From 503c358cf1925853195ee39ec437e51138bbb7df Mon Sep 17 00:00:00 2001 From: Vladimir Davydov Date: Thu, 12 Feb 2015 14:58:47 -0800 Subject: list_lru: introduce list_lru_shrink_{count,walk} Kmem accounting of memcg is unusable now, because it lacks slab shrinker support. That means when we hit the limit we will get ENOMEM w/o any chance to recover. What we should do then is to call shrink_slab, which would reclaim old inode/dentry caches from this cgroup. This is what this patch set is intended to do. Basically, it does two things. First, it introduces the notion of per-memcg slab shrinker. A shrinker that wants to reclaim objects per cgroup should mark itself as SHRINKER_MEMCG_AWARE. Then it will be passed the memory cgroup to scan from in shrink_control->memcg. For such shrinkers shrink_slab iterates over the whole cgroup subtree under the target cgroup and calls the shrinker for each kmem-active memory cgroup. Secondly, this patch set makes the list_lru structure per-memcg. It's done transparently to list_lru users - everything they have to do is to tell list_lru_init that they want memcg-aware list_lru. Then the list_lru will automatically distribute objects among per-memcg lists basing on which cgroup the object is accounted to. This way to make FS shrinkers (icache, dcache) memcg-aware we only need to make them use memcg-aware list_lru, and this is what this patch set does. As before, this patch set only enables per-memcg kmem reclaim when the pressure goes from memory.limit, not from memory.kmem.limit. Handling memory.kmem.limit is going to be tricky due to GFP_NOFS allocations, and it is still unclear whether we will have this knob in the unified hierarchy. This patch (of 9): NUMA aware slab shrinkers use the list_lru structure to distribute objects coming from different NUMA nodes to different lists. Whenever such a shrinker needs to count or scan objects from a particular node, it issues commands like this: count = list_lru_count_node(lru, sc->nid); freed = list_lru_walk_node(lru, sc->nid, isolate_func, isolate_arg, &sc->nr_to_scan); where sc is an instance of the shrink_control structure passed to it from vmscan. To simplify this, let's add special list_lru functions to be used by shrinkers, list_lru_shrink_count() and list_lru_shrink_walk(), which consolidate the nid and nr_to_scan arguments in the shrink_control structure. This will also allow us to avoid patching shrinkers that use list_lru when we make shrink_slab() per-memcg - all we will have to do is extend the shrink_control structure to include the target memcg and make list_lru_shrink_{count,walk} handle this appropriately. Signed-off-by: Vladimir Davydov Suggested-by: Dave Chinner Cc: Johannes Weiner Cc: Michal Hocko Cc: Greg Thelen Cc: Glauber Costa Cc: Alexander Viro Cc: Christoph Lameter Cc: Pekka Enberg Cc: David Rientjes Cc: Joonsoo Kim Cc: Tejun Heo Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- fs/gfs2/quota.c | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'fs/gfs2') diff --git a/fs/gfs2/quota.c b/fs/gfs2/quota.c index 3e193cb36996..c15d6b216d0b 100644 --- a/fs/gfs2/quota.c +++ b/fs/gfs2/quota.c @@ -171,8 +171,8 @@ static unsigned long gfs2_qd_shrink_scan(struct shrinker *shrink, if (!(sc->gfp_mask & __GFP_FS)) return SHRINK_STOP; - freed = list_lru_walk_node(&gfs2_qd_lru, sc->nid, gfs2_qd_isolate, - &dispose, &sc->nr_to_scan); + freed = list_lru_shrink_walk(&gfs2_qd_lru, sc, + gfs2_qd_isolate, &dispose); gfs2_qd_dispose(&dispose); @@ -182,7 +182,7 @@ static unsigned long gfs2_qd_shrink_scan(struct shrinker *shrink, static unsigned long gfs2_qd_shrink_count(struct shrinker *shrink, struct shrink_control *sc) { - return vfs_pressure_ratio(list_lru_count_node(&gfs2_qd_lru, sc->nid)); + return vfs_pressure_ratio(list_lru_shrink_count(&gfs2_qd_lru, sc)); } struct shrinker gfs2_qd_shrinker = { -- cgit v1.2.1