summaryrefslogtreecommitdiff
path: root/release_23/include/llvm/ADT/APInt.h
diff options
context:
space:
mode:
Diffstat (limited to 'release_23/include/llvm/ADT/APInt.h')
-rw-r--r--release_23/include/llvm/ADT/APInt.h1432
1 files changed, 0 insertions, 1432 deletions
diff --git a/release_23/include/llvm/ADT/APInt.h b/release_23/include/llvm/ADT/APInt.h
deleted file mode 100644
index 49b243bf3465..000000000000
--- a/release_23/include/llvm/ADT/APInt.h
+++ /dev/null
@@ -1,1432 +0,0 @@
-//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a class to represent arbitrary precision integral
-// constant values and operations on them.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_APINT_H
-#define LLVM_APINT_H
-
-#include "llvm/Support/DataTypes.h"
-#include <cassert>
-#include <string>
-
-#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
-
-namespace llvm {
- class Serializer;
- class Deserializer;
- class FoldingSetNodeID;
-
- /* An unsigned host type used as a single part of a multi-part
- bignum. */
- typedef uint64_t integerPart;
-
- const unsigned int host_char_bit = 8;
- const unsigned int integerPartWidth = host_char_bit *
- static_cast<unsigned int>(sizeof(integerPart));
-
-//===----------------------------------------------------------------------===//
-// APInt Class
-//===----------------------------------------------------------------------===//
-
-/// APInt - This class represents arbitrary precision constant integral values.
-/// It is a functional replacement for common case unsigned integer type like
-/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
-/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
-/// than 64-bits of precision. APInt provides a variety of arithmetic operators
-/// and methods to manipulate integer values of any bit-width. It supports both
-/// the typical integer arithmetic and comparison operations as well as bitwise
-/// manipulation.
-///
-/// The class has several invariants worth noting:
-/// * All bit, byte, and word positions are zero-based.
-/// * Once the bit width is set, it doesn't change except by the Truncate,
-/// SignExtend, or ZeroExtend operations.
-/// * All binary operators must be on APInt instances of the same bit width.
-/// Attempting to use these operators on instances with different bit
-/// widths will yield an assertion.
-/// * The value is stored canonically as an unsigned value. For operations
-/// where it makes a difference, there are both signed and unsigned variants
-/// of the operation. For example, sdiv and udiv. However, because the bit
-/// widths must be the same, operations such as Mul and Add produce the same
-/// results regardless of whether the values are interpreted as signed or
-/// not.
-/// * In general, the class tries to follow the style of computation that LLVM
-/// uses in its IR. This simplifies its use for LLVM.
-///
-/// @brief Class for arbitrary precision integers.
-class APInt {
-
- uint32_t BitWidth; ///< The number of bits in this APInt.
-
- /// This union is used to store the integer value. When the
- /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
- union {
- uint64_t VAL; ///< Used to store the <= 64 bits integer value.
- uint64_t *pVal; ///< Used to store the >64 bits integer value.
- };
-
- /// This enum is used to hold the constants we needed for APInt.
- enum {
- /// Bits in a word
- APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) * 8,
- /// Byte size of a word
- APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
- };
-
- /// This constructor is used only internally for speed of construction of
- /// temporaries. It is unsafe for general use so it is not public.
- /// @brief Fast internal constructor
- APInt(uint64_t* val, uint32_t bits) : BitWidth(bits), pVal(val) { }
-
- /// @returns true if the number of bits <= 64, false otherwise.
- /// @brief Determine if this APInt just has one word to store value.
- bool isSingleWord() const {
- return BitWidth <= APINT_BITS_PER_WORD;
- }
-
- /// @returns the word position for the specified bit position.
- /// @brief Determine which word a bit is in.
- static uint32_t whichWord(uint32_t bitPosition) {
- return bitPosition / APINT_BITS_PER_WORD;
- }
-
- /// @returns the bit position in a word for the specified bit position
- /// in the APInt.
- /// @brief Determine which bit in a word a bit is in.
- static uint32_t whichBit(uint32_t bitPosition) {
- return bitPosition % APINT_BITS_PER_WORD;
- }
-
- /// This method generates and returns a uint64_t (word) mask for a single
- /// bit at a specific bit position. This is used to mask the bit in the
- /// corresponding word.
- /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
- /// @brief Get a single bit mask.
- static uint64_t maskBit(uint32_t bitPosition) {
- return 1ULL << whichBit(bitPosition);
- }
-
- /// This method is used internally to clear the to "N" bits in the high order
- /// word that are not used by the APInt. This is needed after the most
- /// significant word is assigned a value to ensure that those bits are
- /// zero'd out.
- /// @brief Clear unused high order bits
- APInt& clearUnusedBits() {
- // Compute how many bits are used in the final word
- uint32_t wordBits = BitWidth % APINT_BITS_PER_WORD;
- if (wordBits == 0)
- // If all bits are used, we want to leave the value alone. This also
- // avoids the undefined behavior of >> when the shift is the same size as
- // the word size (64).
- return *this;
-
- // Mask out the hight bits.
- uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
- if (isSingleWord())
- VAL &= mask;
- else
- pVal[getNumWords() - 1] &= mask;
- return *this;
- }
-
- /// @returns the corresponding word for the specified bit position.
- /// @brief Get the word corresponding to a bit position
- uint64_t getWord(uint32_t bitPosition) const {
- return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
- }
-
- /// This is used by the constructors that take string arguments.
- /// @brief Convert a char array into an APInt
- void fromString(uint32_t numBits, const char *strStart, uint32_t slen,
- uint8_t radix);
-
- /// This is used by the toString method to divide by the radix. It simply
- /// provides a more convenient form of divide for internal use since KnuthDiv
- /// has specific constraints on its inputs. If those constraints are not met
- /// then it provides a simpler form of divide.
- /// @brief An internal division function for dividing APInts.
- static void divide(const APInt LHS, uint32_t lhsWords,
- const APInt &RHS, uint32_t rhsWords,
- APInt *Quotient, APInt *Remainder);
-
-public:
- /// @name Constructors
- /// @{
- /// If isSigned is true then val is treated as if it were a signed value
- /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
- /// will be done. Otherwise, no sign extension occurs (high order bits beyond
- /// the range of val are zero filled).
- /// @param numBits the bit width of the constructed APInt
- /// @param val the initial value of the APInt
- /// @param isSigned how to treat signedness of val
- /// @brief Create a new APInt of numBits width, initialized as val.
- APInt(uint32_t numBits, uint64_t val, bool isSigned = false);
-
- /// Note that numWords can be smaller or larger than the corresponding bit
- /// width but any extraneous bits will be dropped.
- /// @param numBits the bit width of the constructed APInt
- /// @param numWords the number of words in bigVal
- /// @param bigVal a sequence of words to form the initial value of the APInt
- /// @brief Construct an APInt of numBits width, initialized as bigVal[].
- APInt(uint32_t numBits, uint32_t numWords, const uint64_t bigVal[]);
-
- /// This constructor interprets Val as a string in the given radix. The
- /// interpretation stops when the first charater that is not suitable for the
- /// radix is encountered. Acceptable radix values are 2, 8, 10 and 16. It is
- /// an error for the value implied by the string to require more bits than
- /// numBits.
- /// @param numBits the bit width of the constructed APInt
- /// @param val the string to be interpreted
- /// @param radix the radix of Val to use for the intepretation
- /// @brief Construct an APInt from a string representation.
- APInt(uint32_t numBits, const std::string& val, uint8_t radix);
-
- /// This constructor interprets the slen characters starting at StrStart as
- /// a string in the given radix. The interpretation stops when the first
- /// character that is not suitable for the radix is encountered. Acceptable
- /// radix values are 2, 8, 10 and 16. It is an error for the value implied by
- /// the string to require more bits than numBits.
- /// @param numBits the bit width of the constructed APInt
- /// @param strStart the start of the string to be interpreted
- /// @param slen the maximum number of characters to interpret
- /// @param radix the radix to use for the conversion
- /// @brief Construct an APInt from a string representation.
- APInt(uint32_t numBits, const char strStart[], uint32_t slen, uint8_t radix);
-
- /// Simply makes *this a copy of that.
- /// @brief Copy Constructor.
- APInt(const APInt& that);
-
- /// @brief Destructor.
- ~APInt();
-
- /// Default constructor that creates an uninitialized APInt. This is useful
- /// for object deserialization (pair this with the static method Read).
- explicit APInt() : BitWidth(1) {}
-
- /// Profile - Used to insert APInt objects, or objects that contain APInt
- /// objects, into FoldingSets.
- void Profile(FoldingSetNodeID& id) const;
-
- /// @brief Used by the Bitcode serializer to emit APInts to Bitcode.
- void Emit(Serializer& S) const;
-
- /// @brief Used by the Bitcode deserializer to deserialize APInts.
- void Read(Deserializer& D);
-
- /// @}
- /// @name Value Tests
- /// @{
- /// This tests the high bit of this APInt to determine if it is set.
- /// @returns true if this APInt is negative, false otherwise
- /// @brief Determine sign of this APInt.
- bool isNegative() const {
- return (*this)[BitWidth - 1];
- }
-
- /// This tests the high bit of the APInt to determine if it is unset.
- /// @brief Determine if this APInt Value is non-negative (>= 0)
- bool isNonNegative() const {
- return !isNegative();
- }
-
- /// This tests if the value of this APInt is positive (> 0). Note
- /// that 0 is not a positive value.
- /// @returns true if this APInt is positive.
- /// @brief Determine if this APInt Value is positive.
- bool isStrictlyPositive() const {
- return isNonNegative() && (*this) != 0;
- }
-
- /// This checks to see if the value has all bits of the APInt are set or not.
- /// @brief Determine if all bits are set
- bool isAllOnesValue() const {
- return countPopulation() == BitWidth;
- }
-
- /// This checks to see if the value of this APInt is the maximum unsigned
- /// value for the APInt's bit width.
- /// @brief Determine if this is the largest unsigned value.
- bool isMaxValue() const {
- return countPopulation() == BitWidth;
- }
-
- /// This checks to see if the value of this APInt is the maximum signed
- /// value for the APInt's bit width.
- /// @brief Determine if this is the largest signed value.
- bool isMaxSignedValue() const {
- return BitWidth == 1 ? VAL == 0 :
- !isNegative() && countPopulation() == BitWidth - 1;
- }
-
- /// This checks to see if the value of this APInt is the minimum unsigned
- /// value for the APInt's bit width.
- /// @brief Determine if this is the smallest unsigned value.
- bool isMinValue() const {
- return countPopulation() == 0;
- }
-
- /// This checks to see if the value of this APInt is the minimum signed
- /// value for the APInt's bit width.
- /// @brief Determine if this is the smallest signed value.
- bool isMinSignedValue() const {
- return BitWidth == 1 ? VAL == 1 :
- isNegative() && countPopulation() == 1;
- }
-
- /// @brief Check if this APInt has an N-bits unsigned integer value.
- bool isIntN(uint32_t N) const {
- assert(N && "N == 0 ???");
- if (isSingleWord()) {
- return VAL == (VAL & (~0ULL >> (64 - N)));
- } else {
- APInt Tmp(N, getNumWords(), pVal);
- return Tmp == (*this);
- }
- }
-
- /// @brief Check if this APInt has an N-bits signed integer value.
- bool isSignedIntN(uint32_t N) const {
- assert(N && "N == 0 ???");
- return getMinSignedBits() <= N;
- }
-
- /// @returns true if the argument APInt value is a power of two > 0.
- bool isPowerOf2() const;
-
- /// isSignBit - Return true if this is the value returned by getSignBit.
- bool isSignBit() const { return isMinSignedValue(); }
-
- /// This converts the APInt to a boolean value as a test against zero.
- /// @brief Boolean conversion function.
- bool getBoolValue() const {
- return *this != 0;
- }
-
- /// getLimitedValue - If this value is smaller than the specified limit,
- /// return it, otherwise return the limit value. This causes the value
- /// to saturate to the limit.
- uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
- return (getActiveBits() > 64 || getZExtValue() > Limit) ?
- Limit : getZExtValue();
- }
-
- /// @}
- /// @name Value Generators
- /// @{
- /// @brief Gets maximum unsigned value of APInt for specific bit width.
- static APInt getMaxValue(uint32_t numBits) {
- return APInt(numBits, 0).set();
- }
-
- /// @brief Gets maximum signed value of APInt for a specific bit width.
- static APInt getSignedMaxValue(uint32_t numBits) {
- return APInt(numBits, 0).set().clear(numBits - 1);
- }
-
- /// @brief Gets minimum unsigned value of APInt for a specific bit width.
- static APInt getMinValue(uint32_t numBits) {
- return APInt(numBits, 0);
- }
-
- /// @brief Gets minimum signed value of APInt for a specific bit width.
- static APInt getSignedMinValue(uint32_t numBits) {
- return APInt(numBits, 0).set(numBits - 1);
- }
-
- /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
- /// it helps code readability when we want to get a SignBit.
- /// @brief Get the SignBit for a specific bit width.
- static APInt getSignBit(uint32_t BitWidth) {
- return getSignedMinValue(BitWidth);
- }
-
- /// @returns the all-ones value for an APInt of the specified bit-width.
- /// @brief Get the all-ones value.
- static APInt getAllOnesValue(uint32_t numBits) {
- return APInt(numBits, 0).set();
- }
-
- /// @returns the '0' value for an APInt of the specified bit-width.
- /// @brief Get the '0' value.
- static APInt getNullValue(uint32_t numBits) {
- return APInt(numBits, 0);
- }
-
- /// Get an APInt with the same BitWidth as this APInt, just zero mask
- /// the low bits and right shift to the least significant bit.
- /// @returns the high "numBits" bits of this APInt.
- APInt getHiBits(uint32_t numBits) const;
-
- /// Get an APInt with the same BitWidth as this APInt, just zero mask
- /// the high bits.
- /// @returns the low "numBits" bits of this APInt.
- APInt getLoBits(uint32_t numBits) const;
-
- /// Constructs an APInt value that has a contiguous range of bits set. The
- /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
- /// bits will be zero. For example, with parameters(32, 0, 16) you would get
- /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
- /// example, with parameters (32, 28, 4), you would get 0xF000000F.
- /// @param numBits the intended bit width of the result
- /// @param loBit the index of the lowest bit set.
- /// @param hiBit the index of the highest bit set.
- /// @returns An APInt value with the requested bits set.
- /// @brief Get a value with a block of bits set.
- static APInt getBitsSet(uint32_t numBits, uint32_t loBit, uint32_t hiBit) {
- assert(hiBit <= numBits && "hiBit out of range");
- assert(loBit < numBits && "loBit out of range");
- if (hiBit < loBit)
- return getLowBitsSet(numBits, hiBit) |
- getHighBitsSet(numBits, numBits-loBit);
- return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
- }
-
- /// Constructs an APInt value that has the top hiBitsSet bits set.
- /// @param numBits the bitwidth of the result
- /// @param hiBitsSet the number of high-order bits set in the result.
- /// @brief Get a value with high bits set
- static APInt getHighBitsSet(uint32_t numBits, uint32_t hiBitsSet) {
- assert(hiBitsSet <= numBits && "Too many bits to set!");
- // Handle a degenerate case, to avoid shifting by word size
- if (hiBitsSet == 0)
- return APInt(numBits, 0);
- uint32_t shiftAmt = numBits - hiBitsSet;
- // For small values, return quickly
- if (numBits <= APINT_BITS_PER_WORD)
- return APInt(numBits, ~0ULL << shiftAmt);
- return (~APInt(numBits, 0)).shl(shiftAmt);
- }
-
- /// Constructs an APInt value that has the bottom loBitsSet bits set.
- /// @param numBits the bitwidth of the result
- /// @param loBitsSet the number of low-order bits set in the result.
- /// @brief Get a value with low bits set
- static APInt getLowBitsSet(uint32_t numBits, uint32_t loBitsSet) {
- assert(loBitsSet <= numBits && "Too many bits to set!");
- // Handle a degenerate case, to avoid shifting by word size
- if (loBitsSet == 0)
- return APInt(numBits, 0);
- if (loBitsSet == APINT_BITS_PER_WORD)
- return APInt(numBits, -1ULL);
- // For small values, return quickly
- if (numBits < APINT_BITS_PER_WORD)
- return APInt(numBits, (1ULL << loBitsSet) - 1);
- return (~APInt(numBits, 0)).lshr(numBits - loBitsSet);
- }
-
- /// The hash value is computed as the sum of the words and the bit width.
- /// @returns A hash value computed from the sum of the APInt words.
- /// @brief Get a hash value based on this APInt
- uint64_t getHashValue() const;
-
- /// This function returns a pointer to the internal storage of the APInt.
- /// This is useful for writing out the APInt in binary form without any
- /// conversions.
- const uint64_t* getRawData() const {
- if (isSingleWord())
- return &VAL;
- return &pVal[0];
- }
-
- /// @}
- /// @name Unary Operators
- /// @{
- /// @returns a new APInt value representing *this incremented by one
- /// @brief Postfix increment operator.
- const APInt operator++(int) {
- APInt API(*this);
- ++(*this);
- return API;
- }
-
- /// @returns *this incremented by one
- /// @brief Prefix increment operator.
- APInt& operator++();
-
- /// @returns a new APInt representing *this decremented by one.
- /// @brief Postfix decrement operator.
- const APInt operator--(int) {
- APInt API(*this);
- --(*this);
- return API;
- }
-
- /// @returns *this decremented by one.
- /// @brief Prefix decrement operator.
- APInt& operator--();
-
- /// Performs a bitwise complement operation on this APInt.
- /// @returns an APInt that is the bitwise complement of *this
- /// @brief Unary bitwise complement operator.
- APInt operator~() const;
-
- /// Negates *this using two's complement logic.
- /// @returns An APInt value representing the negation of *this.
- /// @brief Unary negation operator
- APInt operator-() const {
- return APInt(BitWidth, 0) - (*this);
- }
-
- /// Performs logical negation operation on this APInt.
- /// @returns true if *this is zero, false otherwise.
- /// @brief Logical negation operator.
- bool operator !() const;
-
- /// @}
- /// @name Assignment Operators
- /// @{
- /// @returns *this after assignment of RHS.
- /// @brief Copy assignment operator.
- APInt& operator=(const APInt& RHS);
-
- /// The RHS value is assigned to *this. If the significant bits in RHS exceed
- /// the bit width, the excess bits are truncated. If the bit width is larger
- /// than 64, the value is zero filled in the unspecified high order bits.
- /// @returns *this after assignment of RHS value.
- /// @brief Assignment operator.
- APInt& operator=(uint64_t RHS);
-
- /// Performs a bitwise AND operation on this APInt and RHS. The result is
- /// assigned to *this.
- /// @returns *this after ANDing with RHS.
- /// @brief Bitwise AND assignment operator.
- APInt& operator&=(const APInt& RHS);
-
- /// Performs a bitwise OR operation on this APInt and RHS. The result is
- /// assigned *this;
- /// @returns *this after ORing with RHS.
- /// @brief Bitwise OR assignment operator.
- APInt& operator|=(const APInt& RHS);
-
- /// Performs a bitwise XOR operation on this APInt and RHS. The result is
- /// assigned to *this.
- /// @returns *this after XORing with RHS.
- /// @brief Bitwise XOR assignment operator.
- APInt& operator^=(const APInt& RHS);
-
- /// Multiplies this APInt by RHS and assigns the result to *this.
- /// @returns *this
- /// @brief Multiplication assignment operator.
- APInt& operator*=(const APInt& RHS);
-
- /// Adds RHS to *this and assigns the result to *this.
- /// @returns *this
- /// @brief Addition assignment operator.
- APInt& operator+=(const APInt& RHS);
-
- /// Subtracts RHS from *this and assigns the result to *this.
- /// @returns *this
- /// @brief Subtraction assignment operator.
- APInt& operator-=(const APInt& RHS);
-
- /// Shifts *this left by shiftAmt and assigns the result to *this.
- /// @returns *this after shifting left by shiftAmt
- /// @brief Left-shift assignment function.
- APInt& operator<<=(uint32_t shiftAmt) {
- *this = shl(shiftAmt);
- return *this;
- }
-
- /// @}
- /// @name Binary Operators
- /// @{
- /// Performs a bitwise AND operation on *this and RHS.
- /// @returns An APInt value representing the bitwise AND of *this and RHS.
- /// @brief Bitwise AND operator.
- APInt operator&(const APInt& RHS) const;
- APInt And(const APInt& RHS) const {
- return this->operator&(RHS);
- }
-
- /// Performs a bitwise OR operation on *this and RHS.
- /// @returns An APInt value representing the bitwise OR of *this and RHS.
- /// @brief Bitwise OR operator.
- APInt operator|(const APInt& RHS) const;
- APInt Or(const APInt& RHS) const {
- return this->operator|(RHS);
- }
-
- /// Performs a bitwise XOR operation on *this and RHS.
- /// @returns An APInt value representing the bitwise XOR of *this and RHS.
- /// @brief Bitwise XOR operator.
- APInt operator^(const APInt& RHS) const;
- APInt Xor(const APInt& RHS) const {
- return this->operator^(RHS);
- }
-
- /// Multiplies this APInt by RHS and returns the result.
- /// @brief Multiplication operator.
- APInt operator*(const APInt& RHS) const;
-
- /// Adds RHS to this APInt and returns the result.
- /// @brief Addition operator.
- APInt operator+(const APInt& RHS) const;
- APInt operator+(uint64_t RHS) const {
- return (*this) + APInt(BitWidth, RHS);
- }
-
- /// Subtracts RHS from this APInt and returns the result.
- /// @brief Subtraction operator.
- APInt operator-(const APInt& RHS) const;
- APInt operator-(uint64_t RHS) const {
- return (*this) - APInt(BitWidth, RHS);
- }
-
- APInt operator<<(unsigned Bits) const {
- return shl(Bits);
- }
-
- APInt operator<<(const APInt &Bits) const {
- return shl(Bits);
- }
-
- /// Arithmetic right-shift this APInt by shiftAmt.
- /// @brief Arithmetic right-shift function.
- APInt ashr(uint32_t shiftAmt) const;
-
- /// Logical right-shift this APInt by shiftAmt.
- /// @brief Logical right-shift function.
- APInt lshr(uint32_t shiftAmt) const;
-
- /// Left-shift this APInt by shiftAmt.
- /// @brief Left-shift function.
- APInt shl(uint32_t shiftAmt) const;
-
- /// @brief Rotate left by rotateAmt.
- APInt rotl(uint32_t rotateAmt) const;
-
- /// @brief Rotate right by rotateAmt.
- APInt rotr(uint32_t rotateAmt) const;
-
- /// Arithmetic right-shift this APInt by shiftAmt.
- /// @brief Arithmetic right-shift function.
- APInt ashr(const APInt &shiftAmt) const;
-
- /// Logical right-shift this APInt by shiftAmt.
- /// @brief Logical right-shift function.
- APInt lshr(const APInt &shiftAmt) const;
-
- /// Left-shift this APInt by shiftAmt.
- /// @brief Left-shift function.
- APInt shl(const APInt &shiftAmt) const;
-
- /// @brief Rotate left by rotateAmt.
- APInt rotl(const APInt &rotateAmt) const;
-
- /// @brief Rotate right by rotateAmt.
- APInt rotr(const APInt &rotateAmt) const;
-
- /// Perform an unsigned divide operation on this APInt by RHS. Both this and
- /// RHS are treated as unsigned quantities for purposes of this division.
- /// @returns a new APInt value containing the division result
- /// @brief Unsigned division operation.
- APInt udiv(const APInt& RHS) const;
-
- /// Signed divide this APInt by APInt RHS.
- /// @brief Signed division function for APInt.
- APInt sdiv(const APInt& RHS) const {
- if (isNegative())
- if (RHS.isNegative())
- return (-(*this)).udiv(-RHS);
- else
- return -((-(*this)).udiv(RHS));
- else if (RHS.isNegative())
- return -(this->udiv(-RHS));
- return this->udiv(RHS);
- }
-
- /// Perform an unsigned remainder operation on this APInt with RHS being the
- /// divisor. Both this and RHS are treated as unsigned quantities for purposes
- /// of this operation. Note that this is a true remainder operation and not
- /// a modulo operation because the sign follows the sign of the dividend
- /// which is *this.
- /// @returns a new APInt value containing the remainder result
- /// @brief Unsigned remainder operation.
- APInt urem(const APInt& RHS) const;
-
- /// Signed remainder operation on APInt.
- /// @brief Function for signed remainder operation.
- APInt srem(const APInt& RHS) const {
- if (isNegative())
- if (RHS.isNegative())
- return -((-(*this)).urem(-RHS));
- else
- return -((-(*this)).urem(RHS));
- else if (RHS.isNegative())
- return this->urem(-RHS);
- return this->urem(RHS);
- }
-
- /// Sometimes it is convenient to divide two APInt values and obtain both
- /// the quotient and remainder. This function does both operations in the
- /// same computation making it a little more efficient.
- /// @brief Dual division/remainder interface.
- static void udivrem(const APInt &LHS, const APInt &RHS,
- APInt &Quotient, APInt &Remainder);
-
- static void sdivrem(const APInt &LHS, const APInt &RHS,
- APInt &Quotient, APInt &Remainder)
- {
- if (LHS.isNegative()) {
- if (RHS.isNegative())
- APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
- else
- APInt::udivrem(-LHS, RHS, Quotient, Remainder);
- Quotient = -Quotient;
- Remainder = -Remainder;
- } else if (RHS.isNegative()) {
- APInt::udivrem(LHS, -RHS, Quotient, Remainder);
- Quotient = -Quotient;
- } else {
- APInt::udivrem(LHS, RHS, Quotient, Remainder);
- }
- }
-
- /// @returns the bit value at bitPosition
- /// @brief Array-indexing support.
- bool operator[](uint32_t bitPosition) const;
-
- /// @}
- /// @name Comparison Operators
- /// @{
- /// Compares this APInt with RHS for the validity of the equality
- /// relationship.
- /// @brief Equality operator.
- bool operator==(const APInt& RHS) const;
-
- /// Compares this APInt with a uint64_t for the validity of the equality
- /// relationship.
- /// @returns true if *this == Val
- /// @brief Equality operator.
- bool operator==(uint64_t Val) const;
-
- /// Compares this APInt with RHS for the validity of the equality
- /// relationship.
- /// @returns true if *this == Val
- /// @brief Equality comparison.
- bool eq(const APInt &RHS) const {
- return (*this) == RHS;
- }
-
- /// Compares this APInt with RHS for the validity of the inequality
- /// relationship.
- /// @returns true if *this != Val
- /// @brief Inequality operator.
- bool operator!=(const APInt& RHS) const {
- return !((*this) == RHS);
- }
-
- /// Compares this APInt with a uint64_t for the validity of the inequality
- /// relationship.
- /// @returns true if *this != Val
- /// @brief Inequality operator.
- bool operator!=(uint64_t Val) const {
- return !((*this) == Val);
- }
-
- /// Compares this APInt with RHS for the validity of the inequality
- /// relationship.
- /// @returns true if *this != Val
- /// @brief Inequality comparison
- bool ne(const APInt &RHS) const {
- return !((*this) == RHS);
- }
-
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// the validity of the less-than relationship.
- /// @returns true if *this < RHS when both are considered unsigned.
- /// @brief Unsigned less than comparison
- bool ult(const APInt& RHS) const;
-
- /// Regards both *this and RHS as signed quantities and compares them for
- /// validity of the less-than relationship.
- /// @returns true if *this < RHS when both are considered signed.
- /// @brief Signed less than comparison
- bool slt(const APInt& RHS) const;
-
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// validity of the less-or-equal relationship.
- /// @returns true if *this <= RHS when both are considered unsigned.
- /// @brief Unsigned less or equal comparison
- bool ule(const APInt& RHS) const {
- return ult(RHS) || eq(RHS);
- }
-
- /// Regards both *this and RHS as signed quantities and compares them for
- /// validity of the less-or-equal relationship.
- /// @returns true if *this <= RHS when both are considered signed.
- /// @brief Signed less or equal comparison
- bool sle(const APInt& RHS) const {
- return slt(RHS) || eq(RHS);
- }
-
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// the validity of the greater-than relationship.
- /// @returns true if *this > RHS when both are considered unsigned.
- /// @brief Unsigned greather than comparison
- bool ugt(const APInt& RHS) const {
- return !ult(RHS) && !eq(RHS);
- }
-
- /// Regards both *this and RHS as signed quantities and compares them for
- /// the validity of the greater-than relationship.
- /// @returns true if *this > RHS when both are considered signed.
- /// @brief Signed greather than comparison
- bool sgt(const APInt& RHS) const {
- return !slt(RHS) && !eq(RHS);
- }
-
- /// Regards both *this and RHS as unsigned quantities and compares them for
- /// validity of the greater-or-equal relationship.
- /// @returns true if *this >= RHS when both are considered unsigned.
- /// @brief Unsigned greater or equal comparison
- bool uge(const APInt& RHS) const {
- return !ult(RHS);
- }
-
- /// Regards both *this and RHS as signed quantities and compares them for
- /// validity of the greater-or-equal relationship.
- /// @returns true if *this >= RHS when both are considered signed.
- /// @brief Signed greather or equal comparison
- bool sge(const APInt& RHS) const {
- return !slt(RHS);
- }
-
- /// This operation tests if there are any pairs of corresponding bits
- /// between this APInt and RHS that are both set.
- bool intersects(const APInt &RHS) const {
- return (*this & RHS) != 0;
- }
-
- /// @}
- /// @name Resizing Operators
- /// @{
- /// Truncate the APInt to a specified width. It is an error to specify a width
- /// that is greater than or equal to the current width.
- /// @brief Truncate to new width.
- APInt &trunc(uint32_t width);
-
- /// This operation sign extends the APInt to a new width. If the high order
- /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
- /// It is an error to specify a width that is less than or equal to the
- /// current width.
- /// @brief Sign extend to a new width.
- APInt &sext(uint32_t width);
-
- /// This operation zero extends the APInt to a new width. The high order bits
- /// are filled with 0 bits. It is an error to specify a width that is less
- /// than or equal to the current width.
- /// @brief Zero extend to a new width.
- APInt &zext(uint32_t width);
-
- /// Make this APInt have the bit width given by \p width. The value is sign
- /// extended, truncated, or left alone to make it that width.
- /// @brief Sign extend or truncate to width
- APInt &sextOrTrunc(uint32_t width);
-
- /// Make this APInt have the bit width given by \p width. The value is zero
- /// extended, truncated, or left alone to make it that width.
- /// @brief Zero extend or truncate to width
- APInt &zextOrTrunc(uint32_t width);
-
- /// @}
- /// @name Bit Manipulation Operators
- /// @{
- /// @brief Set every bit to 1.
- APInt& set();
-
- /// Set the given bit to 1 whose position is given as "bitPosition".
- /// @brief Set a given bit to 1.
- APInt& set(uint32_t bitPosition);
-
- /// @brief Set every bit to 0.
- APInt& clear();
-
- /// Set the given bit to 0 whose position is given as "bitPosition".
- /// @brief Set a given bit to 0.
- APInt& clear(uint32_t bitPosition);
-
- /// @brief Toggle every bit to its opposite value.
- APInt& flip();
-
- /// Toggle a given bit to its opposite value whose position is given
- /// as "bitPosition".
- /// @brief Toggles a given bit to its opposite value.
- APInt& flip(uint32_t bitPosition);
-
- /// @}
- /// @name Value Characterization Functions
- /// @{
-
- /// @returns the total number of bits.
- uint32_t getBitWidth() const {
- return BitWidth;
- }
-
- /// Here one word's bitwidth equals to that of uint64_t.
- /// @returns the number of words to hold the integer value of this APInt.
- /// @brief Get the number of words.
- uint32_t getNumWords() const {
- return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
- }
-
- /// This function returns the number of active bits which is defined as the
- /// bit width minus the number of leading zeros. This is used in several
- /// computations to see how "wide" the value is.
- /// @brief Compute the number of active bits in the value
- uint32_t getActiveBits() const {
- return BitWidth - countLeadingZeros();
- }
-
- /// This function returns the number of active words in the value of this
- /// APInt. This is used in conjunction with getActiveData to extract the raw
- /// value of the APInt.
- uint32_t getActiveWords() const {
- return whichWord(getActiveBits()-1) + 1;
- }
-
- /// Computes the minimum bit width for this APInt while considering it to be
- /// a signed (and probably negative) value. If the value is not negative,
- /// this function returns the same value as getActiveBits(). Otherwise, it
- /// returns the smallest bit width that will retain the negative value. For
- /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
- /// for -1, this function will always return 1.
- /// @brief Get the minimum bit size for this signed APInt
- uint32_t getMinSignedBits() const {
- if (isNegative())
- return BitWidth - countLeadingOnes() + 1;
- return getActiveBits()+1;
- }
-
- /// This method attempts to return the value of this APInt as a zero extended
- /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
- /// uint64_t. Otherwise an assertion will result.
- /// @brief Get zero extended value
- uint64_t getZExtValue() const {
- if (isSingleWord())
- return VAL;
- assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
- return pVal[0];
- }
-
- /// This method attempts to return the value of this APInt as a sign extended
- /// int64_t. The bit width must be <= 64 or the value must fit within an
- /// int64_t. Otherwise an assertion will result.
- /// @brief Get sign extended value
- int64_t getSExtValue() const {
- if (isSingleWord())
- return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
- (APINT_BITS_PER_WORD - BitWidth);
- assert(getActiveBits() <= 64 && "Too many bits for int64_t");
- return int64_t(pVal[0]);
- }
-
- /// This method determines how many bits are required to hold the APInt
- /// equivalent of the string given by \p str of length \p slen.
- /// @brief Get bits required for string value.
- static uint32_t getBitsNeeded(const char* str, uint32_t slen, uint8_t radix);
-
- /// countLeadingZeros - This function is an APInt version of the
- /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
- /// of zeros from the most significant bit to the first one bit.
- /// @returns BitWidth if the value is zero.
- /// @returns the number of zeros from the most significant bit to the first
- /// one bits.
- uint32_t countLeadingZeros() const;
-
- /// countLeadingOnes - This function is an APInt version of the
- /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
- /// of ones from the most significant bit to the first zero bit.
- /// @returns 0 if the high order bit is not set
- /// @returns the number of 1 bits from the most significant to the least
- /// @brief Count the number of leading one bits.
- uint32_t countLeadingOnes() const;
-
- /// countTrailingZeros - This function is an APInt version of the
- /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
- /// the number of zeros from the least significant bit to the first set bit.
- /// @returns BitWidth if the value is zero.
- /// @returns the number of zeros from the least significant bit to the first
- /// one bit.
- /// @brief Count the number of trailing zero bits.
- uint32_t countTrailingZeros() const;
-
- /// countTrailingOnes - This function is an APInt version of the
- /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
- /// the number of ones from the least significant bit to the first zero bit.
- /// @returns BitWidth if the value is all ones.
- /// @returns the number of ones from the least significant bit to the first
- /// zero bit.
- /// @brief Count the number of trailing one bits.
- uint32_t countTrailingOnes() const;
-
- /// countPopulation - This function is an APInt version of the
- /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
- /// of 1 bits in the APInt value.
- /// @returns 0 if the value is zero.
- /// @returns the number of set bits.
- /// @brief Count the number of bits set.
- uint32_t countPopulation() const;
-
- /// @}
- /// @name Conversion Functions
- /// @{
-
- /// This is used internally to convert an APInt to a string.
- /// @brief Converts an APInt to a std::string
- std::string toString(uint8_t radix, bool wantSigned) const;
-
- /// Considers the APInt to be unsigned and converts it into a string in the
- /// radix given. The radix can be 2, 8, 10 or 16.
- /// @returns a character interpretation of the APInt
- /// @brief Convert unsigned APInt to string representation.
- std::string toStringUnsigned(uint8_t radix = 10) const {
- return toString(radix, false);
- }
-
- /// Considers the APInt to be unsigned and converts it into a string in the
- /// radix given. The radix can be 2, 8, 10 or 16.
- /// @returns a character interpretation of the APInt
- /// @brief Convert unsigned APInt to string representation.
- std::string toStringSigned(uint8_t radix = 10) const {
- return toString(radix, true);
- }
-
- /// @returns a byte-swapped representation of this APInt Value.
- APInt byteSwap() const;
-
- /// @brief Converts this APInt to a double value.
- double roundToDouble(bool isSigned) const;
-
- /// @brief Converts this unsigned APInt to a double value.
- double roundToDouble() const {
- return roundToDouble(false);
- }
-
- /// @brief Converts this signed APInt to a double value.
- double signedRoundToDouble() const {
- return roundToDouble(true);
- }
-
- /// The conversion does not do a translation from integer to double, it just
- /// re-interprets the bits as a double. Note that it is valid to do this on
- /// any bit width. Exactly 64 bits will be translated.
- /// @brief Converts APInt bits to a double
- double bitsToDouble() const {
- union {
- uint64_t I;
- double D;
- } T;
- T.I = (isSingleWord() ? VAL : pVal[0]);
- return T.D;
- }
-
- /// The conversion does not do a translation from integer to float, it just
- /// re-interprets the bits as a float. Note that it is valid to do this on
- /// any bit width. Exactly 32 bits will be translated.
- /// @brief Converts APInt bits to a double
- float bitsToFloat() const {
- union {
- uint32_t I;
- float F;
- } T;
- T.I = uint32_t((isSingleWord() ? VAL : pVal[0]));
- return T.F;
- }
-
- /// The conversion does not do a translation from double to integer, it just
- /// re-interprets the bits of the double. Note that it is valid to do this on
- /// any bit width but bits from V may get truncated.
- /// @brief Converts a double to APInt bits.
- APInt& doubleToBits(double V) {
- union {
- uint64_t I;
- double D;
- } T;
- T.D = V;
- if (isSingleWord())
- VAL = T.I;
- else
- pVal[0] = T.I;
- return clearUnusedBits();
- }
-
- /// The conversion does not do a translation from float to integer, it just
- /// re-interprets the bits of the float. Note that it is valid to do this on
- /// any bit width but bits from V may get truncated.
- /// @brief Converts a float to APInt bits.
- APInt& floatToBits(float V) {
- union {
- uint32_t I;
- float F;
- } T;
- T.F = V;
- if (isSingleWord())
- VAL = T.I;
- else
- pVal[0] = T.I;
- return clearUnusedBits();
- }
-
- /// @}
- /// @name Mathematics Operations
- /// @{
-
- /// @returns the floor log base 2 of this APInt.
- uint32_t logBase2() const {
- return BitWidth - 1 - countLeadingZeros();
- }
-
- /// @returns the log base 2 of this APInt if its an exact power of two, -1
- /// otherwise
- int32_t exactLogBase2() const {
- if (!isPowerOf2())
- return -1;
- return logBase2();
- }
-
- /// @brief Compute the square root
- APInt sqrt() const;
-
- /// If *this is < 0 then return -(*this), otherwise *this;
- /// @brief Get the absolute value;
- APInt abs() const {
- if (isNegative())
- return -(*this);
- return *this;
- }
-
- /// @}
-
- /// @}
- /// @name Building-block Operations for APInt and APFloat
- /// @{
-
- // These building block operations operate on a representation of
- // arbitrary precision, two's-complement, bignum integer values.
- // They should be sufficient to implement APInt and APFloat bignum
- // requirements. Inputs are generally a pointer to the base of an
- // array of integer parts, representing an unsigned bignum, and a
- // count of how many parts there are.
-
- /// Sets the least significant part of a bignum to the input value,
- /// and zeroes out higher parts. */
- static void tcSet(integerPart *, integerPart, unsigned int);
-
- /// Assign one bignum to another.
- static void tcAssign(integerPart *, const integerPart *, unsigned int);
-
- /// Returns true if a bignum is zero, false otherwise.
- static bool tcIsZero(const integerPart *, unsigned int);
-
- /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
- static int tcExtractBit(const integerPart *, unsigned int bit);
-
- /// Copy the bit vector of width srcBITS from SRC, starting at bit
- /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
- /// becomes the least significant bit of DST. All high bits above
- /// srcBITS in DST are zero-filled.
- static void tcExtract(integerPart *, unsigned int dstCount, const integerPart *,
- unsigned int srcBits, unsigned int srcLSB);
-
- /// Set the given bit of a bignum. Zero-based.
- static void tcSetBit(integerPart *, unsigned int bit);
-
- /// Returns the bit number of the least or most significant set bit
- /// of a number. If the input number has no bits set -1U is
- /// returned.
- static unsigned int tcLSB(const integerPart *, unsigned int);
- static unsigned int tcMSB(const integerPart *, unsigned int);
-
- /// Negate a bignum in-place.
- static void tcNegate(integerPart *, unsigned int);
-
- /// DST += RHS + CARRY where CARRY is zero or one. Returns the
- /// carry flag.
- static integerPart tcAdd(integerPart *, const integerPart *,
- integerPart carry, unsigned);
-
- /// DST -= RHS + CARRY where CARRY is zero or one. Returns the
- /// carry flag.
- static integerPart tcSubtract(integerPart *, const integerPart *,
- integerPart carry, unsigned);
-
- /// DST += SRC * MULTIPLIER + PART if add is true
- /// DST = SRC * MULTIPLIER + PART if add is false
- ///
- /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
- /// they must start at the same point, i.e. DST == SRC.
- ///
- /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
- /// returned. Otherwise DST is filled with the least significant
- /// DSTPARTS parts of the result, and if all of the omitted higher
- /// parts were zero return zero, otherwise overflow occurred and
- /// return one.
- static int tcMultiplyPart(integerPart *dst, const integerPart *src,
- integerPart multiplier, integerPart carry,
- unsigned int srcParts, unsigned int dstParts,
- bool add);
-
- /// DST = LHS * RHS, where DST has the same width as the operands
- /// and is filled with the least significant parts of the result.
- /// Returns one if overflow occurred, otherwise zero. DST must be
- /// disjoint from both operands.
- static int tcMultiply(integerPart *, const integerPart *,
- const integerPart *, unsigned);
-
- /// DST = LHS * RHS, where DST has width the sum of the widths of
- /// the operands. No overflow occurs. DST must be disjoint from
- /// both operands. Returns the number of parts required to hold the
- /// result.
- static unsigned int tcFullMultiply(integerPart *, const integerPart *,
- const integerPart *, unsigned, unsigned);
-
- /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
- /// Otherwise set LHS to LHS / RHS with the fractional part
- /// discarded, set REMAINDER to the remainder, return zero. i.e.
- ///
- /// OLD_LHS = RHS * LHS + REMAINDER
- ///
- /// SCRATCH is a bignum of the same size as the operands and result
- /// for use by the routine; its contents need not be initialized
- /// and are destroyed. LHS, REMAINDER and SCRATCH must be
- /// distinct.
- static int tcDivide(integerPart *lhs, const integerPart *rhs,
- integerPart *remainder, integerPart *scratch,
- unsigned int parts);
-
- /// Shift a bignum left COUNT bits. Shifted in bits are zero.
- /// There are no restrictions on COUNT.
- static void tcShiftLeft(integerPart *, unsigned int parts,
- unsigned int count);
-
- /// Shift a bignum right COUNT bits. Shifted in bits are zero.
- /// There are no restrictions on COUNT.
- static void tcShiftRight(integerPart *, unsigned int parts,
- unsigned int count);
-
- /// The obvious AND, OR and XOR and complement operations.
- static void tcAnd(integerPart *, const integerPart *, unsigned int);
- static void tcOr(integerPart *, const integerPart *, unsigned int);
- static void tcXor(integerPart *, const integerPart *, unsigned int);
- static void tcComplement(integerPart *, unsigned int);
-
- /// Comparison (unsigned) of two bignums.
- static int tcCompare(const integerPart *, const integerPart *,
- unsigned int);
-
- /// Increment a bignum in-place. Return the carry flag.
- static integerPart tcIncrement(integerPart *, unsigned int);
-
- /// Set the least significant BITS and clear the rest.
- static void tcSetLeastSignificantBits(integerPart *, unsigned int,
- unsigned int bits);
-
- /// @brief debug method
- void dump() const;
-
- /// @}
-};
-
-inline bool operator==(uint64_t V1, const APInt& V2) {
- return V2 == V1;
-}
-
-inline bool operator!=(uint64_t V1, const APInt& V2) {
- return V2 != V1;
-}
-
-namespace APIntOps {
-
-/// @brief Determine the smaller of two APInts considered to be signed.
-inline APInt smin(const APInt &A, const APInt &B) {
- return A.slt(B) ? A : B;
-}
-
-/// @brief Determine the larger of two APInts considered to be signed.
-inline APInt smax(const APInt &A, const APInt &B) {
- return A.sgt(B) ? A : B;
-}
-
-/// @brief Determine the smaller of two APInts considered to be signed.
-inline APInt umin(const APInt &A, const APInt &B) {
- return A.ult(B) ? A : B;
-}
-
-/// @brief Determine the larger of two APInts considered to be unsigned.
-inline APInt umax(const APInt &A, const APInt &B) {
- return A.ugt(B) ? A : B;
-}
-
-/// @brief Check if the specified APInt has a N-bits unsigned integer value.
-inline bool isIntN(uint32_t N, const APInt& APIVal) {
- return APIVal.isIntN(N);
-}
-
-/// @brief Check if the specified APInt has a N-bits signed integer value.
-inline bool isSignedIntN(uint32_t N, const APInt& APIVal) {
- return APIVal.isSignedIntN(N);
-}
-
-/// @returns true if the argument APInt value is a sequence of ones
-/// starting at the least significant bit with the remainder zero.
-inline bool isMask(uint32_t numBits, const APInt& APIVal) {
- return APIVal.getBoolValue() && ((APIVal + APInt(numBits,1)) & APIVal) == 0;
-}
-
-/// @returns true if the argument APInt value contains a sequence of ones
-/// with the remainder zero.
-inline bool isShiftedMask(uint32_t numBits, const APInt& APIVal) {
- return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
-}
-
-/// @returns a byte-swapped representation of the specified APInt Value.
-inline APInt byteSwap(const APInt& APIVal) {
- return APIVal.byteSwap();
-}
-
-/// @returns the floor log base 2 of the specified APInt value.
-inline uint32_t logBase2(const APInt& APIVal) {
- return APIVal.logBase2();
-}
-
-/// GreatestCommonDivisor - This function returns the greatest common
-/// divisor of the two APInt values using Enclid's algorithm.
-/// @returns the greatest common divisor of Val1 and Val2
-/// @brief Compute GCD of two APInt values.
-APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
-
-/// Treats the APInt as an unsigned value for conversion purposes.
-/// @brief Converts the given APInt to a double value.
-inline double RoundAPIntToDouble(const APInt& APIVal) {
- return APIVal.roundToDouble();
-}
-
-/// Treats the APInt as a signed value for conversion purposes.
-/// @brief Converts the given APInt to a double value.
-inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
- return APIVal.signedRoundToDouble();
-}
-
-/// @brief Converts the given APInt to a float vlalue.
-inline float RoundAPIntToFloat(const APInt& APIVal) {
- return float(RoundAPIntToDouble(APIVal));
-}
-
-/// Treast the APInt as a signed value for conversion purposes.
-/// @brief Converts the given APInt to a float value.
-inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
- return float(APIVal.signedRoundToDouble());
-}
-
-/// RoundDoubleToAPInt - This function convert a double value to an APInt value.
-/// @brief Converts the given double value into a APInt.
-APInt RoundDoubleToAPInt(double Double, uint32_t width);
-
-/// RoundFloatToAPInt - Converts a float value into an APInt value.
-/// @brief Converts a float value into a APInt.
-inline APInt RoundFloatToAPInt(float Float, uint32_t width) {
- return RoundDoubleToAPInt(double(Float), width);
-}
-
-/// Arithmetic right-shift the APInt by shiftAmt.
-/// @brief Arithmetic right-shift function.
-inline APInt ashr(const APInt& LHS, uint32_t shiftAmt) {
- return LHS.ashr(shiftAmt);
-}
-
-/// Logical right-shift the APInt by shiftAmt.
-/// @brief Logical right-shift function.
-inline APInt lshr(const APInt& LHS, uint32_t shiftAmt) {
- return LHS.lshr(shiftAmt);
-}
-
-/// Left-shift the APInt by shiftAmt.
-/// @brief Left-shift function.
-inline APInt shl(const APInt& LHS, uint32_t shiftAmt) {
- return LHS.shl(shiftAmt);
-}
-
-/// Signed divide APInt LHS by APInt RHS.
-/// @brief Signed division function for APInt.
-inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
- return LHS.sdiv(RHS);
-}
-
-/// Unsigned divide APInt LHS by APInt RHS.
-/// @brief Unsigned division function for APInt.
-inline APInt udiv(const APInt& LHS, const APInt& RHS) {
- return LHS.udiv(RHS);
-}
-
-/// Signed remainder operation on APInt.
-/// @brief Function for signed remainder operation.
-inline APInt srem(const APInt& LHS, const APInt& RHS) {
- return LHS.srem(RHS);
-}
-
-/// Unsigned remainder operation on APInt.
-/// @brief Function for unsigned remainder operation.
-inline APInt urem(const APInt& LHS, const APInt& RHS) {
- return LHS.urem(RHS);
-}
-
-/// Performs multiplication on APInt values.
-/// @brief Function for multiplication operation.
-inline APInt mul(const APInt& LHS, const APInt& RHS) {
- return LHS * RHS;
-}
-
-/// Performs addition on APInt values.
-/// @brief Function for addition operation.
-inline APInt add(const APInt& LHS, const APInt& RHS) {
- return LHS + RHS;
-}
-
-/// Performs subtraction on APInt values.
-/// @brief Function for subtraction operation.
-inline APInt sub(const APInt& LHS, const APInt& RHS) {
- return LHS - RHS;
-}
-
-/// Performs bitwise AND operation on APInt LHS and
-/// APInt RHS.
-/// @brief Bitwise AND function for APInt.
-inline APInt And(const APInt& LHS, const APInt& RHS) {
- return LHS & RHS;
-}
-
-/// Performs bitwise OR operation on APInt LHS and APInt RHS.
-/// @brief Bitwise OR function for APInt.
-inline APInt Or(const APInt& LHS, const APInt& RHS) {
- return LHS | RHS;
-}
-
-/// Performs bitwise XOR operation on APInt.
-/// @brief Bitwise XOR function for APInt.
-inline APInt Xor(const APInt& LHS, const APInt& RHS) {
- return LHS ^ RHS;
-}
-
-/// Performs a bitwise complement operation on APInt.
-/// @brief Bitwise complement function.
-inline APInt Not(const APInt& APIVal) {
- return ~APIVal;
-}
-
-} // End of APIntOps namespace
-
-} // End of llvm namespace
-
-#endif