summaryrefslogtreecommitdiff
path: root/mlir/test/Dialect/Linalg/transform-tile-and-fuse.mlir
diff options
context:
space:
mode:
Diffstat (limited to 'mlir/test/Dialect/Linalg/transform-tile-and-fuse.mlir')
-rw-r--r--mlir/test/Dialect/Linalg/transform-tile-and-fuse.mlir65
1 files changed, 63 insertions, 2 deletions
diff --git a/mlir/test/Dialect/Linalg/transform-tile-and-fuse.mlir b/mlir/test/Dialect/Linalg/transform-tile-and-fuse.mlir
index a2547d5973a5..1109950916ed 100644
--- a/mlir/test/Dialect/Linalg/transform-tile-and-fuse.mlir
+++ b/mlir/test/Dialect/Linalg/transform-tile-and-fuse.mlir
@@ -1,4 +1,4 @@
-// RUN: mlir-opt %s --test-transform-dialect-interpreter -canonicalize | FileCheck %s
+// RUN: mlir-opt %s --test-transform-dialect-interpreter --split-input-file -canonicalize | FileCheck %s
// This is a simple tile-and-fuse example with a single fusion group.
@@ -22,7 +22,7 @@ module {
{__producer__}
ins(%A, %B : tensor<?x?xf32>, tensor<?x?xf32>)
outs(%5 : tensor<?x?xf32>) -> tensor<?x?xf32>
- %7 = linalg.generic
+ %7 = linalg.generic
{__root__,
indexing_maps = [affine_map<(d0, d1) -> (d0)>,
affine_map<(d0, d1) -> (d0, d1)>,
@@ -56,3 +56,64 @@ module {
}
}
}
+
+// -----
+
+// Inverse the order of the payload ops passed to the tile_to_foreach_thread_op
+// op. Fusion should still work.
+
+module {
+ // CHECK: func @foo
+ // CHECK: scf.foreach_thread {{.*}} {
+ // CHECK: linalg.fill
+ // CHECK: linalg.matmul
+ // CHECK: linalg.generic
+ // CHECK: }
+ func.func @foo(%A: tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?xf32>,
+ %D: tensor<?x?xf32>, %sz0: index, %sz1: index)
+ -> tensor<?x?xf32>
+ {
+ %cst = arith.constant 0.000000e+00 : f32
+ %5 = linalg.fill
+ {__producer__}
+ ins(%cst : f32)
+ outs(%D : tensor<?x?xf32>) -> tensor<?x?xf32>
+ %6 = linalg.matmul
+ {__producer__}
+ ins(%A, %B : tensor<?x?xf32>, tensor<?x?xf32>)
+ outs(%5 : tensor<?x?xf32>) -> tensor<?x?xf32>
+ %7 = linalg.generic
+ {__root__,
+ indexing_maps = [affine_map<(d0, d1) -> (d0)>,
+ affine_map<(d0, d1) -> (d0, d1)>,
+ affine_map<(d0, d1) -> (d0, d1)>],
+ iterator_types = ["parallel", "parallel"]
+ }
+ ins(%C, %6 : tensor<?xf32>, tensor<?x?xf32>)
+ outs(%D : tensor<?x?xf32>) {
+ ^bb0(%arg2: f32, %arg3: f32, %arg4: f32):
+ %16 = arith.maxf %arg3, %cst : f32
+ %17 = arith.cmpf ogt, %arg2, %cst : f32
+ %18 = arith.select %17, %cst, %16 : f32
+ linalg.yield %18 : f32
+ } -> tensor<?x?xf32>
+ return %7 : tensor<?x?xf32>
+ }
+
+ transform.with_pdl_patterns {
+ ^bb0(%arg0: !pdl.operation):
+ transform.sequence %arg0 {
+ ^bb1(%arg1: !pdl.operation):
+ // Find the root and all producers.
+ %root = transform.structured.match attribute{"__root__"} in %arg1
+ %producers = transform.structured.match attribute{"__producer__"} in %arg1
+ %reversed_producers = transform.test_reverse_payload_ops %producers
+
+ // Tile the root.
+ %foreach_thread_op, %tiled_op = transform.structured.tile_to_foreach_thread_op %root num_threads [10, 20]
+
+ // Fuse all producers.
+ transform.structured.fuse_into_containing_op %reversed_producers into %foreach_thread_op
+ }
+ }
+}