summaryrefslogtreecommitdiff
path: root/lib/Target/SparcV9/InstrSelection/InstrForest.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/SparcV9/InstrSelection/InstrForest.cpp')
-rw-r--r--lib/Target/SparcV9/InstrSelection/InstrForest.cpp332
1 files changed, 0 insertions, 332 deletions
diff --git a/lib/Target/SparcV9/InstrSelection/InstrForest.cpp b/lib/Target/SparcV9/InstrSelection/InstrForest.cpp
deleted file mode 100644
index 5496502d5efd..000000000000
--- a/lib/Target/SparcV9/InstrSelection/InstrForest.cpp
+++ /dev/null
@@ -1,332 +0,0 @@
-//===-- InstrForest.cpp - Build instruction forest for inst selection -----===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// The key goal is to group instructions into a single
-// tree if one or more of them might be potentially combined into a single
-// complex instruction in the target machine.
-// Since this grouping is completely machine-independent, we do it as
-// aggressive as possible to exploit any possible target instructions.
-// In particular, we group two instructions O and I if:
-// (1) Instruction O computes an operand used by instruction I,
-// and (2) O and I are part of the same basic block,
-// and (3) O has only a single use, viz., I.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Constant.h"
-#include "llvm/Function.h"
-#include "llvm/iTerminators.h"
-#include "llvm/iMemory.h"
-#include "llvm/Type.h"
-#include "llvm/CodeGen/InstrForest.h"
-#include "llvm/CodeGen/MachineCodeForInstruction.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "Support/STLExtras.h"
-#include "Config/alloca.h"
-
-//------------------------------------------------------------------------
-// class InstrTreeNode
-//------------------------------------------------------------------------
-
-void
-InstrTreeNode::dump(int dumpChildren, int indent) const {
- dumpNode(indent);
-
- if (dumpChildren) {
- if (LeftChild)
- LeftChild->dump(dumpChildren, indent+1);
- if (RightChild)
- RightChild->dump(dumpChildren, indent+1);
- }
-}
-
-
-InstructionNode::InstructionNode(Instruction* I)
- : InstrTreeNode(NTInstructionNode, I), codeIsFoldedIntoParent(false)
-{
- opLabel = I->getOpcode();
-
- // Distinguish special cases of some instructions such as Ret and Br
- //
- if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue()) {
- opLabel = RetValueOp; // ret(value) operation
- }
- else if (opLabel ==Instruction::Br && !cast<BranchInst>(I)->isUnconditional())
- {
- opLabel = BrCondOp; // br(cond) operation
- } else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT) {
- opLabel = SetCCOp; // common label for all SetCC ops
- } else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0) {
- opLabel = AllocaN; // Alloca(ptr, N) operation
- } else if (opLabel == Instruction::GetElementPtr &&
- cast<GetElementPtrInst>(I)->hasIndices()) {
- opLabel = opLabel + 100; // getElem with index vector
- } else if (opLabel == Instruction::Xor &&
- BinaryOperator::isNot(I)) {
- opLabel = (I->getType() == Type::BoolTy)? NotOp // boolean Not operator
- : BNotOp; // bitwise Not operator
- } else if (opLabel == Instruction::And || opLabel == Instruction::Or ||
- opLabel == Instruction::Xor) {
- // Distinguish bitwise operators from logical operators!
- if (I->getType() != Type::BoolTy)
- opLabel = opLabel + 100; // bitwise operator
- } else if (opLabel == Instruction::Cast) {
- const Type *ITy = I->getType();
- switch(ITy->getPrimitiveID())
- {
- case Type::BoolTyID: opLabel = ToBoolTy; break;
- case Type::UByteTyID: opLabel = ToUByteTy; break;
- case Type::SByteTyID: opLabel = ToSByteTy; break;
- case Type::UShortTyID: opLabel = ToUShortTy; break;
- case Type::ShortTyID: opLabel = ToShortTy; break;
- case Type::UIntTyID: opLabel = ToUIntTy; break;
- case Type::IntTyID: opLabel = ToIntTy; break;
- case Type::ULongTyID: opLabel = ToULongTy; break;
- case Type::LongTyID: opLabel = ToLongTy; break;
- case Type::FloatTyID: opLabel = ToFloatTy; break;
- case Type::DoubleTyID: opLabel = ToDoubleTy; break;
- case Type::ArrayTyID: opLabel = ToArrayTy; break;
- case Type::PointerTyID: opLabel = ToPointerTy; break;
- default:
- // Just use `Cast' opcode otherwise. It's probably ignored.
- break;
- }
- }
-}
-
-
-void
-InstructionNode::dumpNode(int indent) const {
- for (int i=0; i < indent; i++)
- std::cerr << " ";
- std::cerr << getInstruction()->getOpcodeName()
- << " [label " << getOpLabel() << "]" << "\n";
-}
-
-void
-VRegListNode::dumpNode(int indent) const {
- for (int i=0; i < indent; i++)
- std::cerr << " ";
-
- std::cerr << "List" << "\n";
-}
-
-
-void
-VRegNode::dumpNode(int indent) const {
- for (int i=0; i < indent; i++)
- std::cerr << " ";
-
- std::cerr << "VReg " << getValue() << "\t(type "
- << (int) getValue()->getValueType() << ")" << "\n";
-}
-
-void
-ConstantNode::dumpNode(int indent) const {
- for (int i=0; i < indent; i++)
- std::cerr << " ";
-
- std::cerr << "Constant " << getValue() << "\t(type "
- << (int) getValue()->getValueType() << ")" << "\n";
-}
-
-void LabelNode::dumpNode(int indent) const {
- for (int i=0; i < indent; i++)
- std::cerr << " ";
-
- std::cerr << "Label " << getValue() << "\n";
-}
-
-//------------------------------------------------------------------------
-// class InstrForest
-//
-// A forest of instruction trees, usually for a single method.
-//------------------------------------------------------------------------
-
-InstrForest::InstrForest(Function *F) {
- for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) {
- for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- buildTreeForInstruction(I);
- }
-}
-
-InstrForest::~InstrForest() {
- for_each(treeRoots.begin(), treeRoots.end(), deleter<InstructionNode>);
-}
-
-void InstrForest::dump() const {
- for (const_root_iterator I = roots_begin(); I != roots_end(); ++I)
- (*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
-}
-
-inline void InstrForest::eraseRoot(InstructionNode* node) {
- for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend();
- RI != RE; ++RI)
- if (*RI == node)
- treeRoots.erase(RI.base()-1);
-}
-
-inline void InstrForest::noteTreeNodeForInstr(Instruction *instr,
- InstructionNode *treeNode) {
- (*this)[instr] = treeNode;
- treeRoots.push_back(treeNode); // mark node as root of a new tree
-}
-
-
-inline void InstrForest::setLeftChild(InstrTreeNode *parent,
- InstrTreeNode *child) {
- parent->LeftChild = child;
- child->Parent = parent;
- if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
- eraseRoot(instrNode); // no longer a tree root
-}
-
-inline void InstrForest::setRightChild(InstrTreeNode *parent,
- InstrTreeNode *child) {
- parent->RightChild = child;
- child->Parent = parent;
- if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
- eraseRoot(instrNode); // no longer a tree root
-}
-
-
-InstructionNode* InstrForest::buildTreeForInstruction(Instruction *instr) {
- InstructionNode *treeNode = getTreeNodeForInstr(instr);
- if (treeNode) {
- // treeNode has already been constructed for this instruction
- assert(treeNode->getInstruction() == instr);
- return treeNode;
- }
-
- // Otherwise, create a new tree node for this instruction.
- //
- treeNode = new InstructionNode(instr);
- noteTreeNodeForInstr(instr, treeNode);
-
- if (instr->getOpcode() == Instruction::Call) {
- // Operands of call instruction
- return treeNode;
- }
-
- // If the instruction has more than 2 instruction operands,
- // then we need to create artificial list nodes to hold them.
- // (Note that we only count operands that get tree nodes, and not
- // others such as branch labels for a branch or switch instruction.)
- //
- // To do this efficiently, we'll walk all operands, build treeNodes
- // for all appropriate operands and save them in an array. We then
- // insert children at the end, creating list nodes where needed.
- // As a performance optimization, allocate a child array only
- // if a fixed array is too small.
- //
- int numChildren = 0;
- InstrTreeNode** childArray = new InstrTreeNode*[instr->getNumOperands()];
-
- //
- // Walk the operands of the instruction
- //
- for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end(); ++O)
- {
- Value* operand = *O;
-
- // Check if the operand is a data value, not an branch label, type,
- // method or module. If the operand is an address type (i.e., label
- // or method) that is used in an non-branching operation, e.g., `add'.
- // that should be considered a data value.
-
- // Check latter condition here just to simplify the next IF.
- bool includeAddressOperand =
- (isa<BasicBlock>(operand) || isa<Function>(operand))
- && !instr->isTerminator();
-
- if (includeAddressOperand || isa<Instruction>(operand) ||
- isa<Constant>(operand) || isa<Argument>(operand) ||
- isa<GlobalVariable>(operand))
- {
- // This operand is a data value
-
- // An instruction that computes the incoming value is added as a
- // child of the current instruction if:
- // the value has only a single use
- // AND both instructions are in the same basic block.
- // AND the current instruction is not a PHI (because the incoming
- // value is conceptually in a predecessor block,
- // even though it may be in the same static block)
- //
- // (Note that if the value has only a single use (viz., `instr'),
- // the def of the value can be safely moved just before instr
- // and therefore it is safe to combine these two instructions.)
- //
- // In all other cases, the virtual register holding the value
- // is used directly, i.e., made a child of the instruction node.
- //
- InstrTreeNode* opTreeNode;
- if (isa<Instruction>(operand) && operand->hasOneUse() &&
- cast<Instruction>(operand)->getParent() == instr->getParent() &&
- instr->getOpcode() != Instruction::PHI &&
- instr->getOpcode() != Instruction::Call)
- {
- // Recursively create a treeNode for it.
- opTreeNode = buildTreeForInstruction((Instruction*)operand);
- } else if (Constant *CPV = dyn_cast<Constant>(operand)) {
- // Create a leaf node for a constant
- opTreeNode = new ConstantNode(CPV);
- } else {
- // Create a leaf node for the virtual register
- opTreeNode = new VRegNode(operand);
- }
-
- childArray[numChildren++] = opTreeNode;
- }
- }
-
- //--------------------------------------------------------------------
- // Add any selected operands as children in the tree.
- // Certain instructions can have more than 2 in some instances (viz.,
- // a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an
- // array or struct). Make the operands of every such instruction into
- // a right-leaning binary tree with the operand nodes at the leaves
- // and VRegList nodes as internal nodes.
- //--------------------------------------------------------------------
-
- InstrTreeNode *parent = treeNode;
-
- if (numChildren > 2) {
- unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
- assert(instrOpcode == Instruction::PHI ||
- instrOpcode == Instruction::Call ||
- instrOpcode == Instruction::Load ||
- instrOpcode == Instruction::Store ||
- instrOpcode == Instruction::GetElementPtr);
- }
-
- // Insert the first child as a direct child
- if (numChildren >= 1)
- setLeftChild(parent, childArray[0]);
-
- int n;
-
- // Create a list node for children 2 .. N-1, if any
- for (n = numChildren-1; n >= 2; n--) {
- // We have more than two children
- InstrTreeNode *listNode = new VRegListNode();
- setRightChild(parent, listNode);
- setLeftChild(listNode, childArray[numChildren - n]);
- parent = listNode;
- }
-
- // Now insert the last remaining child (if any).
- if (numChildren >= 2) {
- assert(n == 1);
- setRightChild(parent, childArray[numChildren - 1]);
- }
-
- delete [] childArray;
- return treeNode;
-}