// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019-2020 Pengutronix, Michael Tretter * * Convert NAL units between raw byte sequence payloads (RBSP) and C structs. * * The conversion is defined in "ITU-T Rec. H.265 (02/2018) high efficiency * video coding". Decoder drivers may use the parser to parse RBSP from * encoded streams and configure the hardware, if the hardware is not able to * parse RBSP itself. Encoder drivers may use the generator to generate the * RBSP for VPS/SPS/PPS nal units and add them to the encoded stream if the * hardware does not generate the units. */ #include #include #include #include #include #include #include #include "nal-hevc.h" #include "nal-rbsp.h" /* * See Rec. ITU-T H.265 (02/2018) Table 7-1 – NAL unit type codes and NAL unit * type classes */ enum nal_unit_type { VPS_NUT = 32, SPS_NUT = 33, PPS_NUT = 34, FD_NUT = 38, }; int nal_hevc_profile_from_v4l2(enum v4l2_mpeg_video_hevc_profile profile) { switch (profile) { case V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN: return 1; case V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_10: return 2; case V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_STILL_PICTURE: return 3; default: return -EINVAL; } } EXPORT_SYMBOL_GPL(nal_hevc_profile_from_v4l2); int nal_hevc_tier_from_v4l2(enum v4l2_mpeg_video_hevc_tier tier) { switch (tier) { case V4L2_MPEG_VIDEO_HEVC_TIER_MAIN: return 0; case V4L2_MPEG_VIDEO_HEVC_TIER_HIGH: return 1; default: return -EINVAL; } } EXPORT_SYMBOL_GPL(nal_hevc_tier_from_v4l2); int nal_hevc_level_from_v4l2(enum v4l2_mpeg_video_hevc_level level) { /* * T-Rec-H.265 p. 280: general_level_idc and sub_layer_level_idc[ i ] * shall be set equal to a value of 30 times the level number * specified in Table A.6. */ int factor = 30 / 10; switch (level) { case V4L2_MPEG_VIDEO_HEVC_LEVEL_1: return factor * 10; case V4L2_MPEG_VIDEO_HEVC_LEVEL_2: return factor * 20; case V4L2_MPEG_VIDEO_HEVC_LEVEL_2_1: return factor * 21; case V4L2_MPEG_VIDEO_HEVC_LEVEL_3: return factor * 30; case V4L2_MPEG_VIDEO_HEVC_LEVEL_3_1: return factor * 31; case V4L2_MPEG_VIDEO_HEVC_LEVEL_4: return factor * 40; case V4L2_MPEG_VIDEO_HEVC_LEVEL_4_1: return factor * 41; case V4L2_MPEG_VIDEO_HEVC_LEVEL_5: return factor * 50; case V4L2_MPEG_VIDEO_HEVC_LEVEL_5_1: return factor * 51; case V4L2_MPEG_VIDEO_HEVC_LEVEL_5_2: return factor * 52; case V4L2_MPEG_VIDEO_HEVC_LEVEL_6: return factor * 60; case V4L2_MPEG_VIDEO_HEVC_LEVEL_6_1: return factor * 61; case V4L2_MPEG_VIDEO_HEVC_LEVEL_6_2: return factor * 62; default: return -EINVAL; } } EXPORT_SYMBOL_GPL(nal_hevc_level_from_v4l2); static void nal_hevc_write_start_code_prefix(struct rbsp *rbsp) { u8 *p = rbsp->data + DIV_ROUND_UP(rbsp->pos, 8); int i = 4; if (DIV_ROUND_UP(rbsp->pos, 8) + i > rbsp->size) { rbsp->error = -EINVAL; return; } p[0] = 0x00; p[1] = 0x00; p[2] = 0x00; p[3] = 0x01; rbsp->pos += i * 8; } static void nal_hevc_read_start_code_prefix(struct rbsp *rbsp) { u8 *p = rbsp->data + DIV_ROUND_UP(rbsp->pos, 8); int i = 4; if (DIV_ROUND_UP(rbsp->pos, 8) + i > rbsp->size) { rbsp->error = -EINVAL; return; } if (p[0] != 0x00 || p[1] != 0x00 || p[2] != 0x00 || p[3] != 0x01) { rbsp->error = -EINVAL; return; } rbsp->pos += i * 8; } static void nal_hevc_write_filler_data(struct rbsp *rbsp) { u8 *p = rbsp->data + DIV_ROUND_UP(rbsp->pos, 8); int i; /* Keep 1 byte extra for terminating the NAL unit */ i = rbsp->size - DIV_ROUND_UP(rbsp->pos, 8) - 1; memset(p, 0xff, i); rbsp->pos += i * 8; } static void nal_hevc_read_filler_data(struct rbsp *rbsp) { u8 *p = rbsp->data + DIV_ROUND_UP(rbsp->pos, 8); while (*p == 0xff) { if (DIV_ROUND_UP(rbsp->pos, 8) > rbsp->size) { rbsp->error = -EINVAL; return; } p++; rbsp->pos += 8; } } static void nal_hevc_rbsp_profile_tier_level(struct rbsp *rbsp, struct nal_hevc_profile_tier_level *ptl) { unsigned int i; unsigned int max_num_sub_layers_minus_1 = 0; rbsp_bits(rbsp, 2, &ptl->general_profile_space); rbsp_bit(rbsp, &ptl->general_tier_flag); rbsp_bits(rbsp, 5, &ptl->general_profile_idc); for (i = 0; i < 32; i++) rbsp_bit(rbsp, &ptl->general_profile_compatibility_flag[i]); rbsp_bit(rbsp, &ptl->general_progressive_source_flag); rbsp_bit(rbsp, &ptl->general_interlaced_source_flag); rbsp_bit(rbsp, &ptl->general_non_packed_constraint_flag); rbsp_bit(rbsp, &ptl->general_frame_only_constraint_flag); if (ptl->general_profile_idc == 4 || ptl->general_profile_compatibility_flag[4] || ptl->general_profile_idc == 5 || ptl->general_profile_compatibility_flag[5] || ptl->general_profile_idc == 6 || ptl->general_profile_compatibility_flag[6] || ptl->general_profile_idc == 7 || ptl->general_profile_compatibility_flag[7] || ptl->general_profile_idc == 8 || ptl->general_profile_compatibility_flag[8] || ptl->general_profile_idc == 9 || ptl->general_profile_compatibility_flag[9] || ptl->general_profile_idc == 10 || ptl->general_profile_compatibility_flag[10]) { rbsp_bit(rbsp, &ptl->general_max_12bit_constraint_flag); rbsp_bit(rbsp, &ptl->general_max_10bit_constraint_flag); rbsp_bit(rbsp, &ptl->general_max_8bit_constraint_flag); rbsp_bit(rbsp, &ptl->general_max_422chroma_constraint_flag); rbsp_bit(rbsp, &ptl->general_max_420chroma_constraint_flag); rbsp_bit(rbsp, &ptl->general_max_monochrome_constraint_flag); rbsp_bit(rbsp, &ptl->general_intra_constraint_flag); rbsp_bit(rbsp, &ptl->general_one_picture_only_constraint_flag); rbsp_bit(rbsp, &ptl->general_lower_bit_rate_constraint_flag); if (ptl->general_profile_idc == 5 || ptl->general_profile_compatibility_flag[5] || ptl->general_profile_idc == 9 || ptl->general_profile_compatibility_flag[9] || ptl->general_profile_idc == 10 || ptl->general_profile_compatibility_flag[10]) { rbsp_bit(rbsp, &ptl->general_max_14bit_constraint_flag); rbsp_bits(rbsp, 32, &ptl->general_reserved_zero_33bits); rbsp_bits(rbsp, 33 - 32, &ptl->general_reserved_zero_33bits); } else { rbsp_bits(rbsp, 32, &ptl->general_reserved_zero_34bits); rbsp_bits(rbsp, 34 - 2, &ptl->general_reserved_zero_34bits); } } else if (ptl->general_profile_idc == 2 || ptl->general_profile_compatibility_flag[2]) { rbsp_bits(rbsp, 7, &ptl->general_reserved_zero_7bits); rbsp_bit(rbsp, &ptl->general_one_picture_only_constraint_flag); rbsp_bits(rbsp, 32, &ptl->general_reserved_zero_35bits); rbsp_bits(rbsp, 35 - 32, &ptl->general_reserved_zero_35bits); } else { rbsp_bits(rbsp, 32, &ptl->general_reserved_zero_43bits); rbsp_bits(rbsp, 43 - 32, &ptl->general_reserved_zero_43bits); } if ((ptl->general_profile_idc >= 1 && ptl->general_profile_idc <= 5) || ptl->general_profile_idc == 9 || ptl->general_profile_compatibility_flag[1] || ptl->general_profile_compatibility_flag[2] || ptl->general_profile_compatibility_flag[3] || ptl->general_profile_compatibility_flag[4] || ptl->general_profile_compatibility_flag[5] || ptl->general_profile_compatibility_flag[9]) rbsp_bit(rbsp, &ptl->general_inbld_flag); else rbsp_bit(rbsp, &ptl->general_reserved_zero_bit); rbsp_bits(rbsp, 8, &ptl->general_level_idc); if (max_num_sub_layers_minus_1 > 0) rbsp_unsupported(rbsp); } static void nal_hevc_rbsp_vps(struct rbsp *rbsp, struct nal_hevc_vps *vps) { unsigned int i, j; unsigned int reserved_0xffff_16bits = 0xffff; rbsp_bits(rbsp, 4, &vps->video_parameter_set_id); rbsp_bit(rbsp, &vps->base_layer_internal_flag); rbsp_bit(rbsp, &vps->base_layer_available_flag); rbsp_bits(rbsp, 6, &vps->max_layers_minus1); rbsp_bits(rbsp, 3, &vps->max_sub_layers_minus1); rbsp_bits(rbsp, 1, &vps->temporal_id_nesting_flag); rbsp_bits(rbsp, 16, &reserved_0xffff_16bits); nal_hevc_rbsp_profile_tier_level(rbsp, &vps->profile_tier_level); rbsp_bit(rbsp, &vps->sub_layer_ordering_info_present_flag); for (i = vps->sub_layer_ordering_info_present_flag ? 0 : vps->max_sub_layers_minus1; i <= vps->max_sub_layers_minus1; i++) { rbsp_uev(rbsp, &vps->max_dec_pic_buffering_minus1[i]); rbsp_uev(rbsp, &vps->max_num_reorder_pics[i]); rbsp_uev(rbsp, &vps->max_latency_increase_plus1[i]); } rbsp_bits(rbsp, 6, &vps->max_layer_id); rbsp_uev(rbsp, &vps->num_layer_sets_minus1); for (i = 0; i <= vps->num_layer_sets_minus1; i++) for (j = 0; j <= vps->max_layer_id; j++) rbsp_bit(rbsp, &vps->layer_id_included_flag[i][j]); rbsp_bit(rbsp, &vps->timing_info_present_flag); if (vps->timing_info_present_flag) rbsp_unsupported(rbsp); rbsp_bit(rbsp, &vps->extension_flag); if (vps->extension_flag) rbsp_unsupported(rbsp); } static void nal_hevc_rbsp_sps(struct rbsp *rbsp, struct nal_hevc_sps *sps) { unsigned int i; rbsp_bits(rbsp, 4, &sps->video_parameter_set_id); rbsp_bits(rbsp, 3, &sps->max_sub_layers_minus1); rbsp_bit(rbsp, &sps->temporal_id_nesting_flag); nal_hevc_rbsp_profile_tier_level(rbsp, &sps->profile_tier_level); rbsp_uev(rbsp, &sps->seq_parameter_set_id); rbsp_uev(rbsp, &sps->chroma_format_idc); if (sps->chroma_format_idc == 3) rbsp_bit(rbsp, &sps->separate_colour_plane_flag); rbsp_uev(rbsp, &sps->pic_width_in_luma_samples); rbsp_uev(rbsp, &sps->pic_height_in_luma_samples); rbsp_bit(rbsp, &sps->conformance_window_flag); if (sps->conformance_window_flag) { rbsp_uev(rbsp, &sps->conf_win_left_offset); rbsp_uev(rbsp, &sps->conf_win_right_offset); rbsp_uev(rbsp, &sps->conf_win_top_offset); rbsp_uev(rbsp, &sps->conf_win_bottom_offset); } rbsp_uev(rbsp, &sps->bit_depth_luma_minus8); rbsp_uev(rbsp, &sps->bit_depth_chroma_minus8); rbsp_uev(rbsp, &sps->log2_max_pic_order_cnt_lsb_minus4); rbsp_bit(rbsp, &sps->sub_layer_ordering_info_present_flag); for (i = (sps->sub_layer_ordering_info_present_flag ? 0 : sps->max_sub_layers_minus1); i <= sps->max_sub_layers_minus1; i++) { rbsp_uev(rbsp, &sps->max_dec_pic_buffering_minus1[i]); rbsp_uev(rbsp, &sps->max_num_reorder_pics[i]); rbsp_uev(rbsp, &sps->max_latency_increase_plus1[i]); } rbsp_uev(rbsp, &sps->log2_min_luma_coding_block_size_minus3); rbsp_uev(rbsp, &sps->log2_diff_max_min_luma_coding_block_size); rbsp_uev(rbsp, &sps->log2_min_luma_transform_block_size_minus2); rbsp_uev(rbsp, &sps->log2_diff_max_min_luma_transform_block_size); rbsp_uev(rbsp, &sps->max_transform_hierarchy_depth_inter); rbsp_uev(rbsp, &sps->max_transform_hierarchy_depth_intra); rbsp_bit(rbsp, &sps->scaling_list_enabled_flag); if (sps->scaling_list_enabled_flag) rbsp_unsupported(rbsp); rbsp_bit(rbsp, &sps->amp_enabled_flag); rbsp_bit(rbsp, &sps->sample_adaptive_offset_enabled_flag); rbsp_bit(rbsp, &sps->pcm_enabled_flag); if (sps->pcm_enabled_flag) { rbsp_bits(rbsp, 4, &sps->pcm_sample_bit_depth_luma_minus1); rbsp_bits(rbsp, 4, &sps->pcm_sample_bit_depth_chroma_minus1); rbsp_uev(rbsp, &sps->log2_min_pcm_luma_coding_block_size_minus3); rbsp_uev(rbsp, &sps->log2_diff_max_min_pcm_luma_coding_block_size); rbsp_bit(rbsp, &sps->pcm_loop_filter_disabled_flag); } rbsp_uev(rbsp, &sps->num_short_term_ref_pic_sets); if (sps->num_short_term_ref_pic_sets > 0) rbsp_unsupported(rbsp); rbsp_bit(rbsp, &sps->long_term_ref_pics_present_flag); if (sps->long_term_ref_pics_present_flag) rbsp_unsupported(rbsp); rbsp_bit(rbsp, &sps->sps_temporal_mvp_enabled_flag); rbsp_bit(rbsp, &sps->strong_intra_smoothing_enabled_flag); rbsp_bit(rbsp, &sps->vui_parameters_present_flag); if (sps->vui_parameters_present_flag) rbsp_unsupported(rbsp); rbsp_bit(rbsp, &sps->extension_present_flag); if (sps->extension_present_flag) { rbsp_bit(rbsp, &sps->sps_range_extension_flag); rbsp_bit(rbsp, &sps->sps_multilayer_extension_flag); rbsp_bit(rbsp, &sps->sps_3d_extension_flag); rbsp_bit(rbsp, &sps->sps_scc_extension_flag); rbsp_bits(rbsp, 5, &sps->sps_extension_4bits); } if (sps->sps_range_extension_flag) rbsp_unsupported(rbsp); if (sps->sps_multilayer_extension_flag) rbsp_unsupported(rbsp); if (sps->sps_3d_extension_flag) rbsp_unsupported(rbsp); if (sps->sps_scc_extension_flag) rbsp_unsupported(rbsp); if (sps->sps_extension_4bits) rbsp_unsupported(rbsp); } static void nal_hevc_rbsp_pps(struct rbsp *rbsp, struct nal_hevc_pps *pps) { unsigned int i; rbsp_uev(rbsp, &pps->pps_pic_parameter_set_id); rbsp_uev(rbsp, &pps->pps_seq_parameter_set_id); rbsp_bit(rbsp, &pps->dependent_slice_segments_enabled_flag); rbsp_bit(rbsp, &pps->output_flag_present_flag); rbsp_bits(rbsp, 3, &pps->num_extra_slice_header_bits); rbsp_bit(rbsp, &pps->sign_data_hiding_enabled_flag); rbsp_bit(rbsp, &pps->cabac_init_present_flag); rbsp_uev(rbsp, &pps->num_ref_idx_l0_default_active_minus1); rbsp_uev(rbsp, &pps->num_ref_idx_l1_default_active_minus1); rbsp_sev(rbsp, &pps->init_qp_minus26); rbsp_bit(rbsp, &pps->constrained_intra_pred_flag); rbsp_bit(rbsp, &pps->transform_skip_enabled_flag); rbsp_bit(rbsp, &pps->cu_qp_delta_enabled_flag); if (pps->cu_qp_delta_enabled_flag) rbsp_uev(rbsp, &pps->diff_cu_qp_delta_depth); rbsp_sev(rbsp, &pps->pps_cb_qp_offset); rbsp_sev(rbsp, &pps->pps_cr_qp_offset); rbsp_bit(rbsp, &pps->pps_slice_chroma_qp_offsets_present_flag); rbsp_bit(rbsp, &pps->weighted_pred_flag); rbsp_bit(rbsp, &pps->weighted_bipred_flag); rbsp_bit(rbsp, &pps->transquant_bypass_enabled_flag); rbsp_bit(rbsp, &pps->tiles_enabled_flag); rbsp_bit(rbsp, &pps->entropy_coding_sync_enabled_flag); if (pps->tiles_enabled_flag) { rbsp_uev(rbsp, &pps->num_tile_columns_minus1); rbsp_uev(rbsp, &pps->num_tile_rows_minus1); rbsp_bit(rbsp, &pps->uniform_spacing_flag); if (!pps->uniform_spacing_flag) { for (i = 0; i < pps->num_tile_columns_minus1; i++) rbsp_uev(rbsp, &pps->column_width_minus1[i]); for (i = 0; i < pps->num_tile_rows_minus1; i++) rbsp_uev(rbsp, &pps->row_height_minus1[i]); } rbsp_bit(rbsp, &pps->loop_filter_across_tiles_enabled_flag); } rbsp_bit(rbsp, &pps->pps_loop_filter_across_slices_enabled_flag); rbsp_bit(rbsp, &pps->deblocking_filter_control_present_flag); if (pps->deblocking_filter_control_present_flag) { rbsp_bit(rbsp, &pps->deblocking_filter_override_enabled_flag); rbsp_bit(rbsp, &pps->pps_deblocking_filter_disabled_flag); if (!pps->pps_deblocking_filter_disabled_flag) { rbsp_sev(rbsp, &pps->pps_beta_offset_div2); rbsp_sev(rbsp, &pps->pps_tc_offset_div2); } } rbsp_bit(rbsp, &pps->pps_scaling_list_data_present_flag); if (pps->pps_scaling_list_data_present_flag) rbsp_unsupported(rbsp); rbsp_bit(rbsp, &pps->lists_modification_present_flag); rbsp_uev(rbsp, &pps->log2_parallel_merge_level_minus2); rbsp_bit(rbsp, &pps->slice_segment_header_extension_present_flag); rbsp_bit(rbsp, &pps->pps_extension_present_flag); if (pps->pps_extension_present_flag) { rbsp_bit(rbsp, &pps->pps_range_extension_flag); rbsp_bit(rbsp, &pps->pps_multilayer_extension_flag); rbsp_bit(rbsp, &pps->pps_3d_extension_flag); rbsp_bit(rbsp, &pps->pps_scc_extension_flag); rbsp_bits(rbsp, 4, &pps->pps_extension_4bits); } if (pps->pps_range_extension_flag) rbsp_unsupported(rbsp); if (pps->pps_multilayer_extension_flag) rbsp_unsupported(rbsp); if (pps->pps_3d_extension_flag) rbsp_unsupported(rbsp); if (pps->pps_scc_extension_flag) rbsp_unsupported(rbsp); if (pps->pps_extension_4bits) rbsp_unsupported(rbsp); } /** * nal_hevc_write_vps() - Write PPS NAL unit into RBSP format * @dev: device pointer * @dest: the buffer that is filled with RBSP data * @n: maximum size of @dest in bytes * @vps: &struct nal_hevc_vps to convert to RBSP * * Convert @vps to RBSP data and write it into @dest. * * The size of the VPS NAL unit is not known in advance and this function will * fail, if @dest does not hold sufficient space for the VPS NAL unit. * * Return: number of bytes written to @dest or negative error code */ ssize_t nal_hevc_write_vps(const struct device *dev, void *dest, size_t n, struct nal_hevc_vps *vps) { struct rbsp rbsp; unsigned int forbidden_zero_bit = 0; unsigned int nal_unit_type = VPS_NUT; unsigned int nuh_layer_id = 0; unsigned int nuh_temporal_id_plus1 = 1; if (!dest) return -EINVAL; rbsp_init(&rbsp, dest, n, &write); nal_hevc_write_start_code_prefix(&rbsp); /* NAL unit header */ rbsp_bit(&rbsp, &forbidden_zero_bit); rbsp_bits(&rbsp, 6, &nal_unit_type); rbsp_bits(&rbsp, 6, &nuh_layer_id); rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1); nal_hevc_rbsp_vps(&rbsp, vps); rbsp_trailing_bits(&rbsp); if (rbsp.error) return rbsp.error; return DIV_ROUND_UP(rbsp.pos, 8); } EXPORT_SYMBOL_GPL(nal_hevc_write_vps); /** * nal_hevc_read_vps() - Read VPS NAL unit from RBSP format * @dev: device pointer * @vps: the &struct nal_hevc_vps to fill from the RBSP data * @src: the buffer that contains the RBSP data * @n: size of @src in bytes * * Read RBSP data from @src and use it to fill @vps. * * Return: number of bytes read from @src or negative error code */ ssize_t nal_hevc_read_vps(const struct device *dev, struct nal_hevc_vps *vps, void *src, size_t n) { struct rbsp rbsp; unsigned int forbidden_zero_bit; unsigned int nal_unit_type; unsigned int nuh_layer_id; unsigned int nuh_temporal_id_plus1; if (!src) return -EINVAL; rbsp_init(&rbsp, src, n, &read); nal_hevc_read_start_code_prefix(&rbsp); rbsp_bit(&rbsp, &forbidden_zero_bit); rbsp_bits(&rbsp, 6, &nal_unit_type); rbsp_bits(&rbsp, 6, &nuh_layer_id); rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1); if (rbsp.error || forbidden_zero_bit != 0 || nal_unit_type != VPS_NUT) return -EINVAL; nal_hevc_rbsp_vps(&rbsp, vps); rbsp_trailing_bits(&rbsp); if (rbsp.error) return rbsp.error; return DIV_ROUND_UP(rbsp.pos, 8); } EXPORT_SYMBOL_GPL(nal_hevc_read_vps); /** * nal_hevc_write_sps() - Write SPS NAL unit into RBSP format * @dev: device pointer * @dest: the buffer that is filled with RBSP data * @n: maximum size of @dest in bytes * @sps: &struct nal_hevc_sps to convert to RBSP * * Convert @sps to RBSP data and write it into @dest. * * The size of the SPS NAL unit is not known in advance and this function will * fail, if @dest does not hold sufficient space for the SPS NAL unit. * * Return: number of bytes written to @dest or negative error code */ ssize_t nal_hevc_write_sps(const struct device *dev, void *dest, size_t n, struct nal_hevc_sps *sps) { struct rbsp rbsp; unsigned int forbidden_zero_bit = 0; unsigned int nal_unit_type = SPS_NUT; unsigned int nuh_layer_id = 0; unsigned int nuh_temporal_id_plus1 = 1; if (!dest) return -EINVAL; rbsp_init(&rbsp, dest, n, &write); nal_hevc_write_start_code_prefix(&rbsp); /* NAL unit header */ rbsp_bit(&rbsp, &forbidden_zero_bit); rbsp_bits(&rbsp, 6, &nal_unit_type); rbsp_bits(&rbsp, 6, &nuh_layer_id); rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1); nal_hevc_rbsp_sps(&rbsp, sps); rbsp_trailing_bits(&rbsp); if (rbsp.error) return rbsp.error; return DIV_ROUND_UP(rbsp.pos, 8); } EXPORT_SYMBOL_GPL(nal_hevc_write_sps); /** * nal_hevc_read_sps() - Read SPS NAL unit from RBSP format * @dev: device pointer * @sps: the &struct nal_hevc_sps to fill from the RBSP data * @src: the buffer that contains the RBSP data * @n: size of @src in bytes * * Read RBSP data from @src and use it to fill @sps. * * Return: number of bytes read from @src or negative error code */ ssize_t nal_hevc_read_sps(const struct device *dev, struct nal_hevc_sps *sps, void *src, size_t n) { struct rbsp rbsp; unsigned int forbidden_zero_bit; unsigned int nal_unit_type; unsigned int nuh_layer_id; unsigned int nuh_temporal_id_plus1; if (!src) return -EINVAL; rbsp_init(&rbsp, src, n, &read); nal_hevc_read_start_code_prefix(&rbsp); rbsp_bit(&rbsp, &forbidden_zero_bit); rbsp_bits(&rbsp, 6, &nal_unit_type); rbsp_bits(&rbsp, 6, &nuh_layer_id); rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1); if (rbsp.error || forbidden_zero_bit != 0 || nal_unit_type != SPS_NUT) return -EINVAL; nal_hevc_rbsp_sps(&rbsp, sps); rbsp_trailing_bits(&rbsp); if (rbsp.error) return rbsp.error; return DIV_ROUND_UP(rbsp.pos, 8); } EXPORT_SYMBOL_GPL(nal_hevc_read_sps); /** * nal_hevc_write_pps() - Write PPS NAL unit into RBSP format * @dev: device pointer * @dest: the buffer that is filled with RBSP data * @n: maximum size of @dest in bytes * @pps: &struct nal_hevc_pps to convert to RBSP * * Convert @pps to RBSP data and write it into @dest. * * The size of the PPS NAL unit is not known in advance and this function will * fail, if @dest does not hold sufficient space for the PPS NAL unit. * * Return: number of bytes written to @dest or negative error code */ ssize_t nal_hevc_write_pps(const struct device *dev, void *dest, size_t n, struct nal_hevc_pps *pps) { struct rbsp rbsp; unsigned int forbidden_zero_bit = 0; unsigned int nal_unit_type = PPS_NUT; unsigned int nuh_layer_id = 0; unsigned int nuh_temporal_id_plus1 = 1; if (!dest) return -EINVAL; rbsp_init(&rbsp, dest, n, &write); nal_hevc_write_start_code_prefix(&rbsp); /* NAL unit header */ rbsp_bit(&rbsp, &forbidden_zero_bit); rbsp_bits(&rbsp, 6, &nal_unit_type); rbsp_bits(&rbsp, 6, &nuh_layer_id); rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1); nal_hevc_rbsp_pps(&rbsp, pps); rbsp_trailing_bits(&rbsp); if (rbsp.error) return rbsp.error; return DIV_ROUND_UP(rbsp.pos, 8); } EXPORT_SYMBOL_GPL(nal_hevc_write_pps); /** * nal_hevc_read_pps() - Read PPS NAL unit from RBSP format * @dev: device pointer * @pps: the &struct nal_hevc_pps to fill from the RBSP data * @src: the buffer that contains the RBSP data * @n: size of @src in bytes * * Read RBSP data from @src and use it to fill @pps. * * Return: number of bytes read from @src or negative error code */ ssize_t nal_hevc_read_pps(const struct device *dev, struct nal_hevc_pps *pps, void *src, size_t n) { struct rbsp rbsp; unsigned int forbidden_zero_bit; unsigned int nal_unit_type; unsigned int nuh_layer_id; unsigned int nuh_temporal_id_plus1; if (!src) return -EINVAL; rbsp_init(&rbsp, src, n, &read); nal_hevc_read_start_code_prefix(&rbsp); /* NAL unit header */ rbsp_bit(&rbsp, &forbidden_zero_bit); rbsp_bits(&rbsp, 6, &nal_unit_type); rbsp_bits(&rbsp, 6, &nuh_layer_id); rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1); nal_hevc_rbsp_pps(&rbsp, pps); rbsp_trailing_bits(&rbsp); if (rbsp.error) return rbsp.error; return DIV_ROUND_UP(rbsp.pos, 8); } EXPORT_SYMBOL_GPL(nal_hevc_read_pps); /** * nal_hevc_write_filler() - Write filler data RBSP * @dev: device pointer * @dest: buffer to fill with filler data * @n: size of the buffer to fill with filler data * * Write a filler data RBSP to @dest with a size of @n bytes and return the * number of written filler data bytes. * * Use this function to generate dummy data in an RBSP data stream that can be * safely ignored by hevc decoders. * * The RBSP format of the filler data is specified in Rec. ITU-T H.265 * (02/2018) 7.3.2.8 Filler data RBSP syntax. * * Return: number of filler data bytes (including marker) or negative error */ ssize_t nal_hevc_write_filler(const struct device *dev, void *dest, size_t n) { struct rbsp rbsp; unsigned int forbidden_zero_bit = 0; unsigned int nal_unit_type = FD_NUT; unsigned int nuh_layer_id = 0; unsigned int nuh_temporal_id_plus1 = 1; if (!dest) return -EINVAL; rbsp_init(&rbsp, dest, n, &write); nal_hevc_write_start_code_prefix(&rbsp); rbsp_bit(&rbsp, &forbidden_zero_bit); rbsp_bits(&rbsp, 6, &nal_unit_type); rbsp_bits(&rbsp, 6, &nuh_layer_id); rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1); nal_hevc_write_filler_data(&rbsp); rbsp_trailing_bits(&rbsp); if (rbsp.error) return rbsp.error; return DIV_ROUND_UP(rbsp.pos, 8); } EXPORT_SYMBOL_GPL(nal_hevc_write_filler); /** * nal_hevc_read_filler() - Read filler data RBSP * @dev: device pointer * @src: buffer with RBSP data that is read * @n: maximum size of src that shall be read * * Read a filler data RBSP from @src up to a maximum size of @n bytes and * return the size of the filler data in bytes including the marker. * * This function is used to parse filler data and skip the respective bytes in * the RBSP data. * * The RBSP format of the filler data is specified in Rec. ITU-T H.265 * (02/2018) 7.3.2.8 Filler data RBSP syntax. * * Return: number of filler data bytes (including marker) or negative error */ ssize_t nal_hevc_read_filler(const struct device *dev, void *src, size_t n) { struct rbsp rbsp; unsigned int forbidden_zero_bit; unsigned int nal_unit_type; unsigned int nuh_layer_id; unsigned int nuh_temporal_id_plus1; if (!src) return -EINVAL; rbsp_init(&rbsp, src, n, &read); nal_hevc_read_start_code_prefix(&rbsp); rbsp_bit(&rbsp, &forbidden_zero_bit); rbsp_bits(&rbsp, 6, &nal_unit_type); rbsp_bits(&rbsp, 6, &nuh_layer_id); rbsp_bits(&rbsp, 3, &nuh_temporal_id_plus1); if (rbsp.error) return rbsp.error; if (forbidden_zero_bit != 0 || nal_unit_type != FD_NUT) return -EINVAL; nal_hevc_read_filler_data(&rbsp); rbsp_trailing_bits(&rbsp); if (rbsp.error) return rbsp.error; return DIV_ROUND_UP(rbsp.pos, 8); } EXPORT_SYMBOL_GPL(nal_hevc_read_filler);