/* * Copyright (C) 2015 Broadcom * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /* * Controls the timings of the hardware's pixel valve. */ #include "drm_atomic.h" #include "drm_atomic_helper.h" #include "drm_crtc_helper.h" #include "drm_fb_cma_helper.h" #include "linux/component.h" #include "vc4_drv.h" #include "vc4_regs.h" #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) #define CRTC_REG(reg) { reg, #reg } static const struct { u32 reg; const char *name; } crtc_regs[] = { CRTC_REG(PV_CONTROL), CRTC_REG(PV_V_CONTROL), CRTC_REG(PV_VSYNCD), CRTC_REG(PV_HORZA), CRTC_REG(PV_HORZB), CRTC_REG(PV_VERTA), CRTC_REG(PV_VERTB), CRTC_REG(PV_VERTA_EVEN), CRTC_REG(PV_VERTB_EVEN), CRTC_REG(PV_INTEN), CRTC_REG(PV_INTSTAT), CRTC_REG(PV_STAT), CRTC_REG(PV_HACT_ACT), }; static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) { int i; rmb(); for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { DRM_INFO("0x%04x (%s): 0x%08x\n", crtc_regs[i].reg, crtc_regs[i].name, CRTC_READ(crtc_regs[i].reg)); } } static void vc4_crtc_destroy(struct drm_crtc *crtc) { drm_crtc_cleanup(crtc); } static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static u32 vc4_get_fifo_full_level(u32 format) { static const u32 fifo_len_bytes = 64; static const u32 hvs_latency_pix = 6; switch(format) { case PV_CONTROL_FORMAT_DSIV_16: case PV_CONTROL_FORMAT_DSIC_16: return fifo_len_bytes - 2 * hvs_latency_pix; case PV_CONTROL_FORMAT_DSIV_18: return fifo_len_bytes - 14; case PV_CONTROL_FORMAT_24: case PV_CONTROL_FORMAT_DSIV_24: default: return fifo_len_bytes - 3 * hvs_latency_pix; } } static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_crtc_state *state = crtc->state; struct drm_display_mode *mode = &state->adjusted_mode; u32 vactive = (mode->vdisplay >> ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? 1 : 0)); u32 format = PV_CONTROL_FORMAT_24; bool debug_dump_regs = false; return; if (debug_dump_regs) { DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); vc4_crtc_dump_regs(vc4_crtc); } /* Reset the PV fifo. */ CRTC_WRITE(PV_CONTROL, 0); CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); CRTC_WRITE(PV_CONTROL, 0); CRTC_WRITE(PV_HORZA, VC4_SET_FIELD(mode->htotal - mode->hsync_end, PV_HORZA_HBP) | VC4_SET_FIELD(mode->hsync_end - mode->hsync_start, PV_HORZA_HSYNC)); CRTC_WRITE(PV_HORZB, VC4_SET_FIELD(mode->hsync_start - mode->hdisplay, PV_HORZB_HFP) | VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE)); CRTC_WRITE(PV_VERTA, VC4_SET_FIELD(mode->vtotal - mode->vsync_end, PV_VERTA_VBP) | VC4_SET_FIELD(mode->vsync_end - mode->vsync_start, PV_VERTA_VSYNC)); CRTC_WRITE(PV_VERTB, VC4_SET_FIELD(mode->vsync_start - mode->vdisplay, PV_VERTB_VFP) | VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE)); if (mode->flags & DRM_MODE_FLAG_INTERLACE) { /* Write PV_VERTA_EVEN/VERTB_EVEN */ } CRTC_WRITE(PV_HACT_ACT, mode->hdisplay); CRTC_WRITE(PV_CONTROL, VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | VC4_SET_FIELD(vc4_get_fifo_full_level(format), PV_CONTROL_FIFO_LEVEL) | PV_CONTROL_CLR_AT_START | PV_CONTROL_TRIGGER_UNDERFLOW | PV_CONTROL_WAIT_HSTART | PV_CONTROL_CLK_MUX_EN | VC4_SET_FIELD(PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI, PV_CONTROL_CLK_SELECT) | PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS); if (debug_dump_regs) { DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); vc4_crtc_dump_regs(vc4_crtc); } } static void require_hvs_enabled(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != SCALER_DISPCTRL_ENABLE); } static void vc4_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); require_hvs_enabled(dev); CRTC_WRITE(PV_V_CONTROL, CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); /* Without a wait here, we end up with a black screen and the * scaler fifo empty warning triggering during * vc4_crtc_enable(). */ msleep(30); if (HVS_READ(SCALER_DISPCTRLX(vc4_crtc->channel)) & SCALER_DISPCTRLX_ENABLE) { HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), SCALER_DISPCTRLX_RESET); /* * While the docs say that reset is self-clearing, it * seems it doesn't actually. */ HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 0); } /* Once we leave, the scaler should be disabled and its fifo empty. */ WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(vc4_crtc->channel)) & SCALER_DISPCTRLX_RESET); WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)), SCALER_DISPSTATX_MODE) != SCALER_DISPSTATX_MODE_DISABLED); WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)) & (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != SCALER_DISPSTATX_EMPTY); } static void vc4_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_crtc_state *state = crtc->state; struct drm_display_mode *mode = &state->adjusted_mode; require_hvs_enabled(dev); /* Turn on the scaler, which will wait for vstart to start * compositing. */ HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | SCALER_DISPCTRLX_ENABLE); /* The FIFO should still be empty at this point, since the PV * is disabled, and thus we haven't seen the start. */ WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)) & (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != SCALER_DISPSTATX_EMPTY); /* Turn on the pixel valve, which will emit the vstart signal. */ CRTC_WRITE(PV_V_CONTROL, CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); } static int vc4_crtc_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_plane *plane; struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); u32 dlist_count = 0; drm_atomic_crtc_state_for_each_plane(plane, state) { struct drm_plane_state *plane_state = state->state->plane_states[drm_plane_index(plane)]; /* plane might not have changed, in which case take * current state: */ if (!plane_state) plane_state = plane->state; dlist_count += vc4_plane_dlist_size(plane_state); } dlist_count++; /* Account for SCALER_CTL0_END. */ if (!vc4_crtc->dlist || dlist_count > vc4_crtc->dlist_size) { vc4_crtc->dlist = ((u32 __iomem *)vc4->hvs->dlist + HVS_BOOTLOADER_DLIST_END); vc4_crtc->dlist_size = ((SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END); if (dlist_count > vc4_crtc->dlist_size) { DRM_DEBUG_KMS("dlist too large for CRTC (%d > %d).\n", dlist_count, vc4_crtc->dlist_size); return -EINVAL; } } return 0; } static void vc4_crtc_atomic_begin(struct drm_crtc *crtc) { } static void vc4_crtc_atomic_flush(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_plane *plane; bool debug_dump_regs = false; u32 __iomem *dlist_next = vc4_crtc->dlist; if (debug_dump_regs) { DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); vc4_hvs_dump_state(dev); } /* * Copy all the active planes' dlist contents to the hardware dlist. * * XXX: If the new display list was large enough that it * overlapped a currently-read display list, we need to do * something like disable scanout before putting in the new * list. */ drm_atomic_crtc_for_each_plane(plane, crtc) { dlist_next += vc4_plane_write_dlist(plane, dlist_next); } if (dlist_next == vc4_crtc->dlist) { /* If no planes were enabled, use the SCALER_CTL0_END * at the start of the display list memory (in the * bootloader section). We'll rewrite that * SCALER_CTL0_END, just in case, though. */ writel(SCALER_CTL0_END, vc4->hvs->dlist); HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 0); } else { writel(SCALER_CTL0_END, dlist_next); dlist_next++; HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), (u32 *)vc4_crtc->dlist - (u32 *)vc4->hvs->dlist); /* Make the next display list start after ours. */ vc4_crtc->dlist_size -= (dlist_next - vc4_crtc->dlist); vc4_crtc->dlist = dlist_next; } if (debug_dump_regs) { DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); vc4_hvs_dump_state(dev); } if (crtc->state->event) { unsigned long flags; crtc->state->event->pipe = drm_crtc_index(crtc); WARN_ON(drm_crtc_vblank_get(crtc) != 0); spin_lock_irqsave(&dev->event_lock, flags); vc4_crtc->event = crtc->state->event; spin_unlock_irqrestore(&dev->event_lock, flags); crtc->state->event = NULL; } } int vc4_enable_vblank(struct drm_device *dev, int crtc_id) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); return 0; } void vc4_disable_vblank(struct drm_device *dev, int crtc_id) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; CRTC_WRITE(PV_INTEN, 0); } static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) { struct drm_crtc *crtc = &vc4_crtc->base; struct drm_device *dev = crtc->dev; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (vc4_crtc->event) { drm_crtc_send_vblank_event(crtc, vc4_crtc->event); vc4_crtc->event = NULL; } spin_unlock_irqrestore(&dev->event_lock, flags); } static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) { struct vc4_crtc *vc4_crtc = data; u32 stat = CRTC_READ(PV_INTSTAT); irqreturn_t ret = IRQ_NONE; if (stat & PV_INT_VFP_START) { CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); drm_crtc_handle_vblank(&vc4_crtc->base); vc4_crtc_handle_page_flip(vc4_crtc); ret = IRQ_HANDLED; } return ret; } struct vc4_async_flip_state { struct drm_crtc *crtc; struct drm_framebuffer *fb; struct drm_pending_vblank_event *event; struct vc4_seqno_cb cb; }; /* Called when the V3D execution for the BO being flipped to is done, so that * we can actually update the plane's address to point to it. */ static void vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) { struct vc4_async_flip_state *flip_state = container_of(cb, struct vc4_async_flip_state, cb); struct drm_crtc *crtc = flip_state->crtc; struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_plane *plane = crtc->primary; vc4_plane_async_set_fb(plane, flip_state->fb); if (flip_state->event) { unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); drm_crtc_send_vblank_event(crtc, flip_state->event); spin_unlock_irqrestore(&dev->event_lock, flags); } drm_framebuffer_unreference(flip_state->fb); kfree(flip_state); up(&vc4->async_modeset); } /* Implements async (non-vblank-synced) page flips. * * The page flip ioctl needs to return immediately, so we grab the * modeset semaphore on the pipe, and queue the address update for * when V3D is done with the BO being flipped to. */ static int vc4_async_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_plane *plane = crtc->primary; int ret = 0; struct vc4_async_flip_state *flip_state; struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); if (!flip_state) return -ENOMEM; drm_framebuffer_reference(fb); flip_state->fb = fb; flip_state->crtc = crtc; flip_state->event = event; /* Make sure all other async modesetes have landed. */ ret = down_interruptible(&vc4->async_modeset); if (ret) { kfree(flip_state); return ret; } /* Immediately update the plane's legacy fb pointer, so that later * modeset prep sees the state that will be present when the semaphore * is released. */ drm_atomic_set_fb_for_plane(plane->state, fb); plane->fb = fb; vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, vc4_async_page_flip_complete); /* Driver takes ownership of state on successful async commit. */ return 0; } static int vc4_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags) { if (flags & DRM_MODE_PAGE_FLIP_ASYNC) return vc4_async_page_flip(crtc, fb, event, flags); else return drm_atomic_helper_page_flip(crtc, fb, event, flags); } static const struct drm_crtc_funcs vc4_crtc_funcs = { .set_config = drm_atomic_helper_set_config, .destroy = vc4_crtc_destroy, .page_flip = vc4_page_flip, .set_property = NULL, .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ .reset = drm_atomic_helper_crtc_reset, .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, }; static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { .mode_fixup = vc4_crtc_mode_fixup, .mode_set_nofb = vc4_crtc_mode_set_nofb, .disable = vc4_crtc_disable, .enable = vc4_crtc_enable, .atomic_check = vc4_crtc_atomic_check, .atomic_begin = vc4_crtc_atomic_begin, .atomic_flush = vc4_crtc_atomic_flush, }; /* Frees the page flip event when the DRM device is closed with the * event still outstanding. */ void vc4_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_device *dev = crtc->dev; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (vc4_crtc->event && vc4_crtc->event->base.file_priv == file) { vc4_crtc->event->base.destroy(&vc4_crtc->event->base); drm_crtc_vblank_put(crtc); vc4_crtc->event = NULL; } spin_unlock_irqrestore(&dev->event_lock, flags); } static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = dev_get_drvdata(master); struct vc4_dev *vc4 = to_vc4_dev(drm); struct vc4_crtc *vc4_crtc; struct drm_crtc *crtc; struct drm_plane *primary_plane, *cursor_plane; int ret; primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); if (!primary_plane) { dev_err(dev, "failed to construct primary plane\n"); ret = PTR_ERR(primary_plane); goto fail; } cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); if (!cursor_plane) { dev_err(dev, "failed to construct cursor_plane\n"); ret = PTR_ERR(cursor_plane); goto fail; } vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); if (!vc4_crtc) return -ENOMEM; crtc = &vc4_crtc->base; vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); if (IS_ERR(vc4_crtc->regs)) return PTR_ERR(vc4_crtc->regs); drm_crtc_init_with_planes(drm, crtc, primary_plane, cursor_plane, &vc4_crtc_funcs); drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); primary_plane->crtc = crtc; cursor_plane->crtc = crtc; vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc; /* Until we have full scanout setup to route things through to * encoders, line things up like the firmware did. */ switch (drm_crtc_index(crtc)) { case 0: vc4_crtc->channel = 0; break; case 1: vc4_crtc->channel = 2; break; default: case 2: vc4_crtc->channel = 1; break; } CRTC_WRITE(PV_INTEN, 0); CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); ret = devm_request_irq(dev, platform_get_irq(pdev, 0), vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); platform_set_drvdata(pdev, vc4_crtc); return 0; fail: return ret; } static void vc4_crtc_unbind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); vc4_crtc_destroy(&vc4_crtc->base); CRTC_WRITE(PV_INTEN, 0); platform_set_drvdata(pdev, NULL); } static const struct component_ops vc4_crtc_ops = { .bind = vc4_crtc_bind, .unbind = vc4_crtc_unbind, }; static int vc4_crtc_dev_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &vc4_crtc_ops); } static int vc4_crtc_dev_remove(struct platform_device *pdev) { component_del(&pdev->dev, &vc4_crtc_ops); return 0; } static const struct of_device_id vc4_crtc_dt_match[] = { { .compatible = "brcm,vc4-pixelvalve" }, {} }; static struct platform_driver vc4_crtc_driver = { .probe = vc4_crtc_dev_probe, .remove = vc4_crtc_dev_remove, .driver = { .name = "vc4_crtc", .of_match_table = vc4_crtc_dt_match, }, }; void __init vc4_crtc_register(void) { platform_driver_register(&vc4_crtc_driver); } void __exit vc4_crtc_unregister(void) { platform_driver_unregister(&vc4_crtc_driver); }