summaryrefslogtreecommitdiff
path: root/release_23/include/llvm/Analysis/Dominators.h
diff options
context:
space:
mode:
Diffstat (limited to 'release_23/include/llvm/Analysis/Dominators.h')
-rw-r--r--release_23/include/llvm/Analysis/Dominators.h966
1 files changed, 0 insertions, 966 deletions
diff --git a/release_23/include/llvm/Analysis/Dominators.h b/release_23/include/llvm/Analysis/Dominators.h
deleted file mode 100644
index 6ce3260b8f52..000000000000
--- a/release_23/include/llvm/Analysis/Dominators.h
+++ /dev/null
@@ -1,966 +0,0 @@
-//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the following classes:
-// 1. DominatorTree: Represent dominators as an explicit tree structure.
-// 2. DominanceFrontier: Calculate and hold the dominance frontier for a
-// function.
-//
-// These data structures are listed in increasing order of complexity. It
-// takes longer to calculate the dominator frontier, for example, than the
-// DominatorTree mapping.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ANALYSIS_DOMINATORS_H
-#define LLVM_ANALYSIS_DOMINATORS_H
-
-#include "llvm/Pass.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Function.h"
-#include "llvm/Instruction.h"
-#include "llvm/Instructions.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/GraphTraits.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/Compiler.h"
-#include <algorithm>
-#include <map>
-#include <set>
-
-namespace llvm {
-
-//===----------------------------------------------------------------------===//
-/// DominatorBase - Base class that other, more interesting dominator analyses
-/// inherit from.
-///
-template <class NodeT>
-class DominatorBase {
-protected:
- std::vector<NodeT*> Roots;
- const bool IsPostDominators;
- inline explicit DominatorBase(bool isPostDom) :
- Roots(), IsPostDominators(isPostDom) {}
-public:
-
- /// getRoots - Return the root blocks of the current CFG. This may include
- /// multiple blocks if we are computing post dominators. For forward
- /// dominators, this will always be a single block (the entry node).
- ///
- inline const std::vector<NodeT*> &getRoots() const { return Roots; }
-
- /// isPostDominator - Returns true if analysis based of postdoms
- ///
- bool isPostDominator() const { return IsPostDominators; }
-};
-
-
-//===----------------------------------------------------------------------===//
-// DomTreeNode - Dominator Tree Node
-template<class NodeT> class DominatorTreeBase;
-struct PostDominatorTree;
-class MachineBasicBlock;
-
-template <class NodeT>
-class DomTreeNodeBase {
- NodeT *TheBB;
- DomTreeNodeBase<NodeT> *IDom;
- std::vector<DomTreeNodeBase<NodeT> *> Children;
- int DFSNumIn, DFSNumOut;
-
- template<class N> friend class DominatorTreeBase;
- friend struct PostDominatorTree;
-public:
- typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
- typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
- const_iterator;
-
- iterator begin() { return Children.begin(); }
- iterator end() { return Children.end(); }
- const_iterator begin() const { return Children.begin(); }
- const_iterator end() const { return Children.end(); }
-
- NodeT *getBlock() const { return TheBB; }
- DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
- const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
- return Children;
- }
-
- DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
- : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
-
- DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
- Children.push_back(C);
- return C;
- }
-
- size_t getNumChildren() const {
- return Children.size();
- }
-
- void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
- assert(IDom && "No immediate dominator?");
- if (IDom != NewIDom) {
- typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
- std::find(IDom->Children.begin(), IDom->Children.end(), this);
- assert(I != IDom->Children.end() &&
- "Not in immediate dominator children set!");
- // I am no longer your child...
- IDom->Children.erase(I);
-
- // Switch to new dominator
- IDom = NewIDom;
- IDom->Children.push_back(this);
- }
- }
-
- /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
- /// not call them.
- unsigned getDFSNumIn() const { return DFSNumIn; }
- unsigned getDFSNumOut() const { return DFSNumOut; }
-private:
- // Return true if this node is dominated by other. Use this only if DFS info
- // is valid.
- bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
- return this->DFSNumIn >= other->DFSNumIn &&
- this->DFSNumOut <= other->DFSNumOut;
- }
-};
-
-EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
-EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
-
-template<class NodeT>
-static std::ostream &operator<<(std::ostream &o,
- const DomTreeNodeBase<NodeT> *Node) {
- if (Node->getBlock())
- WriteAsOperand(o, Node->getBlock(), false);
- else
- o << " <<exit node>>";
-
- o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
-
- return o << "\n";
-}
-
-template<class NodeT>
-static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, std::ostream &o,
- unsigned Lev) {
- o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
- for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
- E = N->end(); I != E; ++I)
- PrintDomTree<NodeT>(*I, o, Lev+1);
-}
-
-typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
-
-//===----------------------------------------------------------------------===//
-/// DominatorTree - Calculate the immediate dominator tree for a function.
-///
-
-template<class FuncT, class N>
-void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
- FuncT& F);
-
-template<class NodeT>
-class DominatorTreeBase : public DominatorBase<NodeT> {
-protected:
- typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
- DomTreeNodeMapType DomTreeNodes;
- DomTreeNodeBase<NodeT> *RootNode;
-
- bool DFSInfoValid;
- unsigned int SlowQueries;
- // Information record used during immediate dominators computation.
- struct InfoRec {
- unsigned DFSNum;
- unsigned Semi;
- unsigned Size;
- NodeT *Label, *Child;
- unsigned Parent, Ancestor;
-
- std::vector<NodeT*> Bucket;
-
- InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0),
- Ancestor(0) {}
- };
-
- DenseMap<NodeT*, NodeT*> IDoms;
-
- // Vertex - Map the DFS number to the BasicBlock*
- std::vector<NodeT*> Vertex;
-
- // Info - Collection of information used during the computation of idoms.
- DenseMap<NodeT*, InfoRec> Info;
-
- void reset() {
- for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
- E = DomTreeNodes.end(); I != E; ++I)
- delete I->second;
- DomTreeNodes.clear();
- IDoms.clear();
- this->Roots.clear();
- Vertex.clear();
- RootNode = 0;
- }
-
- // NewBB is split and now it has one successor. Update dominator tree to
- // reflect this change.
- template<class N, class GraphT>
- void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
- typename GraphT::NodeType* NewBB) {
- assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1
- && "NewBB should have a single successor!");
- typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
-
- std::vector<typename GraphT::NodeType*> PredBlocks;
- for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
- GraphTraits<Inverse<N> >::child_begin(NewBB),
- PE = GraphTraits<Inverse<N> >::child_end(NewBB); PI != PE; ++PI)
- PredBlocks.push_back(*PI);
-
- assert(!PredBlocks.empty() && "No predblocks??");
-
- // The newly inserted basic block will dominate existing basic blocks iff the
- // PredBlocks dominate all of the non-pred blocks. If all predblocks dominate
- // the non-pred blocks, then they all must be the same block!
- //
- bool NewBBDominatesNewBBSucc = true;
- {
- typename GraphT::NodeType* OnePred = PredBlocks[0];
- size_t i = 1, e = PredBlocks.size();
- for (i = 1; !DT.isReachableFromEntry(OnePred); ++i) {
- assert(i != e && "Didn't find reachable pred?");
- OnePred = PredBlocks[i];
- }
-
- for (; i != e; ++i)
- if (PredBlocks[i] != OnePred && DT.isReachableFromEntry(OnePred)) {
- NewBBDominatesNewBBSucc = false;
- break;
- }
-
- if (NewBBDominatesNewBBSucc)
- for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
- GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
- E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
- if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI)) {
- NewBBDominatesNewBBSucc = false;
- break;
- }
- }
-
- // The other scenario where the new block can dominate its successors are when
- // all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
- // already.
- if (!NewBBDominatesNewBBSucc) {
- NewBBDominatesNewBBSucc = true;
- for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
- GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
- E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
- if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI)) {
- NewBBDominatesNewBBSucc = false;
- break;
- }
- }
-
- // Find NewBB's immediate dominator and create new dominator tree node for
- // NewBB.
- NodeT *NewBBIDom = 0;
- unsigned i = 0;
- for (i = 0; i < PredBlocks.size(); ++i)
- if (DT.isReachableFromEntry(PredBlocks[i])) {
- NewBBIDom = PredBlocks[i];
- break;
- }
- assert(i != PredBlocks.size() && "No reachable preds?");
- for (i = i + 1; i < PredBlocks.size(); ++i) {
- if (DT.isReachableFromEntry(PredBlocks[i]))
- NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
- }
- assert(NewBBIDom && "No immediate dominator found??");
-
- // Create the new dominator tree node... and set the idom of NewBB.
- DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
-
- // If NewBB strictly dominates other blocks, then it is now the immediate
- // dominator of NewBBSucc. Update the dominator tree as appropriate.
- if (NewBBDominatesNewBBSucc) {
- DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
- DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
- }
- }
-
-public:
- explicit DominatorTreeBase(bool isPostDom)
- : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
- virtual ~DominatorTreeBase() { reset(); }
-
- // FIXME: Should remove this
- virtual bool runOnFunction(Function &F) { return false; }
-
- virtual void releaseMemory() { reset(); }
-
- /// getNode - return the (Post)DominatorTree node for the specified basic
- /// block. This is the same as using operator[] on this class.
- ///
- inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
- typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
- return I != DomTreeNodes.end() ? I->second : 0;
- }
-
- /// getRootNode - This returns the entry node for the CFG of the function. If
- /// this tree represents the post-dominance relations for a function, however,
- /// this root may be a node with the block == NULL. This is the case when
- /// there are multiple exit nodes from a particular function. Consumers of
- /// post-dominance information must be capable of dealing with this
- /// possibility.
- ///
- DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
- const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
-
- /// properlyDominates - Returns true iff this dominates N and this != N.
- /// Note that this is not a constant time operation!
- ///
- bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
- DomTreeNodeBase<NodeT> *B) const {
- if (A == 0 || B == 0) return false;
- return dominatedBySlowTreeWalk(A, B);
- }
-
- inline bool properlyDominates(NodeT *A, NodeT *B) {
- return properlyDominates(getNode(A), getNode(B));
- }
-
- bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
- const DomTreeNodeBase<NodeT> *B) const {
- const DomTreeNodeBase<NodeT> *IDom;
- if (A == 0 || B == 0) return false;
- while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
- B = IDom; // Walk up the tree
- return IDom != 0;
- }
-
-
- /// isReachableFromEntry - Return true if A is dominated by the entry
- /// block of the function containing it.
- bool isReachableFromEntry(NodeT* A) {
- assert (!this->isPostDominator()
- && "This is not implemented for post dominators");
- return dominates(&A->getParent()->front(), A);
- }
-
- /// dominates - Returns true iff A dominates B. Note that this is not a
- /// constant time operation!
- ///
- inline bool dominates(const DomTreeNodeBase<NodeT> *A,
- DomTreeNodeBase<NodeT> *B) {
- if (B == A)
- return true; // A node trivially dominates itself.
-
- if (A == 0 || B == 0)
- return false;
-
- if (DFSInfoValid)
- return B->DominatedBy(A);
-
- // If we end up with too many slow queries, just update the
- // DFS numbers on the theory that we are going to keep querying.
- SlowQueries++;
- if (SlowQueries > 32) {
- updateDFSNumbers();
- return B->DominatedBy(A);
- }
-
- return dominatedBySlowTreeWalk(A, B);
- }
-
- inline bool dominates(NodeT *A, NodeT *B) {
- if (A == B)
- return true;
-
- return dominates(getNode(A), getNode(B));
- }
-
- NodeT *getRoot() const {
- assert(this->Roots.size() == 1 && "Should always have entry node!");
- return this->Roots[0];
- }
-
- /// findNearestCommonDominator - Find nearest common dominator basic block
- /// for basic block A and B. If there is no such block then return NULL.
- NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
-
- assert (!this->isPostDominator()
- && "This is not implemented for post dominators");
- assert (A->getParent() == B->getParent()
- && "Two blocks are not in same function");
-
- // If either A or B is a entry block then it is nearest common dominator.
- NodeT &Entry = A->getParent()->front();
- if (A == &Entry || B == &Entry)
- return &Entry;
-
- // If B dominates A then B is nearest common dominator.
- if (dominates(B, A))
- return B;
-
- // If A dominates B then A is nearest common dominator.
- if (dominates(A, B))
- return A;
-
- DomTreeNodeBase<NodeT> *NodeA = getNode(A);
- DomTreeNodeBase<NodeT> *NodeB = getNode(B);
-
- // Collect NodeA dominators set.
- SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
- NodeADoms.insert(NodeA);
- DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
- while (IDomA) {
- NodeADoms.insert(IDomA);
- IDomA = IDomA->getIDom();
- }
-
- // Walk NodeB immediate dominators chain and find common dominator node.
- DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
- while(IDomB) {
- if (NodeADoms.count(IDomB) != 0)
- return IDomB->getBlock();
-
- IDomB = IDomB->getIDom();
- }
-
- return NULL;
- }
-
- //===--------------------------------------------------------------------===//
- // API to update (Post)DominatorTree information based on modifications to
- // the CFG...
-
- /// addNewBlock - Add a new node to the dominator tree information. This
- /// creates a new node as a child of DomBB dominator node,linking it into
- /// the children list of the immediate dominator.
- DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
- assert(getNode(BB) == 0 && "Block already in dominator tree!");
- DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
- assert(IDomNode && "Not immediate dominator specified for block!");
- DFSInfoValid = false;
- return DomTreeNodes[BB] =
- IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
- }
-
- /// changeImmediateDominator - This method is used to update the dominator
- /// tree information when a node's immediate dominator changes.
- ///
- void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
- DomTreeNodeBase<NodeT> *NewIDom) {
- assert(N && NewIDom && "Cannot change null node pointers!");
- DFSInfoValid = false;
- N->setIDom(NewIDom);
- }
-
- void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
- changeImmediateDominator(getNode(BB), getNode(NewBB));
- }
-
- /// eraseNode - Removes a node from the dominator tree. Block must not
- /// domiante any other blocks. Removes node from its immediate dominator's
- /// children list. Deletes dominator node associated with basic block BB.
- void eraseNode(NodeT *BB) {
- DomTreeNodeBase<NodeT> *Node = getNode(BB);
- assert (Node && "Removing node that isn't in dominator tree.");
- assert (Node->getChildren().empty() && "Node is not a leaf node.");
-
- // Remove node from immediate dominator's children list.
- DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
- if (IDom) {
- typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
- std::find(IDom->Children.begin(), IDom->Children.end(), Node);
- assert(I != IDom->Children.end() &&
- "Not in immediate dominator children set!");
- // I am no longer your child...
- IDom->Children.erase(I);
- }
-
- DomTreeNodes.erase(BB);
- delete Node;
- }
-
- /// removeNode - Removes a node from the dominator tree. Block must not
- /// dominate any other blocks. Invalidates any node pointing to removed
- /// block.
- void removeNode(NodeT *BB) {
- assert(getNode(BB) && "Removing node that isn't in dominator tree.");
- DomTreeNodes.erase(BB);
- }
-
- /// splitBlock - BB is split and now it has one successor. Update dominator
- /// tree to reflect this change.
- void splitBlock(NodeT* NewBB) {
- if (this->IsPostDominators)
- this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
- else
- this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
- }
-
- /// print - Convert to human readable form
- ///
- virtual void print(std::ostream &o, const Module* ) const {
- o << "=============================--------------------------------\n";
- if (this->isPostDominator())
- o << "Inorder PostDominator Tree: ";
- else
- o << "Inorder Dominator Tree: ";
- if (this->DFSInfoValid)
- o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
- o << "\n";
-
- PrintDomTree<NodeT>(getRootNode(), o, 1);
- }
-
- void print(std::ostream *OS, const Module* M = 0) const {
- if (OS) print(*OS, M);
- }
-
- virtual void dump() {
- print(llvm::cerr);
- }
-
-protected:
- template<class GraphT>
- friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
- typename GraphT::NodeType* VIn);
-
- template<class GraphT>
- friend typename GraphT::NodeType* Eval(
- DominatorTreeBase<typename GraphT::NodeType>& DT,
- typename GraphT::NodeType* V);
-
- template<class GraphT>
- friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
- unsigned DFSNumV, typename GraphT::NodeType* W,
- typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
-
- template<class GraphT>
- friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
- typename GraphT::NodeType* V,
- unsigned N);
-
- template<class FuncT, class N>
- friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
- FuncT& F);
-
- /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
- /// dominator tree in dfs order.
- void updateDFSNumbers() {
- unsigned DFSNum = 0;
-
- SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
- typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
-
- for (unsigned i = 0, e = (unsigned)this->Roots.size(); i != e; ++i) {
- DomTreeNodeBase<NodeT> *ThisRoot = getNode(this->Roots[i]);
- WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
- ThisRoot->DFSNumIn = DFSNum++;
-
- while (!WorkStack.empty()) {
- DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
- typename DomTreeNodeBase<NodeT>::iterator ChildIt =
- WorkStack.back().second;
-
- // If we visited all of the children of this node, "recurse" back up the
- // stack setting the DFOutNum.
- if (ChildIt == Node->end()) {
- Node->DFSNumOut = DFSNum++;
- WorkStack.pop_back();
- } else {
- // Otherwise, recursively visit this child.
- DomTreeNodeBase<NodeT> *Child = *ChildIt;
- ++WorkStack.back().second;
-
- WorkStack.push_back(std::make_pair(Child, Child->begin()));
- Child->DFSNumIn = DFSNum++;
- }
- }
- }
-
- SlowQueries = 0;
- DFSInfoValid = true;
- }
-
- DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
- if (DomTreeNodeBase<NodeT> *BBNode = this->DomTreeNodes[BB])
- return BBNode;
-
- // Haven't calculated this node yet? Get or calculate the node for the
- // immediate dominator.
- NodeT *IDom = getIDom(BB);
-
- assert(IDom || this->DomTreeNodes[NULL]);
- DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
-
- // Add a new tree node for this BasicBlock, and link it as a child of
- // IDomNode
- DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
- return this->DomTreeNodes[BB] = IDomNode->addChild(C);
- }
-
- inline NodeT *getIDom(NodeT *BB) const {
- typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
- return I != IDoms.end() ? I->second : 0;
- }
-
- inline void addRoot(NodeT* BB) {
- this->Roots.push_back(BB);
- }
-
-public:
- /// recalculate - compute a dominator tree for the given function
- template<class FT>
- void recalculate(FT& F) {
- if (!this->IsPostDominators) {
- reset();
-
- // Initialize roots
- this->Roots.push_back(&F.front());
- this->IDoms[&F.front()] = 0;
- this->DomTreeNodes[&F.front()] = 0;
- this->Vertex.push_back(0);
-
- Calculate<FT, NodeT*>(*this, F);
-
- updateDFSNumbers();
- } else {
- reset(); // Reset from the last time we were run...
-
- // Initialize the roots list
- for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
- if (std::distance(GraphTraits<FT*>::child_begin(I),
- GraphTraits<FT*>::child_end(I)) == 0)
- addRoot(I);
-
- // Prepopulate maps so that we don't get iterator invalidation issues later.
- this->IDoms[I] = 0;
- this->DomTreeNodes[I] = 0;
- }
-
- this->Vertex.push_back(0);
-
- Calculate<FT, Inverse<NodeT*> >(*this, F);
- }
- }
-};
-
-EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
-
-//===-------------------------------------
-/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
-/// compute a normal dominator tree.
-///
-class DominatorTree : public FunctionPass {
-public:
- static char ID; // Pass ID, replacement for typeid
- DominatorTreeBase<BasicBlock>* DT;
-
- DominatorTree() : FunctionPass(intptr_t(&ID)) {
- DT = new DominatorTreeBase<BasicBlock>(false);
- }
-
- ~DominatorTree() {
- DT->releaseMemory();
- delete DT;
- }
-
- DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
-
- /// getRoots - Return the root blocks of the current CFG. This may include
- /// multiple blocks if we are computing post dominators. For forward
- /// dominators, this will always be a single block (the entry node).
- ///
- inline const std::vector<BasicBlock*> &getRoots() const {
- return DT->getRoots();
- }
-
- inline BasicBlock *getRoot() const {
- return DT->getRoot();
- }
-
- inline DomTreeNode *getRootNode() const {
- return DT->getRootNode();
- }
-
- virtual bool runOnFunction(Function &F);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- }
-
- inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
- return DT->dominates(A, B);
- }
-
- inline bool dominates(BasicBlock* A, BasicBlock* B) const {
- return DT->dominates(A, B);
- }
-
- // dominates - Return true if A dominates B. This performs the
- // special checks necessary if A and B are in the same basic block.
- bool dominates(Instruction *A, Instruction *B) const {
- BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
- if (BBA != BBB) return DT->dominates(BBA, BBB);
-
- // It is not possible to determine dominance between two PHI nodes
- // based on their ordering.
- if (isa<PHINode>(A) && isa<PHINode>(B))
- return false;
-
- // Loop through the basic block until we find A or B.
- BasicBlock::iterator I = BBA->begin();
- for (; &*I != A && &*I != B; ++I) /*empty*/;
-
- //if(!DT.IsPostDominators) {
- // A dominates B if it is found first in the basic block.
- return &*I == A;
- //} else {
- // // A post-dominates B if B is found first in the basic block.
- // return &*I == B;
- //}
- }
-
- inline bool properlyDominates(const DomTreeNode* A, DomTreeNode* B) const {
- return DT->properlyDominates(A, B);
- }
-
- inline bool properlyDominates(BasicBlock* A, BasicBlock* B) const {
- return DT->properlyDominates(A, B);
- }
-
- /// findNearestCommonDominator - Find nearest common dominator basic block
- /// for basic block A and B. If there is no such block then return NULL.
- inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
- return DT->findNearestCommonDominator(A, B);
- }
-
- inline DomTreeNode *operator[](BasicBlock *BB) const {
- return DT->getNode(BB);
- }
-
- /// getNode - return the (Post)DominatorTree node for the specified basic
- /// block. This is the same as using operator[] on this class.
- ///
- inline DomTreeNode *getNode(BasicBlock *BB) const {
- return DT->getNode(BB);
- }
-
- /// addNewBlock - Add a new node to the dominator tree information. This
- /// creates a new node as a child of DomBB dominator node,linking it into
- /// the children list of the immediate dominator.
- inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
- return DT->addNewBlock(BB, DomBB);
- }
-
- /// changeImmediateDominator - This method is used to update the dominator
- /// tree information when a node's immediate dominator changes.
- ///
- inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
- DT->changeImmediateDominator(N, NewIDom);
- }
-
- inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
- DT->changeImmediateDominator(N, NewIDom);
- }
-
- /// eraseNode - Removes a node from the dominator tree. Block must not
- /// domiante any other blocks. Removes node from its immediate dominator's
- /// children list. Deletes dominator node associated with basic block BB.
- inline void eraseNode(BasicBlock *BB) {
- DT->eraseNode(BB);
- }
-
- /// splitBlock - BB is split and now it has one successor. Update dominator
- /// tree to reflect this change.
- inline void splitBlock(BasicBlock* NewBB) {
- DT->splitBlock(NewBB);
- }
-
-
- virtual void releaseMemory() {
- DT->releaseMemory();
- }
-
- virtual void print(std::ostream &OS, const Module* M= 0) const {
- DT->print(OS, M);
- }
-};
-
-//===-------------------------------------
-/// DominatorTree GraphTraits specialization so the DominatorTree can be
-/// iterable by generic graph iterators.
-///
-template <> struct GraphTraits<DomTreeNode *> {
- typedef DomTreeNode NodeType;
- typedef NodeType::iterator ChildIteratorType;
-
- static NodeType *getEntryNode(NodeType *N) {
- return N;
- }
- static inline ChildIteratorType child_begin(NodeType* N) {
- return N->begin();
- }
- static inline ChildIteratorType child_end(NodeType* N) {
- return N->end();
- }
-};
-
-template <> struct GraphTraits<DominatorTree*>
- : public GraphTraits<DomTreeNode *> {
- static NodeType *getEntryNode(DominatorTree *DT) {
- return DT->getRootNode();
- }
-};
-
-
-//===----------------------------------------------------------------------===//
-/// DominanceFrontierBase - Common base class for computing forward and inverse
-/// dominance frontiers for a function.
-///
-class DominanceFrontierBase : public FunctionPass {
-public:
- typedef std::set<BasicBlock*> DomSetType; // Dom set for a bb
- typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
-protected:
- DomSetMapType Frontiers;
- std::vector<BasicBlock*> Roots;
- const bool IsPostDominators;
-
-public:
- DominanceFrontierBase(intptr_t ID, bool isPostDom)
- : FunctionPass(ID), IsPostDominators(isPostDom) {}
-
- /// getRoots - Return the root blocks of the current CFG. This may include
- /// multiple blocks if we are computing post dominators. For forward
- /// dominators, this will always be a single block (the entry node).
- ///
- inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
-
- /// isPostDominator - Returns true if analysis based of postdoms
- ///
- bool isPostDominator() const { return IsPostDominators; }
-
- virtual void releaseMemory() { Frontiers.clear(); }
-
- // Accessor interface:
- typedef DomSetMapType::iterator iterator;
- typedef DomSetMapType::const_iterator const_iterator;
- iterator begin() { return Frontiers.begin(); }
- const_iterator begin() const { return Frontiers.begin(); }
- iterator end() { return Frontiers.end(); }
- const_iterator end() const { return Frontiers.end(); }
- iterator find(BasicBlock *B) { return Frontiers.find(B); }
- const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
-
- void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
- assert(find(BB) == end() && "Block already in DominanceFrontier!");
- Frontiers.insert(std::make_pair(BB, frontier));
- }
-
- /// removeBlock - Remove basic block BB's frontier.
- void removeBlock(BasicBlock *BB) {
- assert(find(BB) != end() && "Block is not in DominanceFrontier!");
- for (iterator I = begin(), E = end(); I != E; ++I)
- I->second.erase(BB);
- Frontiers.erase(BB);
- }
-
- void addToFrontier(iterator I, BasicBlock *Node) {
- assert(I != end() && "BB is not in DominanceFrontier!");
- I->second.insert(Node);
- }
-
- void removeFromFrontier(iterator I, BasicBlock *Node) {
- assert(I != end() && "BB is not in DominanceFrontier!");
- assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
- I->second.erase(Node);
- }
-
- /// print - Convert to human readable form
- ///
- virtual void print(std::ostream &OS, const Module* = 0) const;
- void print(std::ostream *OS, const Module* M = 0) const {
- if (OS) print(*OS, M);
- }
- virtual void dump();
-};
-
-
-//===-------------------------------------
-/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
-/// used to compute a forward dominator frontiers.
-///
-class DominanceFrontier : public DominanceFrontierBase {
-public:
- static char ID; // Pass ID, replacement for typeid
- DominanceFrontier() :
- DominanceFrontierBase(intptr_t(&ID), false) {}
-
- BasicBlock *getRoot() const {
- assert(Roots.size() == 1 && "Should always have entry node!");
- return Roots[0];
- }
-
- virtual bool runOnFunction(Function &) {
- Frontiers.clear();
- DominatorTree &DT = getAnalysis<DominatorTree>();
- Roots = DT.getRoots();
- assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
- calculate(DT, DT[Roots[0]]);
- return false;
- }
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<DominatorTree>();
- }
-
- /// splitBlock - BB is split and now it has one successor. Update dominance
- /// frontier to reflect this change.
- void splitBlock(BasicBlock *BB);
-
- /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
- /// to reflect this change.
- void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
- DominatorTree *DT) {
- // NewBB is now dominating BB. Which means BB's dominance
- // frontier is now part of NewBB's dominance frontier. However, BB
- // itself is not member of NewBB's dominance frontier.
- DominanceFrontier::iterator NewDFI = find(NewBB);
- DominanceFrontier::iterator DFI = find(BB);
- DominanceFrontier::DomSetType BBSet = DFI->second;
- for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
- BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
- BasicBlock *DFMember = *BBSetI;
- // Insert only if NewBB dominates DFMember.
- if (!DT->dominates(NewBB, DFMember))
- NewDFI->second.insert(DFMember);
- }
- NewDFI->second.erase(BB);
- }
-
-private:
- const DomSetType &calculate(const DominatorTree &DT,
- const DomTreeNode *Node);
-};
-
-
-} // End llvm namespace
-
-#endif