From 9d85f21c94f7f7a84d0ba686c58aa6d9da58fdbb Mon Sep 17 00:00:00 2001 From: Paul Turner Date: Thu, 4 Oct 2012 13:18:29 +0200 Subject: sched: Track the runnable average on a per-task entity basis Instead of tracking averaging the load parented by a cfs_rq, we can track entity load directly. With the load for a given cfs_rq then being the sum of its children. To do this we represent the historical contribution to runnable average within each trailing 1024us of execution as the coefficients of a geometric series. We can express this for a given task t as: runnable_sum(t) = \Sum u_i * y^i, runnable_avg_period(t) = \Sum 1024 * y^i load(t) = weight_t * runnable_sum(t) / runnable_avg_period(t) Where: u_i is the usage in the last i`th 1024us period (approximately 1ms) ~ms and y is chosen such that y^k = 1/2. We currently choose k to be 32 which roughly translates to about a sched period. Signed-off-by: Paul Turner Reviewed-by: Ben Segall Signed-off-by: Peter Zijlstra Link: http://lkml.kernel.org/r/20120823141506.372695337@google.com Signed-off-by: Ingo Molnar --- include/linux/sched.h | 13 +++++++++++++ 1 file changed, 13 insertions(+) (limited to 'include') diff --git a/include/linux/sched.h b/include/linux/sched.h index 0dd42a02df2e..418fc6d8a4da 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -1095,6 +1095,16 @@ struct load_weight { unsigned long weight, inv_weight; }; +struct sched_avg { + /* + * These sums represent an infinite geometric series and so are bound + * above by 1024/(1-y). Thus we only need a u32 to store them for for all + * choices of y < 1-2^(-32)*1024. + */ + u32 runnable_avg_sum, runnable_avg_period; + u64 last_runnable_update; +}; + #ifdef CONFIG_SCHEDSTATS struct sched_statistics { u64 wait_start; @@ -1155,6 +1165,9 @@ struct sched_entity { /* rq "owned" by this entity/group: */ struct cfs_rq *my_q; #endif +#ifdef CONFIG_SMP + struct sched_avg avg; +#endif }; struct sched_rt_entity { -- cgit v1.2.1