diff options
Diffstat (limited to 'Documentation/devicetree/bindings/pci/snps,dw-pcie-common.yaml')
-rw-r--r-- | Documentation/devicetree/bindings/pci/snps,dw-pcie-common.yaml | 266 |
1 files changed, 266 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/pci/snps,dw-pcie-common.yaml b/Documentation/devicetree/bindings/pci/snps,dw-pcie-common.yaml new file mode 100644 index 000000000000..d87e13496834 --- /dev/null +++ b/Documentation/devicetree/bindings/pci/snps,dw-pcie-common.yaml @@ -0,0 +1,266 @@ +# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +%YAML 1.2 +--- +$id: http://devicetree.org/schemas/pci/snps,dw-pcie-common.yaml# +$schema: http://devicetree.org/meta-schemas/core.yaml# + +title: Synopsys DWC PCIe RP/EP controller + +maintainers: + - Jingoo Han <jingoohan1@gmail.com> + - Gustavo Pimentel <gustavo.pimentel@synopsys.com> + +description: + Generic Synopsys DesignWare PCIe Root Port and Endpoint controller + properties. + +select: false + +properties: + reg: + description: + DWC PCIe CSR space is normally accessed over the dedicated Data Bus + Interface - DBI. In accordance with the reference manual the register + configuration space belongs to the Configuration-Dependent Module (CDM) + and is split up into several sub-parts Standard PCIe configuration + space, Port Logic Registers (PL), Shadow Config-space Registers, + iATU/eDMA registers. The particular sub-space is selected by the + CDM/ELBI (dbi_cs) and CS2 (dbi_cs2) signals (selector bits). Such + configuration provides a flexible interface for the system engineers to + either map the particular space at a desired MMIO address or just leave + them in a contiguous memory space if pure Native or AXI Bridge DBI access + is selected. Note the PCIe CFG-space, PL and Shadow registers are + specific for each activated function, while the rest of the sub-spaces + are common for all of them (if there are more than one). + minItems: 2 + maxItems: 6 + + reg-names: + minItems: 2 + maxItems: 6 + + interrupts: + description: + There are two main sub-blocks which are normally capable of + generating interrupts. It's System Information Interface and MSI + interface. While the former one has some common for the Host and + Endpoint controllers IRQ-signals, the later interface is obviously + Root Complex specific since it's responsible for the incoming MSI + messages signalling. The System Information IRQ signals are mainly + responsible for reporting the generic PCIe hierarchy and Root + Complex events like VPD IO request, general AER, PME, Hot-plug, link + bandwidth change, link equalization request, INTx asserted/deasserted + Message detection, embedded DMA Tx/Rx/Error. + minItems: 1 + maxItems: 26 + + interrupt-names: + minItems: 1 + maxItems: 26 + + clocks: + description: + DWC PCIe reference manual explicitly defines a set of the clocks required + to get the controller working correctly. In general all of them can + be divided into two groups':' application and core clocks. Note the + platforms may have some of the clock sources unspecified in case if the + corresponding domains are fed up from a common clock source. + minItems: 1 + maxItems: 7 + + clock-names: + minItems: 1 + maxItems: 7 + items: + oneOf: + - description: + Data Bus Interface (DBI) clock. Clock signal for the AXI-bus + interface of the Configuration-Dependent Module, which is + basically the set of the controller CSRs. + const: dbi + - description: + Application AXI-bus Master interface clock. Basically this is + a clock for the controller DMA interface (PCI-to-CPU). + const: mstr + - description: + Application AXI-bus Slave interface clock. This is a clock for + the CPU-to-PCI memory IO interface. + const: slv + - description: + Controller Core-PCS PIPE interface clock. It's normally + supplied by an external PCS-PHY. + const: pipe + - description: + Controller Primary clock. It's assumed that all controller input + signals (except resets) are synchronous to this clock. + const: core + - description: + Auxiliary clock for the controller PMC domain. The controller + partitioning implies having some parts to operate with this + clock in some power management states. + const: aux + - description: + Generic reference clock. In case if there are several + interfaces fed up with a common clock source it's advisable to + define it with this name (for instance pipe, core and aux can + be connected to a single source of the periodic signal). + const: ref + - description: + Clock for the PHY registers interface. Originally this is + a PHY-viewport-based interface, but some platform may have + specifically designed one. + const: phy_reg + - description: + Vendor-specific clock names. Consider using the generic names + above for new bindings. + oneOf: + - description: See native 'dbi' clock for details + enum: [ pcie, pcie_apb_sys, aclk_dbi ] + - description: See native 'mstr/slv' clock for details + enum: [ pcie_bus, pcie_inbound_axi, pcie_aclk, aclk_mst, aclk_slv ] + - description: See native 'pipe' clock for details + enum: [ pcie_phy, pcie_phy_ref, link ] + - description: See native 'aux' clock for details + enum: [ pcie_aux ] + - description: See native 'ref' clock for details. + enum: [ gio ] + - description: See nativs 'phy_reg' clock for details + enum: [ pcie_apb_phy, pclk ] + + resets: + description: + DWC PCIe reference manual explicitly defines a set of the reset + signals required to be de-asserted to properly activate the controller + sub-parts. All of these signals can be divided into two sub-groups':' + application and core resets with respect to the main sub-domains they + are supposed to reset. Note the platforms may have some of these signals + unspecified in case if they are automatically handled or aggregated into + a comprehensive control module. + minItems: 1 + maxItems: 10 + + reset-names: + minItems: 1 + maxItems: 10 + items: + oneOf: + - description: Data Bus Interface (DBI) domain reset + const: dbi + - description: AXI-bus Master interface reset + const: mstr + - description: AXI-bus Slave interface reset + const: slv + - description: Application-dependent interface reset + const: app + - description: Controller Non-sticky CSR flags reset + const: non-sticky + - description: Controller sticky CSR flags reset + const: sticky + - description: PIPE-interface (Core-PCS) logic reset + const: pipe + - description: + Controller primary reset (resets everything except PMC module) + const: core + - description: PCS/PHY block reset + const: phy + - description: PMC hot reset signal + const: hot + - description: Cold reset signal + const: pwr + - description: + Vendor-specific reset names. Consider using the generic names + above for new bindings. + oneOf: + - description: See native 'app' reset for details + enum: [ apps, gio, apb ] + - description: See native 'phy' reset for details + enum: [ pciephy, link ] + - description: See native 'pwr' reset for details + enum: [ turnoff ] + + phys: + description: + There can be up to the number of possible lanes PHYs specified placed in + the phandle array in the line-based order. Obviously each the specified + PHYs are supposed to be able to work in the PCIe mode with a speed + implied by the DWC PCIe controller they are attached to. + minItems: 1 + maxItems: 16 + + phy-names: + minItems: 1 + maxItems: 16 + oneOf: + - description: Generic PHY names + items: + pattern: '^pcie[0-9]+$' + - description: + Vendor-specific PHY names. Consider using the generic + names above for new bindings. + items: + oneOf: + - pattern: '^pcie(-?phy[0-9]*)?$' + - pattern: '^p2u-[0-7]$' + + reset-gpio: + deprecated: true + description: + Reference to the GPIO-controlled PERST# signal. It is used to reset all + the peripheral devices available on the PCIe bus. + maxItems: 1 + + reset-gpios: + description: + Reference to the GPIO-controlled PERST# signal. It is used to reset all + the peripheral devices available on the PCIe bus. + maxItems: 1 + + max-link-speed: + maximum: 5 + + num-lanes: + description: + Number of PCIe link lanes to use. Can be omitted if the already brought + up link is supposed to be preserved. + maximum: 16 + + num-ob-windows: + $ref: /schemas/types.yaml#/definitions/uint32 + deprecated: true + description: + Number of outbound address translation windows. This parameter can be + auto-detected based on the iATU memory writability. So there is no + point in having a dedicated DT-property for it. + maximum: 256 + + num-ib-windows: + $ref: /schemas/types.yaml#/definitions/uint32 + deprecated: true + description: + Number of inbound address translation windows. In the same way as + for the outbound AT windows, this parameter can be auto-detected based + on the iATU memory writability. There is no point having a dedicated + DT-property for it either. + maximum: 256 + + num-viewport: + $ref: /schemas/types.yaml#/definitions/uint32 + deprecated: true + description: + Number of outbound view ports configured in hardware. It's the same as + the number of outbound AT windows. + maximum: 256 + + snps,enable-cdm-check: + $ref: /schemas/types.yaml#/definitions/flag + description: + Enable automatic checking of CDM (Configuration Dependent Module) + registers for data corruption. CDM registers include standard PCIe + configuration space registers, Port Logic registers, DMA and iATU + registers. This feature has been available since DWC PCIe v4.80a. + + dma-coherent: true + +additionalProperties: true + +... |