/* * kernel/stop_machine.c * * Copyright (C) 2008, 2005 IBM Corporation. * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au * Copyright (C) 2010 SUSE Linux Products GmbH * Copyright (C) 2010 Tejun Heo * * This file is released under the GPLv2 and any later version. */ #include #include #include #include #include #include #include #include #include #include #include /* * Structure to determine completion condition and record errors. May * be shared by works on different cpus. */ struct cpu_stop_done { atomic_t nr_todo; /* nr left to execute */ bool executed; /* actually executed? */ int ret; /* collected return value */ struct task_struct *waiter; /* woken when nr_todo reaches 0 */ }; /* the actual stopper, one per every possible cpu, enabled on online cpus */ struct cpu_stopper { raw_spinlock_t lock; bool enabled; /* is this stopper enabled? */ struct list_head works; /* list of pending works */ struct task_struct *thread; /* stopper thread */ }; static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) { memset(done, 0, sizeof(*done)); atomic_set(&done->nr_todo, nr_todo); done->waiter = current; } /* signal completion unless @done is NULL */ static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed) { if (done) { if (executed) done->executed = true; if (atomic_dec_and_test(&done->nr_todo)) { wake_up_process(done->waiter); done->waiter = NULL; } } } /* queue @work to @stopper. if offline, @work is completed immediately */ static void cpu_stop_queue_work(struct cpu_stopper *stopper, struct cpu_stop_work *work) { unsigned long flags; raw_spin_lock_irqsave(&stopper->lock, flags); if (stopper->enabled) { list_add_tail(&work->list, &stopper->works); wake_up_process(stopper->thread); } else cpu_stop_signal_done(work->done, false); raw_spin_unlock_irqrestore(&stopper->lock, flags); } static void wait_for_stop_done(struct cpu_stop_done *done) { set_current_state(TASK_UNINTERRUPTIBLE); while (atomic_read(&done->nr_todo)) { schedule(); set_current_state(TASK_UNINTERRUPTIBLE); } /* * We need to wait until cpu_stop_signal_done() has cleared * done->waiter. */ while (done->waiter) cpu_relax(); set_current_state(TASK_RUNNING); } /** * stop_one_cpu - stop a cpu * @cpu: cpu to stop * @fn: function to execute * @arg: argument to @fn * * Execute @fn(@arg) on @cpu. @fn is run in a process context with * the highest priority preempting any task on the cpu and * monopolizing it. This function returns after the execution is * complete. * * This function doesn't guarantee @cpu stays online till @fn * completes. If @cpu goes down in the middle, execution may happen * partially or fully on different cpus. @fn should either be ready * for that or the caller should ensure that @cpu stays online until * this function completes. * * CONTEXT: * Might sleep. * * RETURNS: * -ENOENT if @fn(@arg) was not executed because @cpu was offline; * otherwise, the return value of @fn. */ int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) { struct cpu_stop_done done; struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; cpu_stop_init_done(&done, 1); cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work); wait_for_stop_done(&done); return done.executed ? done.ret : -ENOENT; } /** * stop_one_cpu_nowait - stop a cpu but don't wait for completion * @cpu: cpu to stop * @fn: function to execute * @arg: argument to @fn * * Similar to stop_one_cpu() but doesn't wait for completion. The * caller is responsible for ensuring @work_buf is currently unused * and will remain untouched until stopper starts executing @fn. * * CONTEXT: * Don't care. */ void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, struct cpu_stop_work *work_buf) { *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf); } DEFINE_MUTEX(stop_cpus_mutex); static DEFINE_MUTEX(stopper_lock); /* static data for stop_cpus */ static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work); int __stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) { struct cpu_stop_work *work; struct cpu_stop_done done; unsigned int cpu; /* initialize works and done */ for_each_cpu(cpu, cpumask) { work = &per_cpu(stop_cpus_work, cpu); work->fn = fn; work->arg = arg; work->done = &done; } cpu_stop_init_done(&done, cpumask_weight(cpumask)); /* * Make sure that all work is queued on all cpus before we * any of the cpus can execute it. */ mutex_lock(&stopper_lock); for_each_cpu(cpu, cpumask) cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &per_cpu(stop_cpus_work, cpu)); mutex_unlock(&stopper_lock); wait_for_stop_done(&done); return done.executed ? done.ret : -ENOENT; } /** * stop_cpus - stop multiple cpus * @cpumask: cpus to stop * @fn: function to execute * @arg: argument to @fn * * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, * @fn is run in a process context with the highest priority * preempting any task on the cpu and monopolizing it. This function * returns after all executions are complete. * * This function doesn't guarantee the cpus in @cpumask stay online * till @fn completes. If some cpus go down in the middle, execution * on the cpu may happen partially or fully on different cpus. @fn * should either be ready for that or the caller should ensure that * the cpus stay online until this function completes. * * All stop_cpus() calls are serialized making it safe for @fn to wait * for all cpus to start executing it. * * CONTEXT: * Might sleep. * * RETURNS: * -ENOENT if @fn(@arg) was not executed at all because all cpus in * @cpumask were offline; otherwise, 0 if all executions of @fn * returned 0, any non zero return value if any returned non zero. */ int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) { int ret; /* static works are used, process one request at a time */ mutex_lock(&stop_cpus_mutex); ret = __stop_cpus(cpumask, fn, arg); mutex_unlock(&stop_cpus_mutex); return ret; } /** * try_stop_cpus - try to stop multiple cpus * @cpumask: cpus to stop * @fn: function to execute * @arg: argument to @fn * * Identical to stop_cpus() except that it fails with -EAGAIN if * someone else is already using the facility. * * CONTEXT: * Might sleep. * * RETURNS: * -EAGAIN if someone else is already stopping cpus, -ENOENT if * @fn(@arg) was not executed at all because all cpus in @cpumask were * offline; otherwise, 0 if all executions of @fn returned 0, any non * zero return value if any returned non zero. */ int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) { int ret; /* static works are used, process one request at a time */ if (!mutex_trylock(&stop_cpus_mutex)) return -EAGAIN; ret = __stop_cpus(cpumask, fn, arg); mutex_unlock(&stop_cpus_mutex); return ret; } static int cpu_stopper_thread(void *data) { struct cpu_stopper *stopper = data; struct cpu_stop_work *work; int ret; repeat: set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ if (kthread_should_stop()) { __set_current_state(TASK_RUNNING); return 0; } work = NULL; raw_spin_lock_irq(&stopper->lock); if (!list_empty(&stopper->works)) { work = list_first_entry(&stopper->works, struct cpu_stop_work, list); list_del_init(&work->list); } raw_spin_unlock_irq(&stopper->lock); if (work) { cpu_stop_fn_t fn = work->fn; void *arg = work->arg; struct cpu_stop_done *done = work->done; char ksym_buf[KSYM_NAME_LEN] __maybe_unused; __set_current_state(TASK_RUNNING); /* * Wait until the stopper finished scheduling on all * cpus */ mutex_lock(&stopper_lock); /* * Let other cpu threads continue as well */ mutex_unlock(&stopper_lock); /* cpu stop callbacks are not allowed to sleep */ preempt_disable(); ret = fn(arg); if (ret) done->ret = ret; /* restore preemption and check it's still balanced */ preempt_enable(); WARN_ONCE(preempt_count(), "cpu_stop: %s(%p) leaked preempt count\n", kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL, ksym_buf), arg); /* * Make sure that the wakeup and setting done->waiter * to NULL is atomic. */ local_irq_disable(); cpu_stop_signal_done(done, true); local_irq_enable(); } else schedule(); goto repeat; } extern void sched_set_stop_task(int cpu, struct task_struct *stop); /* manage stopper for a cpu, mostly lifted from sched migration thread mgmt */ static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); struct task_struct *p; switch (action & ~CPU_TASKS_FROZEN) { case CPU_UP_PREPARE: BUG_ON(stopper->thread || stopper->enabled || !list_empty(&stopper->works)); p = kthread_create_on_node(cpu_stopper_thread, stopper, cpu_to_node(cpu), "migration/%d", cpu); if (IS_ERR(p)) return notifier_from_errno(PTR_ERR(p)); get_task_struct(p); p->flags |= PF_STOMPER; kthread_bind(p, cpu); sched_set_stop_task(cpu, p); stopper->thread = p; break; case CPU_ONLINE: /* strictly unnecessary, as first user will wake it */ wake_up_process(stopper->thread); /* mark enabled */ raw_spin_lock_irq(&stopper->lock); stopper->enabled = true; raw_spin_unlock_irq(&stopper->lock); break; #ifdef CONFIG_HOTPLUG_CPU case CPU_UP_CANCELED: case CPU_POST_DEAD: { struct cpu_stop_work *work; sched_set_stop_task(cpu, NULL); /* kill the stopper */ kthread_stop(stopper->thread); /* drain remaining works */ raw_spin_lock_irq(&stopper->lock); list_for_each_entry(work, &stopper->works, list) cpu_stop_signal_done(work->done, false); stopper->enabled = false; raw_spin_unlock_irq(&stopper->lock); /* release the stopper */ put_task_struct(stopper->thread); stopper->thread = NULL; break; } #endif } return NOTIFY_OK; } /* * Give it a higher priority so that cpu stopper is available to other * cpu notifiers. It currently shares the same priority as sched * migration_notifier. */ static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = { .notifier_call = cpu_stop_cpu_callback, .priority = 10, }; static int __init cpu_stop_init(void) { void *bcpu = (void *)(long)smp_processor_id(); unsigned int cpu; int err; for_each_possible_cpu(cpu) { struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); raw_spin_lock_init(&stopper->lock); INIT_LIST_HEAD(&stopper->works); } /* start one for the boot cpu */ err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE, bcpu); BUG_ON(err != NOTIFY_OK); cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu); register_cpu_notifier(&cpu_stop_cpu_notifier); return 0; } early_initcall(cpu_stop_init); #ifdef CONFIG_STOP_MACHINE /* This controls the threads on each CPU. */ enum stopmachine_state { /* Dummy starting state for thread. */ STOPMACHINE_NONE, /* Awaiting everyone to be scheduled. */ STOPMACHINE_PREPARE, /* Disable interrupts. */ STOPMACHINE_DISABLE_IRQ, /* Run the function */ STOPMACHINE_RUN, /* Exit */ STOPMACHINE_EXIT, }; struct stop_machine_data { int (*fn)(void *); void *data; /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ unsigned int num_threads; const struct cpumask *active_cpus; enum stopmachine_state state; atomic_t thread_ack; }; static void set_state(struct stop_machine_data *smdata, enum stopmachine_state newstate) { /* Reset ack counter. */ atomic_set(&smdata->thread_ack, smdata->num_threads); smp_wmb(); smdata->state = newstate; } /* Last one to ack a state moves to the next state. */ static void ack_state(struct stop_machine_data *smdata) { if (atomic_dec_and_test(&smdata->thread_ack)) set_state(smdata, smdata->state + 1); } /* This is the cpu_stop function which stops the CPU. */ static int stop_machine_cpu_stop(void *data) { struct stop_machine_data *smdata = data; enum stopmachine_state curstate = STOPMACHINE_NONE; int cpu = smp_processor_id(), err = 0; bool is_active; if (!smdata->active_cpus) is_active = cpu == cpumask_first(cpu_online_mask); else is_active = cpumask_test_cpu(cpu, smdata->active_cpus); /* Simple state machine */ do { /* Chill out and ensure we re-read stopmachine_state. */ cpu_relax(); if (smdata->state != curstate) { curstate = smdata->state; switch (curstate) { case STOPMACHINE_DISABLE_IRQ: local_irq_disable(); hard_irq_disable(); break; case STOPMACHINE_RUN: if (is_active) err = smdata->fn(smdata->data); break; default: break; } ack_state(smdata); } } while (curstate != STOPMACHINE_EXIT); local_irq_enable(); return err; } int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) { struct stop_machine_data smdata = { .fn = fn, .data = data, .num_threads = num_online_cpus(), .active_cpus = cpus }; /* Set the initial state and stop all online cpus. */ set_state(&smdata, STOPMACHINE_PREPARE); return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata); } int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) { int ret; /* No CPUs can come up or down during this. */ get_online_cpus(); ret = __stop_machine(fn, data, cpus); put_online_cpus(); return ret; } EXPORT_SYMBOL_GPL(stop_machine); #endif /* CONFIG_STOP_MACHINE */