summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorChris Lattner <sabre@nondot.org>2003-12-11 22:44:13 +0000
committerChris Lattner <sabre@nondot.org>2003-12-11 22:44:13 +0000
commit6ea17f77f80819555517ee9cd584617bd248c212 (patch)
tree1430d3f204e2590b8f9f0f7d95d5bedfc4645fe1
parent34399dda2d202a16301de9c4b6f72d1cd6263e18 (diff)
downloadllvm-6ea17f77f80819555517ee9cd584617bd248c212.tar.gz
Fix PR86. This makes basicaa _SIGNIFICANLY_ more aggressive with getelementptr's
llvm-svn: 10410
-rw-r--r--llvm/lib/Analysis/BasicAliasAnalysis.cpp372
1 files changed, 251 insertions, 121 deletions
diff --git a/llvm/lib/Analysis/BasicAliasAnalysis.cpp b/llvm/lib/Analysis/BasicAliasAnalysis.cpp
index 27b7f5305ec8..c886d003d69c 100644
--- a/llvm/lib/Analysis/BasicAliasAnalysis.cpp
+++ b/llvm/lib/Analysis/BasicAliasAnalysis.cpp
@@ -41,11 +41,14 @@ namespace {
AliasResult alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size);
private:
- // CheckGEPInstructions - Check two GEP instructions of compatible types and
- // equal number of arguments. This checks to see if the index expressions
+ // CheckGEPInstructions - Check two GEP instructions with known
+ // must-aliasing base pointers. This checks to see if the index expressions
// preclude the pointers from aliasing...
- AliasResult CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1Size,
- GetElementPtrInst *GEP2, unsigned G2Size);
+ AliasResult
+ CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops,
+ unsigned G1Size,
+ const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops,
+ unsigned G2Size);
};
// Register this pass...
@@ -89,6 +92,13 @@ static const Value *getUnderlyingObject(const Value *V) {
return 0;
}
+static const User *isGEP(const Value *V) {
+ if (isa<GetElementPtrInst>(V) ||
+ (isa<ConstantExpr>(V) &&
+ cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
+ return cast<User>(V);
+ return 0;
+}
// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
// as array references. Note that this function is heavily tail recursive.
@@ -97,6 +107,14 @@ static const Value *getUnderlyingObject(const Value *V) {
AliasAnalysis::AliasResult
BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
+ // Strip off any constant expression casts if they exist
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
+ if (CE->getOpcode() == Instruction::Cast)
+ V1 = CE->getOperand(0);
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
+ if (CE->getOpcode() == Instruction::Cast)
+ V2 = CE->getOperand(0);
+
// Strip off constant pointer refs if they exist
if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
V1 = CPR->getValue();
@@ -145,19 +163,67 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
return NoAlias; // Unique values don't alias null
}
- // If we have two gep instructions with identical indices, return an alias
- // result equal to the alias result of the original pointer...
+ // If we have two gep instructions with must-alias'ing base pointers, figure
+ // out if the indexes to the GEP tell us anything about the derived pointer.
+ // Note that we also handle chains of getelementptr instructions as well as
+ // constant expression getelementptrs here.
//
- if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(V1))
- if (const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(V2))
- if (GEP1->getNumOperands() == GEP2->getNumOperands() &&
- GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType()) {
- AliasResult GAlias =
- CheckGEPInstructions((GetElementPtrInst*)GEP1, V1Size,
- (GetElementPtrInst*)GEP2, V2Size);
- if (GAlias != MayAlias)
- return GAlias;
+ if (isGEP(V1) && isGEP(V2)) {
+ // Drill down into the first non-gep value, to test for must-aliasing of
+ // the base pointers.
+ const Value *BasePtr1 = V1, *BasePtr2 = V2;
+ do {
+ BasePtr1 = cast<User>(BasePtr1)->getOperand(0);
+ } while (isGEP(BasePtr1) &&
+ cast<User>(BasePtr1)->getOperand(1) ==
+ Constant::getNullValue(cast<User>(BasePtr1)->getOperand(1)->getType()));
+ do {
+ BasePtr2 = cast<User>(BasePtr2)->getOperand(0);
+ } while (isGEP(BasePtr2) &&
+ cast<User>(BasePtr2)->getOperand(1) ==
+ Constant::getNullValue(cast<User>(BasePtr2)->getOperand(1)->getType()));
+
+ // Do the base pointers alias?
+ AliasResult BaseAlias = alias(BasePtr1, V1Size, BasePtr2, V2Size);
+ if (BaseAlias == NoAlias) return NoAlias;
+ if (BaseAlias == MustAlias) {
+ // If the base pointers alias each other exactly, check to see if we can
+ // figure out anything about the resultant pointers, to try to prove
+ // non-aliasing.
+
+ // Collect all of the chained GEP operands together into one simple place
+ std::vector<Value*> GEP1Ops(cast<User>(V1)->op_begin()+1,
+ cast<User>(V1)->op_end());
+ std::vector<Value*> GEP2Ops(cast<User>(V2)->op_begin()+1,
+ cast<User>(V2)->op_end());
+
+ // Accumulate all of the chained indexes into the operand arrays
+ BasePtr1 = cast<User>(V1)->getOperand(0);
+ BasePtr2 = cast<User>(V2)->getOperand(0);
+ while (const User *G = isGEP(BasePtr1)) {
+ if (!isa<Constant>(GEP1Ops[0]) ||
+ !cast<Constant>(GEP1Ops[0])->isNullValue())
+ break; // Don't handle folding arbitrary pointer offsets yet...
+ GEP1Ops.erase(GEP1Ops.begin());
+ GEP1Ops.insert(GEP1Ops.begin(), G->op_begin()+1, G->op_end());
+ BasePtr1 = G->getOperand(0);
}
+ while (const User *G = isGEP(BasePtr2)) {
+ if (!isa<Constant>(GEP2Ops[0]) ||
+ !cast<Constant>(GEP2Ops[0])->isNullValue())
+ break; // Don't handle folding arbitrary pointer offsets yet...
+ GEP2Ops.erase(GEP2Ops.begin());
+ GEP2Ops.insert(GEP2Ops.begin(), G->op_begin()+1, G->op_end());
+ BasePtr2 = G->getOperand(0);
+ }
+
+ AliasResult GAlias =
+ CheckGEPInstructions(BasePtr1->getType(), GEP1Ops, V1Size,
+ BasePtr2->getType(), GEP2Ops, V2Size);
+ if (GAlias != MayAlias)
+ return GAlias;
+ }
+ }
// Check to see if these two pointers are related by a getelementptr
// instruction. If one pointer is a GEP with a non-zero index of the other
@@ -219,45 +285,60 @@ BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
return MayAlias;
}
-static Value *CheckArrayIndicesForOverflow(const Type *PtrTy,
- const std::vector<Value*> &Indices,
- const ConstantInt *Idx) {
- if (const ConstantSInt *IdxS = dyn_cast<ConstantSInt>(Idx)) {
- if (IdxS->getValue() < 0) // Underflow on the array subscript?
- return Constant::getNullValue(Type::LongTy);
- else { // Check for overflow
- const ArrayType *ATy =
- cast<ArrayType>(GetElementPtrInst::getIndexedType(PtrTy, Indices,true));
- if (IdxS->getValue() >= (int64_t)ATy->getNumElements())
- return ConstantSInt::get(Type::LongTy, ATy->getNumElements()-1);
+/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
+/// base pointers. This checks to see if the index expressions preclude the
+/// pointers from aliasing...
+AliasAnalysis::AliasResult BasicAliasAnalysis::
+CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops,
+ unsigned G1S,
+ const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops,
+ unsigned G2S) {
+ // We currently can't handle the case when the base pointers have different
+ // primitive types. Since this is uncommon anyway, we are happy being
+ // extremely conservative.
+ if (BasePtr1Ty != BasePtr2Ty)
+ return MayAlias;
+
+ const Type *GEPPointerTy = BasePtr1Ty;
+
+ // Find the (possibly empty) initial sequence of equal values... which are not
+ // necessarily constants.
+ unsigned NumGEP1Operands = GEP1Ops.size(), NumGEP2Operands = GEP2Ops.size();
+ unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
+ unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
+ unsigned UnequalOper = 0;
+ while (UnequalOper != MinOperands &&
+ GEP1Ops[UnequalOper] == GEP2Ops[UnequalOper]) {
+ // Advance through the type as we go...
+ ++UnequalOper;
+ if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
+ BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
+ else {
+ // If all operands equal each other, then the derived pointers must
+ // alias each other...
+ BasePtr1Ty = 0;
+ assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
+ "Ran out of type nesting, but not out of operands?");
+ return MustAlias;
}
}
- return (Value*)Idx; // Everything is acceptable.
-}
-// CheckGEPInstructions - Check two GEP instructions of compatible types and
-// equal number of arguments. This checks to see if the index expressions
-// preclude the pointers from aliasing...
-//
-AliasAnalysis::AliasResult
-BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S,
- GetElementPtrInst *GEP2, unsigned G2S){
- // Do the base pointers alias?
- AliasResult BaseAlias = alias(GEP1->getOperand(0), G1S,
- GEP2->getOperand(0), G2S);
- if (BaseAlias != MustAlias) // No or May alias: We cannot add anything...
- return BaseAlias;
-
- // Find the (possibly empty) initial sequence of equal values...
- unsigned NumGEPOperands = GEP1->getNumOperands();
- unsigned UnequalOper = 1;
- while (UnequalOper != NumGEPOperands &&
- GEP1->getOperand(UnequalOper) == GEP2->getOperand(UnequalOper))
- ++UnequalOper;
+ // If we have seen all constant operands, and run out of indexes on one of the
+ // getelementptrs, check to see if the tail of the leftover one is all zeros.
+ // If so, return mustalias.
+ if (UnequalOper == MinOperands && MinOperands != MaxOperands) {
+ if (GEP1Ops.size() < GEP2Ops.size()) std::swap(GEP1Ops, GEP2Ops);
- // If all operands equal each other, then the derived pointers must
- // alias each other...
- if (UnequalOper == NumGEPOperands) return MustAlias;
+ bool AllAreZeros = true;
+ for (unsigned i = UnequalOper; i != MaxOperands; ++i)
+ if (!isa<Constant>(GEP1Ops[i]) ||
+ !cast<Constant>(GEP1Ops[i])->isNullValue()) {
+ AllAreZeros = false;
+ break;
+ }
+ if (AllAreZeros) return MustAlias;
+ }
+
// So now we know that the indexes derived from the base pointers,
// which are known to alias, are different. We can still determine a
@@ -271,101 +352,150 @@ BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S,
// Scan for the first operand that is constant and unequal in the
// two getelemenptrs...
unsigned FirstConstantOper = UnequalOper;
- for (; FirstConstantOper != NumGEPOperands; ++FirstConstantOper) {
- const Value *G1Oper = GEP1->getOperand(FirstConstantOper);
- const Value *G2Oper = GEP2->getOperand(FirstConstantOper);
+ for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
+ const Value *G1Oper = GEP1Ops[FirstConstantOper];
+ const Value *G2Oper = GEP2Ops[FirstConstantOper];
+
if (G1Oper != G2Oper && // Found non-equal constant indexes...
isa<Constant>(G1Oper) && isa<Constant>(G2Oper)) {
- // Make sure they are comparable... and make sure the GEP with
- // the smaller leading constant is GEP1.
- ConstantBool *Compare =
- *cast<Constant>(GEP1->getOperand(FirstConstantOper)) >
- *cast<Constant>(GEP2->getOperand(FirstConstantOper));
+ // Make sure they are comparable (ie, not constant expressions)... and
+ // make sure the GEP with the smaller leading constant is GEP1.
+ ConstantBool *Compare = *cast<Constant>(G1Oper) > *cast<Constant>(G2Oper);
if (Compare) { // If they are comparable...
if (Compare->getValue())
- std::swap(GEP1, GEP2); // Make GEP1 < GEP2
+ std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
break;
}
}
+ BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
}
- // No constant operands, we cannot tell anything...
- if (FirstConstantOper == NumGEPOperands) return MayAlias;
+ // No shared constant operands, and we ran out of common operands. At this
+ // point, the GEP instructions have run through all of their operands, and we
+ // haven't found evidence that there are any deltas between the GEP's.
+ // However, one GEP may have more operands than the other. If this is the
+ // case, there may still be hope. This this now.
+ if (FirstConstantOper == MinOperands) {
+ // Make GEP1Ops be the longer one if there is a longer one.
+ if (GEP1Ops.size() < GEP2Ops.size())
+ std::swap(GEP1Ops, GEP2Ops);
+
+ // Is there anything to check?
+ if (GEP1Ops.size() > MinOperands) {
+ for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
+ if (isa<Constant>(GEP1Ops[i]) && !isa<ConstantExpr>(GEP1Ops[i]) &&
+ !cast<Constant>(GEP1Ops[i])->isNullValue()) {
+ // Yup, there's a constant in the tail. Set all variables to
+ // constants in the GEP instruction to make it suiteable for
+ // TargetData::getIndexedOffset.
+ for (i = 0; i != MaxOperands; ++i)
+ if (!isa<Constant>(GEP1Ops[i]) || isa<ConstantExpr>(GEP1Ops[i]))
+ GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
+ // Okay, now get the offset. This is the relative offset for the full
+ // instruction.
+ const TargetData &TD = getTargetData();
+ int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);
+
+ // Now crop off any constants from the end...
+ GEP1Ops.resize(MinOperands);
+ int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);
+
+ // If the tail provided a bit enough offset, return noalias!
+ if ((uint64_t)(Offset2-Offset1) >= SizeMax)
+ return NoAlias;
+ }
+ }
+
+ // Couldn't find anything useful.
+ return MayAlias;
+ }
// If there are non-equal constants arguments, then we can figure
// out a minimum known delta between the two index expressions... at
// this point we know that the first constant index of GEP1 is less
// than the first constant index of GEP2.
- //
- std::vector<Value*> Indices1;
- Indices1.reserve(NumGEPOperands-1);
-
- for (gep_type_iterator I = gep_type_begin(GEP1);
- I.getOperandNum() != FirstConstantOper; ++I)
- if (isa<StructType>(*I))
- Indices1.push_back(I.getOperand());
- else
- Indices1.push_back(Constant::getNullValue(Type::LongTy));
-
- std::vector<Value*> Indices2;
- Indices2.reserve(NumGEPOperands-1);
- Indices2 = Indices1; // Copy the zeros prefix...
-
- // Add the two known constant operands...
- Indices1.push_back((Value*)GEP1->getOperand(FirstConstantOper));
- Indices2.push_back((Value*)GEP2->getOperand(FirstConstantOper));
+
+ // Advance BasePtr[12]Ty over this first differing constant operand.
+ BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(GEP2Ops[FirstConstantOper]);
+ BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(GEP1Ops[FirstConstantOper]);
- const Type *GEPPointerTy = GEP1->getOperand(0)->getType();
+ // We are going to be using TargetData::getIndexedOffset to determine the
+ // offset that each of the GEP's is reaching. To do this, we have to convert
+ // all variable references to constant references. To do this, we convert the
+ // initial equal sequence of variables into constant zeros to start with.
+ for (unsigned i = 0; i != FirstConstantOper; ++i) {
+ if (!isa<Constant>(GEP1Ops[i]) || isa<ConstantExpr>(GEP1Ops[i]) ||
+ !isa<Constant>(GEP2Ops[i]) || isa<ConstantExpr>(GEP2Ops[i])) {
+ GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
+ GEP2Ops[i] = Constant::getNullValue(GEP2Ops[i]->getType());
+ }
+ }
+
+ // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
+
// Loop over the rest of the operands...
- for (unsigned i = FirstConstantOper+1; i != NumGEPOperands; ++i) {
- const Value *Op1 = GEP1->getOperand(i);
- const Value *Op2 = GEP2->getOperand(i);
- if (Op1 == Op2) { // If they are equal, use a zero index...
- if (!isa<Constant>(Op1)) {
- Indices1.push_back(Constant::getNullValue(Op1->getType()));
- Indices2.push_back(Indices1.back());
- } else {
- Indices1.push_back((Value*)Op1);
- Indices2.push_back((Value*)Op2);
- }
+ for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
+ const Value *Op1 = i < GEP1Ops.size() ? GEP1Ops[i] : 0;
+ const Value *Op2 = i < GEP2Ops.size() ? GEP2Ops[i] : 0;
+ // If they are equal, use a zero index...
+ if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
+ if (!isa<Constant>(Op1) || isa<ConstantExpr>(Op1))
+ GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
+ // Otherwise, just keep the constants we have.
} else {
- if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
- // If this is an array index, make sure the array element is in range...
- if (i != 1) // The pointer index can be "out of range"
- Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices1, Op1C);
-
- Indices1.push_back((Value*)Op1);
- } else {
- // GEP1 is known to produce a value less than GEP2. To be
- // conservatively correct, we must assume the largest possible constant
- // is used in this position. This cannot be the initial index to the
- // GEP instructions (because we know we have at least one element before
- // this one with the different constant arguments), so we know that the
- // current index must be into either a struct or array. Because we know
- // it's not constant, this cannot be a structure index. Because of
- // this, we can calculate the maximum value possible.
- //
- const ArrayType *ElTy =
- cast<ArrayType>(GEP1->getIndexedType(GEPPointerTy, Indices1, true));
- Indices1.push_back(ConstantSInt::get(Type::LongTy,
- ElTy->getNumElements()-1));
+ if (Op1) {
+ if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+ // If this is an array index, make sure the array element is in range.
+ if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
+ if (Op1C->getRawValue() >= AT->getNumElements())
+ return MayAlias; // Be conservative with out-of-range accesses
+
+ } else {
+ // GEP1 is known to produce a value less than GEP2. To be
+ // conservatively correct, we must assume the largest possible
+ // constant is used in this position. This cannot be the initial
+ // index to the GEP instructions (because we know we have at least one
+ // element before this one with the different constant arguments), so
+ // we know that the current index must be into either a struct or
+ // array. Because we know it's not constant, this cannot be a
+ // structure index. Because of this, we can calculate the maximum
+ // value possible.
+ //
+ if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
+ GEP1Ops[i] = ConstantSInt::get(Type::LongTy,AT->getNumElements()-1);
+ }
}
- if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op2)) {
- // If this is an array index, make sure the array element is in range...
- if (i != 1) // The pointer index can be "out of range"
- Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices2, Op1C);
-
- Indices2.push_back((Value*)Op2);
+ if (Op2) {
+ if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
+ // If this is an array index, make sure the array element is in range.
+ if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
+ if (Op2C->getRawValue() >= AT->getNumElements())
+ return MayAlias; // Be conservative with out-of-range accesses
+ } else { // Conservatively assume the minimum value for this index
+ GEP2Ops[i] = Constant::getNullValue(Op2->getType());
+ }
}
- else // Conservatively assume the minimum value for this index
- Indices2.push_back(Constant::getNullValue(Op2->getType()));
+ }
+
+ if (BasePtr1Ty && Op1) {
+ if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
+ BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
+ else
+ BasePtr1Ty = 0;
+ }
+
+ if (BasePtr2Ty && Op2) {
+ if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
+ BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
+ else
+ BasePtr2Ty = 0;
}
}
- int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, Indices1);
- int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, Indices2);
+ int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops);
+ int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops);
assert(Offset1 < Offset2 &&"There is at least one different constant here!");
if ((uint64_t)(Offset2-Offset1) >= SizeMax) {