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Although it used to be that CPU_DYING notifiers executed on the outgoing CPU with interrupts disabled and with all other CPUs spinning, this is no longer the case. This commit therefore removes this obsolete comment. Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | * rcu: Avoid invoking RCU core on offline CPUsPaul E. McKenney2013-03-121-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Offline CPUs transition through the scheduler to the idle loop one last time before being shut down. This can result in RCU raising softirq on this CPU, which is at best useless given that the CPU's callbacks will be offloaded at CPU_DEAD time. This commit therefore avoids raising softirq on offline CPUs. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | * rcu: Fix spacing problemJiang Fang2013-03-121-1/+1
| | |/ | | | | | | | | | | | | Signed-off-by: Jiang Fang <jiang.xx.fang@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| * | kernel/: rename random32() to prandom_u32()Akinobu Mita2013-04-291-1/+1
| |/ | | | | | | | | | | | | | | | | Use preferable function name which implies using a pseudo-random number generator. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | nohz: Ensure full dynticks CPUs are RCU nocbsFrederic Weisbecker2013-04-191-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We need full dynticks CPU to also be RCU nocb so that we don't have to keep the tick to handle RCU callbacks. Make sure the range passed to nohz_full= boot parameter is a subset of rcu_nocbs= The CPUs that fail to meet this requirement will be excluded from the nohz_full range. This is checked early in boot time, before any CPU has the opportunity to stop its tick. Suggested-by: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
* | rcu: Kick adaptive-ticks CPUs that are holding up RCU grace periodsPaul E. McKenney2013-04-151-0/+10
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Adaptive-ticks CPUs inform RCU when they enter kernel mode, but they do not necessarily turn the scheduler-clock tick back on. This state of affairs could result in RCU waiting on an adaptive-ticks CPU running for an extended period in kernel mode. Such a CPU will never run the RCU state machine, and could therefore indefinitely extend the RCU state machine, sooner or later resulting in an OOM condition. This patch, inspired by an earlier patch by Frederic Weisbecker, therefore causes RCU's force-quiescent-state processing to check for this condition and to send an IPI to CPUs that remain in that state for too long. "Too long" currently means about three jiffies by default, which is quite some time for a CPU to remain in the kernel without blocking. The rcu_tree.jiffies_till_first_fqs and rcutree.jiffies_till_next_fqs sysfs variables may be used to tune "too long" if needed. Reported-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
*---. Merge branches 'doctorture.2013.01.29a', 'fixes.2013.01.26a', ↵Paul E. McKenney2013-01-281-77/+183
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 'tagcb.2013.01.24a' and 'tiny.2013.01.29b' into HEAD doctorture.2013.01.11a: Changes to rcutorture and to RCU documentation. fixes.2013.01.26a: Miscellaneous fixes. tagcb.2013.01.24a: Tag RCU callbacks with grace-period number to simplify callback advancement. tiny.2013.01.29b: Enhancements to uniprocessor handling in tiny RCU.
| | | * rcu: Provide RCU CPU stall warnings for tiny RCUPaul E. McKenney2013-01-281-43/+3
| |_|/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Tiny RCU has historically omitted RCU CPU stall warnings in order to reduce memory requirements, however, lack of these warnings caused Thomas Gleixner some debugging pain recently. Therefore, this commit adds RCU CPU stall warnings to tiny RCU if RCU_TRACE=y. This keeps the memory footprint small, while still enabling CPU stall warnings in kernels built to enable them. Updated to include Josh Triplett's suggested use of RCU_STALL_COMMON config variable to simplify #if expressions. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
| | * rcu: Trace callback accelerationPaul E. McKenney2013-01-081-0/+6
| | | | | | | | | | | | | | | | | | | | | This commit adds event tracing for callback acceleration to allow better tracking of callbacks through the system. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | * rcu: Tag callback lists with corresponding grace-period numberPaul E. McKenney2013-01-081-28/+167
| |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, callbacks are advanced each time the corresponding CPU notices a change in its leaf rcu_node structure's ->completed value (this value counts grace-period completions). This approach has worked quite well, but with the advent of RCU_FAST_NO_HZ, we cannot count on a given CPU seeing all the grace-period completions. When a CPU misses a grace-period completion that occurs while it is in dyntick-idle mode, this will delay invocation of its callbacks. In addition, acceleration of callbacks (when RCU realizes that a given callback need only wait until the end of the next grace period, rather than having to wait for a partial grace period followed by a full grace period) must be carried out extremely carefully. Insufficient acceleration will result in unnecessarily long grace-period latencies, while excessive acceleration will result in premature callback invocation. Changes that involve this tradeoff are therefore among the most nerve-wracking changes to RCU. This commit therefore explicitly tags groups of callbacks with the number of the grace period that they are waiting for. This means that callback-advancement and callback-acceleration functions are idempotent, so that excessive acceleration will merely waste a few CPU cycles. This also allows a CPU to take full advantage of any grace periods that have elapsed while it has been in dyntick-idle mode. It should also enable simulataneous simplifications to and optimizations of RCU_FAST_NO_HZ. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| * rcu: Remove unused code originally used for context trackingLi Zhong2013-01-261-3/+0
| | | | | | | | | | | | | | | | | | | | As context tracking subsystem evolved, it stopped using ignore_user_qs and in_user defined in the rcu_dynticks structure. This commit therefore removes them. Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
| * rcu: Correct 'optimized' to 'optimize' in header commentCody P Schafer2013-01-261-1/+1
| | | | | | | | | | | | | | | | | | Small grammar fix in rcutree comment regarding 'rcu_scheduler_active' var. Signed-off-by: Cody P Schafer <cody@linux.vnet.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
| * rcu: Silence compiler array out-of-bounds false positivePaul E. McKenney2013-01-081-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It turns out that gcc 4.8 warns on array indexes being out of bounds unless it can prove otherwise. It gives this warning on some RCU initialization code. Because this is far from any fastpath, add an explicit check for array bounds and panic if so. This gives the compiler enough information to figure out that the array index is never out of bounds. However, if a similar false positive occurs on a fastpath, it will probably be necessary to tell the compiler to keep its array-index anxieties to itself. ;-) Markus Trippelsdorf <markus@trippelsdorf.de> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
| * rcu: Use new nesting value for rcu_dyntick trace in rcu_eqs_enter_commonLi Zhong2013-01-081-1/+1
| | | | | | | | | | | | | | | | | | This patch uses the real new value of dynticks_nesting instead of 0 in rcu_eqs_enter_common(). Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
| * rcu: Make rcu_is_cpu_rrupt_from_idle helper functions staticJosh Triplett2013-01-081-1/+1
|/ | | | | | | | | Both rcutiny and rcutree define a helper function named rcu_is_cpu_rrupt_from_idle(), each used exactly once, later in the same file. This commit therefore declares these helper functions static. Signed-off-by: Josh Triplett <josh@joshtriplett.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
* context_tracking: New context tracking susbsystemFrederic Weisbecker2012-11-301-62/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Create a new subsystem that probes on kernel boundaries to keep track of the transitions between level contexts with two basic initial contexts: user or kernel. This is an abstraction of some RCU code that use such tracking to implement its userspace extended quiescent state. We need to pull this up from RCU into this new level of indirection because this tracking is also going to be used to implement an "on demand" generic virtual cputime accounting. A necessary step to shutdown the tick while still accounting the cputime. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Gilad Ben-Yossef <gilad@benyossef.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> [ paulmck: fix whitespace error and email address. ] Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
* rcu: Add callback-free CPUsPaul E. McKenney2012-11-161-12/+51
| | | | | | | | | | | | | | | | | | | | | RCU callback execution can add significant OS jitter and also can degrade both scheduling latency and, in asymmetric multiprocessors, energy efficiency. This commit therefore adds the ability for selected CPUs ("rcu_nocbs=" boot parameter) to have their callbacks offloaded to kthreads. If the "rcu_nocb_poll" boot parameter is also specified, these kthreads will do polling, removing the need for the offloaded CPUs to do wakeups. At least one CPU must be doing normal callback processing: currently CPU 0 cannot be selected as a no-CBs CPU. In addition, attempts to offline the last normal-CBs CPU will fail. This feature was inspired by Jim Houston's and Joe Korty's JRCU, and this commit includes fixes to problems located by Fengguang Wu's kbuild test robot. [ paulmck: Added gfp.h include file as suggested by Fengguang Wu. ] Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*-----. Merge branches 'urgent.2012.10.27a', 'doc.2012.11.16a', 'fixes.2012.11.13a', ↵Paul E. McKenney2012-11-161-52/+170
|\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 'srcu.2012.10.27a', 'stall.2012.11.13a', 'tracing.2012.11.08a' and 'idle.2012.10.24a' into HEAD urgent.2012.10.27a: Fix for RCU user-mode transition (already in -tip). doc.2012.11.08a: Documentation updates, most notably codifying the memory-barrier guarantees inherent to grace periods. fixes.2012.11.13a: Miscellaneous fixes. srcu.2012.10.27a: Allow statically allocated and initialized srcu_struct structures (courtesy of Lai Jiangshan). stall.2012.11.13a: Add more diagnostic information to RCU CPU stall warnings, also decrease from 60 seconds to 21 seconds. hotplug.2012.11.08a: Minor updates to CPU hotplug handling. tracing.2012.11.08a: Improved debugfs tracing, courtesy of Michael Wang. idle.2012.10.24a: Updates to RCU idle/adaptive-idle handling, including a boot parameter that maps normal grace periods to expedited. Resolved conflict in kernel/rcutree.c due to side-by-side change.
| | | | * rcu: Fix precedence error in cpu_needs_another_gp()Paul E. McKenney2012-10-231-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The fix introduced by a10d206e (rcu: Fix day-one dyntick-idle stall-warning bug) has a C-language precedence error. It turns out that this error is harmless in that the same result is computed for all inputs, but the code is nevertheless a potential source of confusion. This commit therefore introduces parentheses in order to force the execution of the code to reflect the intent. Reported-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | | * rcu: Add a module parameter to force use of expedited RCU primitivesAntti P Miettinen2012-10-231-3/+9
| |_|_|/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There have been some embedded applications that would benefit from use of expedited grace-period primitives. In some ways, this is similar to synchronize_net() doing either a normal or an expedited grace period depending on lock state, but with control outside of the kernel. This commit therefore adds rcu_expedited boot and sysfs parameters that cause the kernel to substitute expedited primitives for the normal grace-period primitives. [ paulmck: Add trace/event/rcu.h to kernel/srcu.c to avoid build error. Get rid of infinite loop through contention path.] Signed-off-by: Antti P Miettinen <amiettinen@nvidia.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | * rcu: Fix tracing formattingPaul E. McKenney2012-11-081-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The rcu_state structure's ->completed field is unsigned long, so this commit adjusts show_one_rcugp()'s printf() format to suit. Also add the required ACCESS_ONCE() directives while we are in this function. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | * rcu: Instrument synchronize_rcu_expedited() for debugfs tracingPaul E. McKenney2012-11-081-3/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds the counters to rcu_state and updates them in synchronize_rcu_expedited() to provide the data needed for debugfs tracing. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | * rcu: Move synchronize_sched_expedited() state to rcu_statePaul E. McKenney2012-11-081-11/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Tracing (debugfs) of expedited RCU primitives is required, which in turn requires that the relevant data be located where the tracing code can find it, not in its current static global variables in kernel/rcutree.c. This commit therefore moves sync_sched_expedited_started and sync_sched_expedited_done to the rcu_state structure, as fields ->expedited_start and ->expedited_done, respectively. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | * rcu: Avoid counter wrap in synchronize_sched_expedited()Paul E. McKenney2012-11-081-18/+44
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is a counter scheme similar to ticket locking that synchronize_sched_expedited() uses to service multiple concurrent callers with the same expedited grace period. Upon entry, a sync_sched_expedited_started variable is atomically incremented, and upon completion of a expedited grace period a separate sync_sched_expedited_done variable is atomically incremented. However, if a synchronize_sched_expedited() is delayed while in try_stop_cpus(), concurrent invocations will increment the sync_sched_expedited_started counter, which will eventually overflow. If the original synchronize_sched_expedited() resumes execution just as the counter overflows, a concurrent invocation could incorrectly conclude that an expedited grace period elapsed in zero time, which would be bad. One could rely on counter size to prevent this from happening in practice, but the goal is to formally validate this code, so it needs to be fixed anyway. This commit therefore checks the gap between the two counters before incrementing sync_sched_expedited_started, and if the gap is too large, does a normal grace period instead. Overflow is thus only possible if there are more than about 3.5 billion threads on 32-bit systems, which can be excluded until such time as task_struct fits into a single byte and 4G/4G patches are accepted into mainline. It is also easy to encode this limitation into mechanical theorem provers. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | * rcu: Rename ->onofflock to ->orphan_lockPaul E. McKenney2012-11-081-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The ->onofflock field in the rcu_state structure at one time synchronized CPU-hotplug operations for RCU. However, its scope has decreased over time so that it now only protects the lists of orphaned RCU callbacks. This commit therefore renames it to ->orphan_lock to reflect its current use. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | | * rcu: Fix comment about _rcu_barrier()/orphanage exclusionPaul E. McKenney2012-10-231-2/+2
| |_|/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In the old days, _rcu_barrier() acquired ->onofflock to exclude rcu_send_cbs_to_orphanage(), which allowed the latter to avoid memory barriers in callback handling. However, _rcu_barrier() recently started doing get_online_cpus() to lock out CPU-hotplug operations entirely, which means that the comment in rcu_send_cbs_to_orphanage() that talks about ->onofflock is now obsolete. This commit therefore fixes the comment. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | * rcu: Dump number of callbacks in stall warning messagesPaul E. McKenney2012-10-231-4/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In theory, if a grace period manages to get started despite there being no callbacks on any of the CPUs, all CPUs could go into dyntick-idle mode, so that the grace period would never end. This commit updates the RCU CPU stall warning messages to detect this condition by summing up the number of callbacks on all CPUs. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | * rcu: Add grace-period information to RCU CPU stall warningsPaul E. McKenney2012-10-231-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | This commit causes the last grace period started and completed to be printed on RCU CPU stall warning messages in order to aid diagnosis. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
| | * rcu: Print remote CPU's stacks in stall warningsPaul E. McKenney2012-10-231-1/+24
| |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | The RCU CPU stall warnings rely on trigger_all_cpu_backtrace() to do NMI-based dump of the stack traces of all CPUs. Unfortunately, a number of architectures do not implement trigger_all_cpu_backtrace(), in which case RCU falls back to just dumping the stack of the running CPU. This is unhelpful in the case where the running CPU has detected that some other CPU has stalled. This commit therefore makes the running CPU dump the stacks of the tasks running on the stalled CPUs. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>