| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cgroup_subsys is a bit messier than it needs to be.
* The name of a subsys can be different from its internal identifier
defined in cgroup_subsys.h. Most subsystems use the matching name
but three - cpu, memory and perf_event - use different ones.
* cgroup_subsys_id enums are postfixed with _subsys_id and each
cgroup_subsys is postfixed with _subsys. cgroup.h is widely
included throughout various subsystems, it doesn't and shouldn't
have claim on such generic names which don't have any qualifier
indicating that they belong to cgroup.
* cgroup_subsys->subsys_id should always equal the matching
cgroup_subsys_id enum; however, we require each controller to
initialize it and then BUG if they don't match, which is a bit
silly.
This patch cleans up cgroup_subsys names and initialization by doing
the followings.
* cgroup_subsys_id enums are now postfixed with _cgrp_id, and each
cgroup_subsys with _cgrp_subsys.
* With the above, renaming subsys identifiers to match the userland
visible names doesn't cause any naming conflicts. All non-matching
identifiers are renamed to match the official names.
cpu_cgroup -> cpu
mem_cgroup -> memory
perf -> perf_event
* controllers no longer need to initialize ->subsys_id and ->name.
They're generated in cgroup core and set automatically during boot.
* Redundant cgroup_subsys declarations removed.
* While updating BUG_ON()s in cgroup_init_early(), convert them to
WARN()s. BUGging that early during boot is stupid - the kernel
can't print anything, even through serial console and the trap
handler doesn't even link stack frame properly for back-tracing.
This patch doesn't introduce any behavior changes.
v2: Rebased on top of fe1217c4f3f7 ("net: net_cls: move cgroupfs
classid handling into core").
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Ingo Molnar <mingo@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Thomas Graf <tgraf@suug.ch>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, we have rather a messy function set relating to per-memcg
kmem cache initialization/destruction.
Per-memcg caches are created in memcg_create_kmem_cache(). This
function calls kmem_cache_create_memcg() to allocate and initialize a
kmem cache and then "registers" the new cache in the
memcg_params::memcg_caches array of the parent cache.
During its work-flow, kmem_cache_create_memcg() executes the following
memcg-related functions:
- memcg_alloc_cache_params(), to initialize memcg_params of the newly
created cache;
- memcg_cache_list_add(), to add the new cache to the memcg_slab_caches
list.
On the other hand, kmem_cache_destroy() called on a cache destruction
only calls memcg_release_cache(), which does all the work: it cleans the
reference to the cache in its parent's memcg_params::memcg_caches,
removes the cache from the memcg_slab_caches list, and frees
memcg_params.
Such an inconsistency between destruction and initialization paths make
the code difficult to read, so let's clean this up a bit.
This patch moves all the code relating to registration of per-memcg
caches (adding to memcg list, setting the pointer to a cache from its
parent) to the newly created memcg_register_cache() and
memcg_unregister_cache() functions making the initialization and
destruction paths look symmetrical.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We do not free the cache's memcg_params if __kmem_cache_create fails.
Fix this.
Plus, rename memcg_register_cache() to memcg_alloc_cache_params(),
because it actually does not register the cache anywhere, but simply
initialize kmem_cache::memcg_params.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 3812c8c8f395 ("mm: memcg: do not trap chargers with full
callstack on OOM") assumed that only a few places that can trigger a
memcg OOM situation do not return VM_FAULT_OOM, like optional page cache
readahead. But there are many more and it's impractical to annotate
them all.
First of all, we don't want to invoke the OOM killer when the failed
allocation is gracefully handled, so defer the actual kill to the end of
the fault handling as well. This simplifies the code quite a bit for
added bonus.
Second, since a failed allocation might not be the abrupt end of the
fault, the memcg OOM handler needs to be re-entrant until the fault
finishes for subsequent allocation attempts. If an allocation is
attempted after the task already OOMed, allow it to bypass the limit so
that it can quickly finish the fault and invoke the OOM killer.
Reported-by: azurIt <azurit@pobox.sk>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Revert commit 3b38722efd9f ("memcg, vmscan: integrate soft reclaim
tighter with zone shrinking code")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Revert commit a5b7c87f9207 ("vmscan, memcg: do softlimit reclaim also
for targeted reclaim")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Revert commit de57780dc659 ("memcg: enhance memcg iterator to support
predicates")
I merged this prematurely - Michal and Johannes still disagree about the
overall design direction and the future remains unclear.
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add memcg routines to count writeback pages, later dirty pages will also
be accounted.
After Kame's commit 89c06bd52fb9 ("memcg: use new logic for page stat
accounting"), we can use 'struct page' flag to test page state instead
of per page_cgroup flag. But memcg has a feature to move a page from a
cgroup to another one and may have race between "move" and "page stat
accounting". So in order to avoid the race we have designed a new lock:
mem_cgroup_begin_update_page_stat()
modify page information -->(a)
mem_cgroup_update_page_stat() -->(b)
mem_cgroup_end_update_page_stat()
It requires both (a) and (b)(writeback pages accounting) to be pretected
in mem_cgroup_{begin/end}_update_page_stat(). It's full no-op for
!CONFIG_MEMCG, almost no-op if memcg is disabled (but compiled in), rcu
read lock in the most cases (no task is moving), and spin_lock_irqsave
on top in the slow path.
There're two writeback interfaces to modify: test_{clear/set}_page_writeback().
And the lock order is:
--> memcg->move_lock
--> mapping->tree_lock
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While accounting memcg page stat, it's not worth to use
MEMCG_NR_FILE_MAPPED as an extra layer of indirection because of the
complexity and presumed performance overhead. We can use
MEM_CGROUP_STAT_FILE_MAPPED directly.
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The memcg OOM handling is incredibly fragile and can deadlock. When a
task fails to charge memory, it invokes the OOM killer and loops right
there in the charge code until it succeeds. Comparably, any other task
that enters the charge path at this point will go to a waitqueue right
then and there and sleep until the OOM situation is resolved. The problem
is that these tasks may hold filesystem locks and the mmap_sem; locks that
the selected OOM victim may need to exit.
For example, in one reported case, the task invoking the OOM killer was
about to charge a page cache page during a write(), which holds the
i_mutex. The OOM killer selected a task that was just entering truncate()
and trying to acquire the i_mutex:
OOM invoking task:
mem_cgroup_handle_oom+0x241/0x3b0
mem_cgroup_cache_charge+0xbe/0xe0
add_to_page_cache_locked+0x4c/0x140
add_to_page_cache_lru+0x22/0x50
grab_cache_page_write_begin+0x8b/0xe0
ext3_write_begin+0x88/0x270
generic_file_buffered_write+0x116/0x290
__generic_file_aio_write+0x27c/0x480
generic_file_aio_write+0x76/0xf0 # takes ->i_mutex
do_sync_write+0xea/0x130
vfs_write+0xf3/0x1f0
sys_write+0x51/0x90
system_call_fastpath+0x18/0x1d
OOM kill victim:
do_truncate+0x58/0xa0 # takes i_mutex
do_last+0x250/0xa30
path_openat+0xd7/0x440
do_filp_open+0x49/0xa0
do_sys_open+0x106/0x240
sys_open+0x20/0x30
system_call_fastpath+0x18/0x1d
The OOM handling task will retry the charge indefinitely while the OOM
killed task is not releasing any resources.
A similar scenario can happen when the kernel OOM killer for a memcg is
disabled and a userspace task is in charge of resolving OOM situations.
In this case, ALL tasks that enter the OOM path will be made to sleep on
the OOM waitqueue and wait for userspace to free resources or increase
the group's limit. But a userspace OOM handler is prone to deadlock
itself on the locks held by the waiting tasks. For example one of the
sleeping tasks may be stuck in a brk() call with the mmap_sem held for
writing but the userspace handler, in order to pick an optimal victim,
may need to read files from /proc/<pid>, which tries to acquire the same
mmap_sem for reading and deadlocks.
This patch changes the way tasks behave after detecting a memcg OOM and
makes sure nobody loops or sleeps with locks held:
1. When OOMing in a user fault, invoke the OOM killer and restart the
fault instead of looping on the charge attempt. This way, the OOM
victim can not get stuck on locks the looping task may hold.
2. When OOMing in a user fault but somebody else is handling it
(either the kernel OOM killer or a userspace handler), don't go to
sleep in the charge context. Instead, remember the OOMing memcg in
the task struct and then fully unwind the page fault stack with
-ENOMEM. pagefault_out_of_memory() will then call back into the
memcg code to check if the -ENOMEM came from the memcg, and then
either put the task to sleep on the memcg's OOM waitqueue or just
restart the fault. The OOM victim can no longer get stuck on any
lock a sleeping task may hold.
Debugged by Michal Hocko.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: azurIt <azurit@pobox.sk>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
System calls and kernel faults (uaccess, gup) can handle an out of memory
situation gracefully and just return -ENOMEM.
Enable the memcg OOM killer only for user faults, where it's really the
only option available.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The caller of the iterator might know that some nodes or even subtrees
should be skipped but there is no way to tell iterators about that so the
only choice left is to let iterators to visit each node and do the
selection outside of the iterating code. This, however, doesn't scale
well with hierarchies with many groups where only few groups are
interesting.
This patch adds mem_cgroup_iter_cond variant of the iterator with a
callback which gets called for every visited node. There are three
possible ways how the callback can influence the walk. Either the node is
visited, it is skipped but the tree walk continues down the tree or the
whole subtree of the current group is skipped.
[hughd@google.com: fix memcg-less page reclaim]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Soft reclaim has been done only for the global reclaim (both background
and direct). Since "memcg: integrate soft reclaim tighter with zone
shrinking code" there is no reason for this limitation anymore as the soft
limit reclaim doesn't use any special code paths and it is a part of the
zone shrinking code which is used by both global and targeted reclaims.
From the semantic point of view it is natural to consider soft limit
before touching all groups in the hierarchy tree which is touching the
hard limit because soft limit tells us where to push back when there is a
memory pressure. It is not important whether the pressure comes from the
limit or imbalanced zones.
This patch simply enables soft reclaim unconditionally in
mem_cgroup_should_soft_reclaim so it is enabled for both global and
targeted reclaim paths. mem_cgroup_soft_reclaim_eligible needs to learn
about the root of the reclaim to know where to stop checking soft limit
state of parents up the hierarchy. Say we have
A (over soft limit)
\
B (below s.l., hit the hard limit)
/ \
C D (below s.l.)
B is the source of the outside memory pressure now for D but we shouldn't
soft reclaim it because it is behaving well under B subtree and we can
still reclaim from C (pressumably it is over the limit).
mem_cgroup_soft_reclaim_eligible should therefore stop climbing up the
hierarchy at B (root of the memory pressure).
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patchset is sitting out of tree for quite some time without any
objections. I would be really happy if it made it into 3.12. I do not
want to push it too hard but I think this work is basically ready and
waiting more doesn't help.
The basic idea is quite simple. Pull soft reclaim into shrink_zone in the
first step and get rid of the previous soft reclaim infrastructure.
shrink_zone is done in two passes now. First it tries to do the soft
limit reclaim and it falls back to reclaim-all mode if no group is over
the limit or no pages have been scanned. The second pass happens at the
same priority so the only time we waste is the memcg tree walk which has
been updated in the third step to have only negligible overhead.
As a bonus we will get rid of a _lot_ of code by this and soft reclaim
will not stand out like before when it wasn't integrated into the zone
shrinking code and it reclaimed at priority 0 (the testing results show
that some workloads suffers from such an aggressive reclaim). The clean
up is in a separate patch because I felt it would be easier to review that
way.
The second step is soft limit reclaim integration into targeted reclaim.
It should be rather straight forward. Soft limit has been used only for
the global reclaim so far but it makes sense for any kind of pressure
coming from up-the-hierarchy, including targeted reclaim.
The third step (patches 4-8) addresses the tree walk overhead by enhancing
memcg iterators to enable skipping whole subtrees and tracking number of
over soft limit children at each level of the hierarchy. This information
is updated same way the old soft limit tree was updated (from
memcg_check_events) so we shouldn't see an additional overhead. In fact
mem_cgroup_update_soft_limit is much simpler than tree manipulation done
previously.
__shrink_zone uses mem_cgroup_soft_reclaim_eligible as a predicate for
mem_cgroup_iter so the decision whether a particular group should be
visited is done at the iterator level which allows us to decide to skip
the whole subtree as well (if there is no child in excess). This reduces
the tree walk overhead considerably.
* TEST 1
========
My primary test case was a parallel kernel build with 2 groups (make is
running with -j8 with a distribution .config in a separate cgroup without
any hard limit) on a 32 CPU machine booted with 1GB memory and both builds
run taskset to Node 0 cpus.
I was mostly interested in 2 setups. Default - no soft limit set and -
and 0 soft limit set to both groups. The first one should tell us whether
the rework regresses the default behavior while the second one should show
us improvements in an extreme case where both workloads are always over
the soft limit.
/usr/bin/time -v has been used to collect the statistics and each
configuration had 3 runs after fresh boot without any other load on the
system.
base is mmotm-2013-07-18-16-40
rework all 8 patches applied on top of base
* No-limit
User
no-limit/base: min: 651.92 max: 672.65 avg: 664.33 std: 8.01 runs: 6
no-limit/rework: min: 657.34 [100.8%] max: 668.39 [99.4%] avg: 663.13 [99.8%] std: 3.61 runs: 6
System
no-limit/base: min: 69.33 max: 71.39 avg: 70.32 std: 0.79 runs: 6
no-limit/rework: min: 69.12 [99.7%] max: 71.05 [99.5%] avg: 70.04 [99.6%] std: 0.59 runs: 6
Elapsed
no-limit/base: min: 398.27 max: 422.36 avg: 408.85 std: 7.74 runs: 6
no-limit/rework: min: 386.36 [97.0%] max: 438.40 [103.8%] avg: 416.34 [101.8%] std: 18.85 runs: 6
The results are within noise. Elapsed time has a bigger variance but the
average looks good.
* 0-limit
User
0-limit/base: min: 573.76 max: 605.63 avg: 585.73 std: 12.21 runs: 6
0-limit/rework: min: 645.77 [112.6%] max: 666.25 [110.0%] avg: 656.97 [112.2%] std: 7.77 runs: 6
System
0-limit/base: min: 69.57 max: 71.13 avg: 70.29 std: 0.54 runs: 6
0-limit/rework: min: 68.68 [98.7%] max: 71.40 [100.4%] avg: 69.91 [99.5%] std: 0.87 runs: 6
Elapsed
0-limit/base: min: 1306.14 max: 1550.17 avg: 1430.35 std: 90.86 runs: 6
0-limit/rework: min: 404.06 [30.9%] max: 465.94 [30.1%] avg: 434.81 [30.4%] std: 22.68 runs: 6
The improvement is really huge here (even bigger than with my previous
testing and I suspect that this highly depends on the storage). Page
fault statistics tell us at least part of the story:
Minor
0-limit/base: min: 37180461.00 max: 37319986.00 avg: 37247470.00 std: 54772.71 runs: 6
0-limit/rework: min: 36751685.00 [98.8%] max: 36805379.00 [98.6%] avg: 36774506.33 [98.7%] std: 17109.03 runs: 6
Major
0-limit/base: min: 170604.00 max: 221141.00 avg: 196081.83 std: 18217.01 runs: 6
0-limit/rework: min: 2864.00 [1.7%] max: 10029.00 [4.5%] avg: 5627.33 [2.9%] std: 2252.71 runs: 6
Same as with my previous testing Minor faults are more or less within
noise but Major fault count is way bellow the base kernel.
While this looks as a nice win it is fair to say that 0-limit
configuration is quite artificial. So I was playing with 0-no-limit
loads as well.
* TEST 2
========
The following results are from 2 groups configuration on a 16GB machine
(single NUMA node).
- A running stream IO (dd if=/dev/zero of=local.file bs=1024) with
2*TotalMem with 0 soft limit.
- B running a mem_eater which consumes TotalMem-1G without any limit. The
mem_eater consumes the memory in 100 chunks with 1s nap after each
mmap+poppulate so that both loads have chance to fight for the memory.
The expected result is that B shouldn't be reclaimed and A shouldn't see
a big dropdown in elapsed time.
User
base: min: 2.68 max: 2.89 avg: 2.76 std: 0.09 runs: 3
rework: min: 3.27 [122.0%] max: 3.74 [129.4%] avg: 3.44 [124.6%] std: 0.21 runs: 3
System
base: min: 86.26 max: 88.29 avg: 87.28 std: 0.83 runs: 3
rework: min: 81.05 [94.0%] max: 84.96 [96.2%] avg: 83.14 [95.3%] std: 1.61 runs: 3
Elapsed
base: min: 317.28 max: 332.39 avg: 325.84 std: 6.33 runs: 3
rework: min: 281.53 [88.7%] max: 298.16 [89.7%] avg: 290.99 [89.3%] std: 6.98 runs: 3
System time improved slightly as well as Elapsed. My previous testing
has shown worse numbers but this again seem to depend on the storage
speed.
My theory is that the writeback doesn't catch up and prio-0 soft reclaim
falls into wait on writeback page too often in the base kernel. The
patched kernel doesn't do that because the soft reclaim is done from the
kswapd/direct reclaim context. This can be seen on the following graph
nicely. The A's group usage_in_bytes regurarly drops really low very often.
All 3 runs
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream.png
resp. a detail of the single run
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream-one-run.png
mem_eater seems to be doing better as well. It gets to the full
allocation size faster as can be seen on the following graph:
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/mem_eater-one-run.png
/proc/meminfo collected during the test also shows that rework kernel
hasn't swapped that much (well almost not at all):
base: max: 123900 K avg: 56388.29 K
rework: max: 300 K avg: 128.68 K
kswapd and direct reclaim statistics are of no use unfortunatelly because
soft reclaim is not accounted properly as the counters are hidden by
global_reclaim() checks in the base kernel.
* TEST 3
========
Another test was the same configuration as TEST2 except the stream IO was
replaced by a single kbuild (16 parallel jobs bound to Node0 cpus same as
in TEST1) and mem_eater allocated TotalMem-200M so kbuild had only 200MB
left.
Kbuild did better with the rework kernel here as well:
User
base: min: 860.28 max: 872.86 avg: 868.03 std: 5.54 runs: 3
rework: min: 880.81 [102.4%] max: 887.45 [101.7%] avg: 883.56 [101.8%] std: 2.83 runs: 3
System
base: min: 84.35 max: 85.06 avg: 84.79 std: 0.31 runs: 3
rework: min: 85.62 [101.5%] max: 86.09 [101.2%] avg: 85.79 [101.2%] std: 0.21 runs: 3
Elapsed
base: min: 135.36 max: 243.30 avg: 182.47 std: 45.12 runs: 3
rework: min: 110.46 [81.6%] max: 116.20 [47.8%] avg: 114.15 [62.6%] std: 2.61 runs: 3
Minor
base: min: 36635476.00 max: 36673365.00 avg: 36654812.00 std: 15478.03 runs: 3
rework: min: 36639301.00 [100.0%] max: 36695541.00 [100.1%] avg: 36665511.00 [100.0%] std: 23118.23 runs: 3
Major
base: min: 14708.00 max: 53328.00 avg: 31379.00 std: 16202.24 runs: 3
rework: min: 302.00 [2.1%] max: 414.00 [0.8%] avg: 366.33 [1.2%] std: 47.22 runs: 3
Again we can see a significant improvement in Elapsed (it also seems to
be more stable), there is a huge dropdown for the Major page faults and
much more swapping:
base: max: 583736 K avg: 112547.43 K
rework: max: 4012 K avg: 124.36 K
Graphs from all three runs show the variability of the kbuild quite
nicely. It even seems that it took longer after every run with the base
kernel which would be quite surprising as the source tree for the build is
removed and caches are dropped after each run so the build operates on a
freshly extracted sources everytime.
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater.png
My other testing shows that this is just a matter of timing and other runs
behave differently the std for Elapsed time is similar ~50. Example of
other three runs:
http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater2.png
So to wrap this up. The series is still doing good and improves the soft
limit.
The testing results for bunch of cgroups with both stream IO and kbuild
loads can be found in "memcg: track children in soft limit excess to
improve soft limit".
This patch:
Memcg soft reclaim has been traditionally triggered from the global
reclaim paths before calling shrink_zone. mem_cgroup_soft_limit_reclaim
then picked up a group which exceeds the soft limit the most and reclaimed
it with 0 priority to reclaim at least SWAP_CLUSTER_MAX pages.
The infrastructure requires per-node-zone trees which hold over-limit
groups and keep them up-to-date (via memcg_check_events) which is not cost
free. Although this overhead hasn't turned out to be a bottle neck the
implementation is suboptimal because mem_cgroup_update_tree has no idea
which zones consumed memory over the limit so we could easily end up
having a group on a node-zone tree having only few pages from that
node-zone.
This patch doesn't try to fix node-zone trees management because it seems
that integrating soft reclaim into zone shrinking sounds much easier and
more appropriate for several reasons. First of all 0 priority reclaim was
a crude hack which might lead to big stalls if the group's LRUs are big
and hard to reclaim (e.g. a lot of dirty/writeback pages). Soft reclaim
should be applicable also to the targeted reclaim which is awkward right
now without additional hacks. Last but not least the whole infrastructure
eats quite some code.
After this patch shrink_zone is done in 2 passes. First it tries to do
the soft reclaim if appropriate (only for global reclaim for now to keep
compatible with the original state) and fall back to ignoring soft limit
if no group is eligible to soft reclaim or nothing has been scanned during
the first pass. Only groups which are over their soft limit or any of
their parents up the hierarchy is over the limit are considered eligible
during the first pass.
Soft limit tree which is not necessary anymore will be removed in the
follow up patch to make this patch smaller and easier to review.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ying Han <yinghan@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cgroup is currently in the process of transitioning to using struct
cgroup_subsys_state * as the primary handle instead of struct cgroup.
Please see the previous commit which converts the subsystem methods
for rationale.
This patch converts all cftype file operations to take @css instead of
@cgroup. cftypes for the cgroup core files don't have their subsytem
pointer set. These will automatically use the dummy_css added by the
previous patch and can be converted the same way.
Most subsystem conversions are straight forwards but there are some
interesting ones.
* freezer: update_if_frozen() is also converted to take @css instead
of @cgroup for consistency. This will make the code look simpler
too once iterators are converted to use css.
* memory/vmpressure: mem_cgroup_from_css() needs to be exported to
vmpressure while mem_cgroup_from_cont() can be made static.
Updated accordingly.
* cpu: cgroup_tg() doesn't have any user left. Removed.
* cpuacct: cgroup_ca() doesn't have any user left. Removed.
* hugetlb: hugetlb_cgroup_form_cgroup() doesn't have any user left.
Removed.
* net_cls: cgrp_cls_state() doesn't have any user left. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Steven Rostedt <rostedt@goodmis.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For processes that have detached their mm's, task_in_mem_cgroup()
unnecessarily takes task_lock() when rcu_read_lock() is all that is
necessary to call mem_cgroup_from_task().
While we're here, switch task_in_mem_cgroup() to return bool.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
An inactive file list is considered low when its active counterpart is
bigger, regardless of whether it is a global zone LRU list or a memcg
zone LRU list. The only difference is in how the LRU size is assessed.
get_lru_size() does the right thing for both global and memcg reclaim
situations.
Get rid of inactive_file_is_low_global() and
mem_cgroup_inactive_file_is_low() by using get_lru_size() and compare
the numbers in common code.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The macro for_each_memcg_cache_index contains a silly yet potentially
deadly mistake. Although the macro parameter is _idx, the loop tests
are done over i, not _idx.
This hasn't generated any problems so far, because all users use i as a
loop index. However, while playing with an extension of the code I
ended using another loop index and the compiler was quick to complain.
Unfortunately, this is not the kind of thing that testing reveals =(
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch clarifies two aspects of cache attribute propagation.
First, the expected context for the for_each_memcg_cache macro in
memcontrol.h. The usages already in the codebase are safe. In mm/slub.c,
it is trivially safe because the lock is acquired right before the loop.
In mm/slab.c, it is less so: the lock is acquired by an outer function a
few steps back in the stack, so a VM_BUG_ON() is added to make sure it is
indeed safe.
A comment is also added to detail why we are returning the value of the
parent cache and ignoring the children's when we propagate the attributes.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SLAB allows us to tune a particular cache behavior with tunables. When
creating a new memcg cache copy, we'd like to preserve any tunables the
parent cache already had.
This could be done by an explicit call to do_tune_cpucache() after the
cache is created. But this is not very convenient now that the caches are
created from common code, since this function is SLAB-specific.
Another method of doing that is taking advantage of the fact that
do_tune_cpucache() is always called from enable_cpucache(), which is
called at cache initialization. We can just preset the values, and then
things work as expected.
It can also happen that a root cache has its tunables updated during
normal system operation. In this case, we will propagate the change to
all caches that are already active.
This change will require us to move the assignment of root_cache in
memcg_params a bit earlier. We need this to be already set - which
memcg_kmem_register_cache will do - when we reach __kmem_cache_create()
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we create caches in memcgs, we need to display their usage
information somewhere. We'll adopt a scheme similar to /proc/meminfo,
with aggregate totals shown in the global file, and per-group information
stored in the group itself.
For the time being, only reads are allowed in the per-group cache.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This enables us to remove all the children of a kmem_cache being
destroyed, if for example the kernel module it's being used in gets
unloaded. Otherwise, the children will still point to the destroyed
parent.
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement destruction of memcg caches. Right now, only caches where our
reference counter is the last remaining are deleted. If there are any
other reference counters around, we just leave the caches lying around
until they go away.
When that happens, a destruction function is called from the cache code.
Caches are only destroyed in process context, so we queue them up for
later processing in the general case.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
struct page already has this information. If we start chaining caches,
this information will always be more trustworthy than whatever is passed
into the function.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The page allocator is able to bind a page to a memcg when it is
allocated. But for the caches, we'd like to have as many objects as
possible in a page belonging to the same cache.
This is done in this patch by calling memcg_kmem_get_cache in the
beginning of every allocation function. This function is patched out by
static branches when kernel memory controller is not being used.
It assumes that the task allocating, which determines the memcg in the
page allocator, belongs to the same cgroup throughout the whole process.
Misaccounting can happen if the task calls memcg_kmem_get_cache() while
belonging to a cgroup, and later on changes. This is considered
acceptable, and should only happen upon task migration.
Before the cache is created by the memcg core, there is also a possible
imbalance: the task belongs to a memcg, but the cache being allocated from
is the global cache, since the child cache is not yet guaranteed to be
ready. This case is also fine, since in this case the GFP_KMEMCG will not
be passed and the page allocator will not attempt any cgroup accounting.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Every cache that is considered a root cache (basically the "original"
caches, tied to the root memcg/no-memcg) will have an array that should be
large enough to store a cache pointer per each memcg in the system.
Theoreticaly, this is as high as 1 << sizeof(css_id), which is currently
in the 64k pointers range. Most of the time, we won't be using that much.
What goes in this patch, is a simple scheme to dynamically allocate such
an array, in order to minimize memory usage for memcg caches. Because we
would also like to avoid allocations all the time, at least for now, the
array will only grow. It will tend to be big enough to hold the maximum
number of kmem-limited memcgs ever achieved.
We'll allocate it to be a minimum of 64 kmem-limited memcgs. When we have
more than that, we'll start doubling the size of this array every time the
limit is reached.
Because we are only considering kmem limited memcgs, a natural point for
this to happen is when we write to the limit. At that point, we already
have set_limit_mutex held, so that will become our natural synchronization
mechanism.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Allow a memcg parameter to be passed during cache creation. When the slub
allocator is being used, it will only merge caches that belong to the same
memcg. We'll do this by scanning the global list, and then translating
the cache to a memcg-specific cache
Default function is created as a wrapper, passing NULL to the memcg
version. We only merge caches that belong to the same memcg.
A helper is provided, memcg_css_id: because slub needs a unique cache name
for sysfs. Since this is visible, but not the canonical location for slab
data, the cache name is not used, the css_id should suffice.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can use static branches to patch the code in or out when not used.
Because the _ACTIVE bit on kmem_accounted is only set after the increment
is done, we guarantee that the root memcg will always be selected for kmem
charges until all call sites are patched (see memcg_kmem_enabled). This
guarantees that no mischarges are applied.
Static branch decrement happens when the last reference count from the
kmem accounting in memcg dies. This will only happen when the charges
drop down to 0.
When that happens, we need to disable the static branch only on those
memcgs that enabled it. To achieve this, we would be forced to complicate
the code by keeping track of which memcgs were the ones that actually
enabled limits, and which ones got it from its parents.
It is a lot simpler just to do static_key_slow_inc() on every child
that is accounted.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce infrastructure for tracking kernel memory pages to a given
memcg. This will happen whenever the caller includes the flag
__GFP_KMEMCG flag, and the task belong to a memcg other than the root.
In memcontrol.h those functions are wrapped in inline acessors. The idea
is to later on, patch those with static branches, so we don't incur any
overhead when no mem cgroups with limited kmem are being used.
Users of this functionality shall interact with the memcg core code
through the following functions:
memcg_kmem_newpage_charge: will return true if the group can handle the
allocation. At this point, struct page is not
yet allocated.
memcg_kmem_commit_charge: will either revert the charge, if struct page
allocation failed, or embed memcg information
into page_cgroup.
memcg_kmem_uncharge_page: called at free time, will revert the charge.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While profiling numa/core v16 with cgroup_disable=memory on the command
line, I noticed mem_cgroup_count_vm_event() still showed up as high as
0.60% in perftop.
This occurs because the function is called extremely often even when memcg
is disabled.
To fix this, inline the check for mem_cgroup_disabled() so we avoid the
unnecessary function call if memcg is disabled.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit e1aab161e013 ("socket: initial cgroup code.") causes a build
error when CONFIG_INET is disabled in Linus' tree:
net/built-in.o: In function `sk_update_clone':
net/core/sock.c:1336: undefined reference to `sock_update_memcg'
sock_update_memcg() is only defined when CONFIG_INET is enabled, so fix
it by defining the dummy function without this option.
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Randy Dunlap <rdunlap@xenotime.net>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
It really should return a boolean for match/no match. And since it takes
a memcg, not a cgroup, fix that parameter name as well.
[akpm@linux-foundation.org: mm_match_cgroup() is not a macro]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Compaction (and page migration in general) can currently be hindered
through pages being owned by memory cgroups that are at their limits and
unreclaimable.
The reason is that the replacement page is being charged against the limit
while the page being replaced is also still charged. But this seems
unnecessary, given that only one of the two pages will still be in use
after migration finishes.
This patch changes the memcg migration sequence so that the replacement
page is not charged. Whatever page is still in use after successful or
failed migration gets to keep the charge of the page that was going to be
replaced.
The replacement page will still show up temporarily in the rss/cache
statistics, this can be fixed in a later patch as it's less urgent.
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
By globally defining check_panic_on_oom(), the memcg oom handler can be
moved entirely to mm/memcontrol.c. This removes the ugly #ifdef in the
oom killer and cleans up the code.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The global oom killer is serialized by the per-zonelist
try_set_zonelist_oom() which is used in the page allocator. Concurrent
oom kills are thus a rare event and only occur in systems using
mempolicies and with a large number of nodes.
Memory controller oom kills, however, can frequently be concurrent since
there is no serialization once the oom killer is called for oom conditions
in several different memcgs in parallel.
This creates a massive contention on tasklist_lock since the oom killer
requires the readside for the tasklist iteration. If several memcgs are
calling the oom killer, this lock can be held for a substantial amount of
time, especially if threads continue to enter it as other threads are
exiting.
Since the exit path grabs the writeside of the lock with irqs disabled in
a few different places, this can cause a soft lockup on cpus as a result
of tasklist_lock starvation.
The kernel lacks unfair writelocks, and successful calls to the oom killer
usually result in at least one thread entering the exit path, so an
alternative solution is needed.
This patch introduces a seperate oom handler for memcgs so that they do
not require tasklist_lock for as much time. Instead, it iterates only
over the threads attached to the oom memcg and grabs a reference to the
selected thread before calling oom_kill_process() to ensure it doesn't
prematurely exit.
This still requires tasklist_lock for the tasklist dump, iterating
children of the selected process, and killing all other threads on the
system sharing the same memory as the selected victim. So while this
isn't a complete solution to tasklist_lock starvation, it significantly
reduces the amount of time that it is held.
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Sha Zhengju <handai.szj@taobao.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mem_cgroup_out_of_memory() is defined in mm/oom_kill.c, so declare it in
linux/oom.h rather than linux/memcontrol.h.
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Sanity:
CONFIG_CGROUP_MEM_RES_CTLR -> CONFIG_MEMCG
CONFIG_CGROUP_MEM_RES_CTLR_SWAP -> CONFIG_MEMCG_SWAP
CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED -> CONFIG_MEMCG_SWAP_ENABLED
CONFIG_CGROUP_MEM_RES_CTLR_KMEM -> CONFIG_MEMCG_KMEM
[mhocko@suse.cz: fix missed bits]
Cc: Glauber Costa <glommer@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Take lruvec further: pass it instead of zone to add_page_to_lru_list() and
del_page_from_lru_list(); and pagevec_lru_move_fn() pass lruvec down to
its target functions.
This cleanup eliminates a swathe of cruft in memcontrol.c, including
mem_cgroup_lru_add_list(), mem_cgroup_lru_del_list() and
mem_cgroup_lru_move_lists() - which never actually touched the lists.
In their place, mem_cgroup_page_lruvec() to decide the lruvec, previously
a side-effect of add, and mem_cgroup_update_lru_size() to maintain the
lru_size stats.
Whilst these are simplifications in their own right, the goal is to bring
the evaluation of lruvec next to the spin_locking of the lrus, in
preparation for a future patch.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Konstantin just introduced mem_cgroup_get_lruvec_size() and
get_lruvec_size(), I'm about to add mem_cgroup_update_lru_size(): but
we're dealing with the same thing, lru_size[lru]. We ought to agree on
the naming, and I do think lru_size is the more correct: so rename his
ones to get_lru_size().
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Switch mem_cgroup_inactive_anon_is_low() to lruvec pointers,
mem_cgroup_get_lruvec_size() is more effective than
mem_cgroup_zone_nr_lru_pages()
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If memory cgroup is enabled we always use lruvecs which are embedded into
struct mem_cgroup_per_zone, so we can reach lru_size counters via
container_of().
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch kills mem_cgroup_lru_del(), we can use
mem_cgroup_lru_del_list() instead. On 0-order isolation we already have
right lru list id.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With mem_cgroup_disabled() now explicit, it becomes clear that the
zone_reclaim_stat structure actually belongs in lruvec, per-zone when
memcg is disabled but per-memcg per-zone when it's enabled.
We can delete mem_cgroup_get_reclaim_stat(), and change
update_page_reclaim_stat() to update just the one set of stats, the one
which get_scan_count() will actually use.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The rmap walker checking page table references has historically ignored
references from VMAs that were not part of the memcg that was being
reclaimed during memcg hard limit reclaim.
When transitioning global reclaim to memcg hierarchy reclaim, I missed
that bit and now references from outside a memcg are ignored even during
global reclaim.
Reverting back to traditional behaviour - count all references during
global reclaim and only mind references of the memcg being reclaimed
during limit reclaim would be one option.
However, the more generic idea is to ignore references exactly then when
they are outside the hierarchy that is currently under reclaim; because
only then will their reclamation be of any use to help the pressure
situation. It makes no sense to ignore references from a sibling memcg
and then evict a page that will be immediately refaulted by that sibling
which contributes to the same usage of the common ancestor under
reclaim.
The solution: make the rmap walker ignore references from VMAs that are
not part of the hierarchy that is being reclaimed.
Flat limit reclaim will stay the same, hierarchical limit reclaim will
mind the references only to pages that the hierarchy owns. Global
reclaim, since it reclaims from all memcgs, will be fixed to regard all
references.
[akpm@linux-foundation.org: name the args in the declaration]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: Konstantin Khlebnikov<khlebnikov@openvz.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mem_cgroup_begin_update_page_stat() should be very fast because it's
called very frequently. Now, it needs to look up page_cgroup and its
memcg....this is slow.
This patch adds a global variable to check "any memcg is moving or not".
With this, the caller doesn't need to visit page_cgroup and memcg.
Here is a test result. A test program makes page faults onto a file,
MAP_SHARED and makes each page's page_mapcount(page) > 1, and free the
range by madvise() and page fault again. This program causes 26214400
times of page fault onto a file(size was 1G.) and shows shows the cost of
mem_cgroup_begin_update_page_stat().
Before this patch for mem_cgroup_begin_update_page_stat()
[kamezawa@bluextal test]$ time ./mmap 1G
real 0m21.765s
user 0m5.999s
sys 0m15.434s
27.46% mmap mmap [.] reader
21.15% mmap [kernel.kallsyms] [k] page_fault
9.17% mmap [kernel.kallsyms] [k] filemap_fault
2.96% mmap [kernel.kallsyms] [k] __do_fault
2.83% mmap [kernel.kallsyms] [k] __mem_cgroup_begin_update_page_stat
After this patch
[root@bluextal test]# time ./mmap 1G
real 0m21.373s
user 0m6.113s
sys 0m15.016s
In usual path, calls to __mem_cgroup_begin_update_page_stat() goes away.
Note: we may be able to remove this optimization in future if
we can get pointer to memcg directly from struct page.
[akpm@linux-foundation.org: don't return a void]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Greg Thelen <gthelen@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now, page-stat-per-memcg is recorded into per page_cgroup flag by
duplicating page's status into the flag. The reason is that memcg has a
feature to move a page from a group to another group and we have race
between "move" and "page stat accounting",
Under current logic, assume CPU-A and CPU-B. CPU-A does "move" and CPU-B
does "page stat accounting".
When CPU-A goes 1st,
CPU-A CPU-B
update "struct page" info.
move_lock_mem_cgroup(memcg)
see pc->flags
copy page stat to new group
overwrite pc->mem_cgroup.
move_unlock_mem_cgroup(memcg)
move_lock_mem_cgroup(mem)
set pc->flags
update page stat accounting
move_unlock_mem_cgroup(mem)
stat accounting is guarded by move_lock_mem_cgroup() and "move" logic
(CPU-A) doesn't see changes in "struct page" information.
But it's costly to have the same information both in 'struct page' and
'struct page_cgroup'. And, there is a potential problem.
For example, assume we have PG_dirty accounting in memcg.
PG_..is a flag for struct page.
PCG_ is a flag for struct page_cgroup.
(This is just an example. The same problem can be found in any
kind of page stat accounting.)
CPU-A CPU-B
TestSet PG_dirty
(delay) TestClear PG_dirty
if (TestClear(PCG_dirty))
memcg->nr_dirty--
if (TestSet(PCG_dirty))
memcg->nr_dirty++
Here, memcg->nr_dirty = +1, this is wrong. This race was reported by Greg
Thelen <gthelen@google.com>. Now, only FILE_MAPPED is supported but
fortunately, it's serialized by page table lock and this is not real bug,
_now_,
If this potential problem is caused by having duplicated information in
struct page and struct page_cgroup, we may be able to fix this by using
original 'struct page' information. But we'll have a problem in "move
account"
Assume we use only PG_dirty.
CPU-A CPU-B
TestSet PG_dirty
(delay) move_lock_mem_cgroup()
if (PageDirty(page))
new_memcg->nr_dirty++
pc->mem_cgroup = new_memcg;
move_unlock_mem_cgroup()
move_lock_mem_cgroup()
memcg = pc->mem_cgroup
new_memcg->nr_dirty++
accounting information may be double-counted. This was original reason to
have PCG_xxx flags but it seems PCG_xxx has another problem.
I think we need a bigger lock as
move_lock_mem_cgroup(page)
TestSetPageDirty(page)
update page stats (without any checks)
move_unlock_mem_cgroup(page)
This fixes both of problems and we don't have to duplicate page flag into
page_cgroup. Please note: move_lock_mem_cgroup() is held only when there
are possibility of "account move" under the system. So, in most path,
status update will go without atomic locks.
This patch introduces mem_cgroup_begin_update_page_stat() and
mem_cgroup_end_update_page_stat() both should be called at modifying
'struct page' information if memcg takes care of it. as
mem_cgroup_begin_update_page_stat()
modify page information
mem_cgroup_update_page_stat()
=> never check any 'struct page' info, just update counters.
mem_cgroup_end_update_page_stat().
This patch is slow because we need to call begin_update_page_stat()/
end_update_page_stat() regardless of accounted will be changed or not. A
following patch adds an easy optimization and reduces the cost.
[akpm@linux-foundation.org: s/lock/locked/]
[hughd@google.com: fix deadlock by avoiding stat lock when anon]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Greg Thelen <gthelen@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
| |
This code was removed in 25edde033291 ("vmscan: kill prev_priority
completely")
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Correct an #endif comment in memcontrol.h from MEM_CONT to MEM_RES_CTLR.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The oom killer typically displays the allocation order at the time of oom
as a part of its diangostic messages (for global, cpuset, and mempolicy
ooms).
The memory controller may also pass the charge order to the oom killer so
it can emit the same information. This is useful in determining how large
the memory allocation is that triggered the oom killer.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When moving tasks from old memcg (with move_charge_at_immigrate on new
memcg), followed by removal of old memcg, hit General Protection Fault in
mem_cgroup_lru_del_list() (called from release_pages called from
free_pages_and_swap_cache from tlb_flush_mmu from tlb_finish_mmu from
exit_mmap from mmput from exit_mm from do_exit).
Somewhat reproducible, takes a few hours: the old struct mem_cgroup has
been freed and poisoned by SLAB_DEBUG, but mem_cgroup_lru_del_list() is
still trying to update its stats, and take page off lru before freeing.
A task, or a charge, or a page on lru: each secures a memcg against
removal. In this case, the last task has been moved out of the old memcg,
and it is exiting: anonymous pages are uncharged one by one from the
memcg, as they are zapped from its pagetables, so the charge gets down to
0; but the pages themselves are queued in an mmu_gather for freeing.
Most of those pages will be on lru (and force_empty is careful to
lru_add_drain_all, to add pages from pagevec to lru first), but not
necessarily all: perhaps some have been isolated for page reclaim, perhaps
some isolated for other reasons. So, force_empty may find no task, no
charge and no page on lru, and let the removal proceed.
There would still be no problem if these pages were immediately freed; but
typically (and the put_page_testzero protocol demands it) they have to be
added back to lru before they are found freeable, then removed from lru
and freed. We don't see the issue when adding, because the
mem_cgroup_iter() loops keep their own reference to the memcg being
scanned; but when it comes to mem_cgroup_lru_del_list().
I believe this was not an issue in v3.2: there, PageCgroupAcctLRU and
PageCgroupUsed flags were used (like a trick with mirrors) to deflect view
of pc->mem_cgroup to the stable root_mem_cgroup when neither set.
38c5d72f3ebe ("memcg: simplify LRU handling by new rule") mercifully
removed those convolutions, but left this General Protection Fault.
But it's surprisingly easy to restore the old behaviour: just check
PageCgroupUsed in mem_cgroup_lru_add_list() (which decides on which lruvec
to add), and reset pc to root_mem_cgroup if page is uncharged. A risky
change? just going back to how it worked before; testing, and an audit of
uses of pc->mem_cgroup, show no problem.
And there's a nice bonus: with mem_cgroup_lru_add_list() itself making
sure that an uncharged page goes to root lru, mem_cgroup_reset_owner() no
longer has any purpose, and we can safely revert 4e5f01c2b9b9 ("memcg:
clear pc->mem_cgroup if necessary").
Calling update_page_reclaim_stat() after add_page_to_lru_list() in swap.c
is not strictly necessary: the lru_lock there, with RCU before memcg
structures are freed, makes mem_cgroup_get_reclaim_stat_from_page safe
without that; but it seems cleaner to rely on one dependency less.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|