summaryrefslogtreecommitdiff
path: root/arch/arm64/kernel/process.c
blob: 3767fb21a5b8037fa898242fa3ea8d1442d21d02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
/*
 * Based on arch/arm/kernel/process.c
 *
 * Original Copyright (C) 1995  Linus Torvalds
 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
 * Copyright (C) 2012 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <stdarg.h>

#include <linux/compat.h>
#include <linux/efi.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/user.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/elfcore.h>
#include <linux/pm.h>
#include <linux/tick.h>
#include <linux/utsname.h>
#include <linux/uaccess.h>
#include <linux/random.h>
#include <linux/hw_breakpoint.h>
#include <linux/personality.h>
#include <linux/notifier.h>
#include <trace/events/power.h>
#include <linux/percpu.h>
#include <linux/thread_info.h>

#include <asm/alternative.h>
#include <asm/arch_gicv3.h>
#include <asm/compat.h>
#include <asm/cacheflush.h>
#include <asm/exec.h>
#include <asm/fpsimd.h>
#include <asm/mmu_context.h>
#include <asm/processor.h>
#include <asm/pointer_auth.h>
#include <asm/stacktrace.h>

#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
#include <linux/stackprotector.h>
unsigned long __stack_chk_guard __read_mostly;
EXPORT_SYMBOL(__stack_chk_guard);
#endif

/*
 * Function pointers to optional machine specific functions
 */
void (*pm_power_off)(void);
EXPORT_SYMBOL_GPL(pm_power_off);

void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);

static void __cpu_do_idle(void)
{
	dsb(sy);
	wfi();
}

static void __cpu_do_idle_irqprio(void)
{
	unsigned long pmr;
	unsigned long daif_bits;

	daif_bits = read_sysreg(daif);
	write_sysreg(daif_bits | PSR_I_BIT, daif);

	/*
	 * Unmask PMR before going idle to make sure interrupts can
	 * be raised.
	 */
	pmr = gic_read_pmr();
	gic_write_pmr(GIC_PRIO_IRQON);

	__cpu_do_idle();

	gic_write_pmr(pmr);
	write_sysreg(daif_bits, daif);
}

/*
 *	cpu_do_idle()
 *
 *	Idle the processor (wait for interrupt).
 *
 *	If the CPU supports priority masking we must do additional work to
 *	ensure that interrupts are not masked at the PMR (because the core will
 *	not wake up if we block the wake up signal in the interrupt controller).
 */
void cpu_do_idle(void)
{
	if (system_uses_irq_prio_masking())
		__cpu_do_idle_irqprio();
	else
		__cpu_do_idle();
}

/*
 * This is our default idle handler.
 */
void arch_cpu_idle(void)
{
	/*
	 * This should do all the clock switching and wait for interrupt
	 * tricks
	 */
	trace_cpu_idle_rcuidle(1, smp_processor_id());
	cpu_do_idle();
	local_irq_enable();
	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
}

#ifdef CONFIG_HOTPLUG_CPU
void arch_cpu_idle_dead(void)
{
       cpu_die();
}
#endif

/*
 * Called by kexec, immediately prior to machine_kexec().
 *
 * This must completely disable all secondary CPUs; simply causing those CPUs
 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
 * functionality embodied in disable_nonboot_cpus() to achieve this.
 */
void machine_shutdown(void)
{
	disable_nonboot_cpus();
}

/*
 * Halting simply requires that the secondary CPUs stop performing any
 * activity (executing tasks, handling interrupts). smp_send_stop()
 * achieves this.
 */
void machine_halt(void)
{
	local_irq_disable();
	smp_send_stop();
	while (1);
}

/*
 * Power-off simply requires that the secondary CPUs stop performing any
 * activity (executing tasks, handling interrupts). smp_send_stop()
 * achieves this. When the system power is turned off, it will take all CPUs
 * with it.
 */
void machine_power_off(void)
{
	local_irq_disable();
	smp_send_stop();
	if (pm_power_off)
		pm_power_off();
}

/*
 * Restart requires that the secondary CPUs stop performing any activity
 * while the primary CPU resets the system. Systems with multiple CPUs must
 * provide a HW restart implementation, to ensure that all CPUs reset at once.
 * This is required so that any code running after reset on the primary CPU
 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
 * executing pre-reset code, and using RAM that the primary CPU's code wishes
 * to use. Implementing such co-ordination would be essentially impossible.
 */
void machine_restart(char *cmd)
{
	/* Disable interrupts first */
	local_irq_disable();
	smp_send_stop();

	/*
	 * UpdateCapsule() depends on the system being reset via
	 * ResetSystem().
	 */
	if (efi_enabled(EFI_RUNTIME_SERVICES))
		efi_reboot(reboot_mode, NULL);

	/* Now call the architecture specific reboot code. */
	if (arm_pm_restart)
		arm_pm_restart(reboot_mode, cmd);
	else
		do_kernel_restart(cmd);

	/*
	 * Whoops - the architecture was unable to reboot.
	 */
	printk("Reboot failed -- System halted\n");
	while (1);
}

static void print_pstate(struct pt_regs *regs)
{
	u64 pstate = regs->pstate;

	if (compat_user_mode(regs)) {
		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
			pstate,
			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
	} else {
		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO)\n",
			pstate,
			pstate & PSR_N_BIT ? 'N' : 'n',
			pstate & PSR_Z_BIT ? 'Z' : 'z',
			pstate & PSR_C_BIT ? 'C' : 'c',
			pstate & PSR_V_BIT ? 'V' : 'v',
			pstate & PSR_D_BIT ? 'D' : 'd',
			pstate & PSR_A_BIT ? 'A' : 'a',
			pstate & PSR_I_BIT ? 'I' : 'i',
			pstate & PSR_F_BIT ? 'F' : 'f',
			pstate & PSR_PAN_BIT ? '+' : '-',
			pstate & PSR_UAO_BIT ? '+' : '-');
	}
}

void __show_regs(struct pt_regs *regs)
{
	int i, top_reg;
	u64 lr, sp;

	if (compat_user_mode(regs)) {
		lr = regs->compat_lr;
		sp = regs->compat_sp;
		top_reg = 12;
	} else {
		lr = regs->regs[30];
		sp = regs->sp;
		top_reg = 29;
	}

	show_regs_print_info(KERN_DEFAULT);
	print_pstate(regs);

	if (!user_mode(regs)) {
		printk("pc : %pS\n", (void *)regs->pc);
		printk("lr : %pS\n", (void *)lr);
	} else {
		printk("pc : %016llx\n", regs->pc);
		printk("lr : %016llx\n", lr);
	}

	printk("sp : %016llx\n", sp);

	if (system_uses_irq_prio_masking())
		printk("pmr_save: %08llx\n", regs->pmr_save);

	i = top_reg;

	while (i >= 0) {
		printk("x%-2d: %016llx ", i, regs->regs[i]);
		i--;

		if (i % 2 == 0) {
			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
			i--;
		}

		pr_cont("\n");
	}
}

void show_regs(struct pt_regs * regs)
{
	__show_regs(regs);
	dump_backtrace(regs, NULL);
}

static void tls_thread_flush(void)
{
	write_sysreg(0, tpidr_el0);

	if (is_compat_task()) {
		current->thread.uw.tp_value = 0;

		/*
		 * We need to ensure ordering between the shadow state and the
		 * hardware state, so that we don't corrupt the hardware state
		 * with a stale shadow state during context switch.
		 */
		barrier();
		write_sysreg(0, tpidrro_el0);
	}
}

void flush_thread(void)
{
	fpsimd_flush_thread();
	tls_thread_flush();
	flush_ptrace_hw_breakpoint(current);
}

void release_thread(struct task_struct *dead_task)
{
}

void arch_release_task_struct(struct task_struct *tsk)
{
	fpsimd_release_task(tsk);
}

/*
 * src and dst may temporarily have aliased sve_state after task_struct
 * is copied.  We cannot fix this properly here, because src may have
 * live SVE state and dst's thread_info may not exist yet, so tweaking
 * either src's or dst's TIF_SVE is not safe.
 *
 * The unaliasing is done in copy_thread() instead.  This works because
 * dst is not schedulable or traceable until both of these functions
 * have been called.
 */
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
	if (current->mm)
		fpsimd_preserve_current_state();
	*dst = *src;

	return 0;
}

asmlinkage void ret_from_fork(void) asm("ret_from_fork");

int copy_thread(unsigned long clone_flags, unsigned long stack_start,
		unsigned long stk_sz, struct task_struct *p)
{
	struct pt_regs *childregs = task_pt_regs(p);

	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));

	/*
	 * Unalias p->thread.sve_state (if any) from the parent task
	 * and disable discard SVE state for p:
	 */
	clear_tsk_thread_flag(p, TIF_SVE);
	p->thread.sve_state = NULL;

	/*
	 * In case p was allocated the same task_struct pointer as some
	 * other recently-exited task, make sure p is disassociated from
	 * any cpu that may have run that now-exited task recently.
	 * Otherwise we could erroneously skip reloading the FPSIMD
	 * registers for p.
	 */
	fpsimd_flush_task_state(p);

	if (likely(!(p->flags & PF_KTHREAD))) {
		*childregs = *current_pt_regs();
		childregs->regs[0] = 0;

		/*
		 * Read the current TLS pointer from tpidr_el0 as it may be
		 * out-of-sync with the saved value.
		 */
		*task_user_tls(p) = read_sysreg(tpidr_el0);

		if (stack_start) {
			if (is_compat_thread(task_thread_info(p)))
				childregs->compat_sp = stack_start;
			else
				childregs->sp = stack_start;
		}

		/*
		 * If a TLS pointer was passed to clone (4th argument), use it
		 * for the new thread.
		 */
		if (clone_flags & CLONE_SETTLS)
			p->thread.uw.tp_value = childregs->regs[3];
	} else {
		memset(childregs, 0, sizeof(struct pt_regs));
		childregs->pstate = PSR_MODE_EL1h;
		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
		    cpus_have_const_cap(ARM64_HAS_UAO))
			childregs->pstate |= PSR_UAO_BIT;

		if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
			childregs->pstate |= PSR_SSBS_BIT;

		if (system_uses_irq_prio_masking())
			childregs->pmr_save = GIC_PRIO_IRQON;

		p->thread.cpu_context.x19 = stack_start;
		p->thread.cpu_context.x20 = stk_sz;
	}
	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
	p->thread.cpu_context.sp = (unsigned long)childregs;

	ptrace_hw_copy_thread(p);

	return 0;
}

void tls_preserve_current_state(void)
{
	*task_user_tls(current) = read_sysreg(tpidr_el0);
}

static void tls_thread_switch(struct task_struct *next)
{
	tls_preserve_current_state();

	if (is_compat_thread(task_thread_info(next)))
		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
	else if (!arm64_kernel_unmapped_at_el0())
		write_sysreg(0, tpidrro_el0);

	write_sysreg(*task_user_tls(next), tpidr_el0);
}

/* Restore the UAO state depending on next's addr_limit */
void uao_thread_switch(struct task_struct *next)
{
	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
		if (task_thread_info(next)->addr_limit == KERNEL_DS)
			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
		else
			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
	}
}

/*
 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
 * shadow copy so that we can restore this upon entry from userspace.
 *
 * This is *only* for exception entry from EL0, and is not valid until we
 * __switch_to() a user task.
 */
DEFINE_PER_CPU(struct task_struct *, __entry_task);

static void entry_task_switch(struct task_struct *next)
{
	__this_cpu_write(__entry_task, next);
}

/*
 * Thread switching.
 */
__notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
				struct task_struct *next)
{
	struct task_struct *last;

	fpsimd_thread_switch(next);
	tls_thread_switch(next);
	hw_breakpoint_thread_switch(next);
	contextidr_thread_switch(next);
	entry_task_switch(next);
	uao_thread_switch(next);
	ptrauth_thread_switch(next);

	/*
	 * Complete any pending TLB or cache maintenance on this CPU in case
	 * the thread migrates to a different CPU.
	 * This full barrier is also required by the membarrier system
	 * call.
	 */
	dsb(ish);

	/* the actual thread switch */
	last = cpu_switch_to(prev, next);

	return last;
}

unsigned long get_wchan(struct task_struct *p)
{
	struct stackframe frame;
	unsigned long stack_page, ret = 0;
	int count = 0;
	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	stack_page = (unsigned long)try_get_task_stack(p);
	if (!stack_page)
		return 0;

	frame.fp = thread_saved_fp(p);
	frame.pc = thread_saved_pc(p);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	frame.graph = 0;
#endif
	do {
		if (unwind_frame(p, &frame))
			goto out;
		if (!in_sched_functions(frame.pc)) {
			ret = frame.pc;
			goto out;
		}
	} while (count ++ < 16);

out:
	put_task_stack(p);
	return ret;
}

unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
	if (is_compat_task())
		return randomize_page(mm->brk, SZ_32M);
	else
		return randomize_page(mm->brk, SZ_1G);
}

/*
 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
 */
void arch_setup_new_exec(void)
{
	current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;

	ptrauth_thread_init_user(current);
}