summaryrefslogtreecommitdiff
path: root/release_23/lib/CodeGen/RegAllocBigBlock.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'release_23/lib/CodeGen/RegAllocBigBlock.cpp')
-rw-r--r--release_23/lib/CodeGen/RegAllocBigBlock.cpp891
1 files changed, 0 insertions, 891 deletions
diff --git a/release_23/lib/CodeGen/RegAllocBigBlock.cpp b/release_23/lib/CodeGen/RegAllocBigBlock.cpp
deleted file mode 100644
index 0c6c25439a77..000000000000
--- a/release_23/lib/CodeGen/RegAllocBigBlock.cpp
+++ /dev/null
@@ -1,891 +0,0 @@
-//===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the RABigBlock class
-//
-//===----------------------------------------------------------------------===//
-
-// This register allocator is derived from RegAllocLocal.cpp. Like it, this
-// allocator works on one basic block at a time, oblivious to others.
-// However, the algorithm used here is suited for long blocks of
-// instructions - registers are spilled by greedily choosing those holding
-// values that will not be needed for the longest amount of time. This works
-// particularly well for blocks with 10 or more times as many instructions
-// as machine registers, but can be used for general code.
-//
-//===----------------------------------------------------------------------===//
-//
-// TODO: - automagically invoke linearscan for (groups of) small BBs?
-// - break ties when picking regs? (probably not worth it in a
-// JIT context)
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "regalloc"
-#include "llvm/BasicBlock.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/LiveVariables.h"
-#include "llvm/CodeGen/RegAllocRegistry.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/ADT/IndexedMap.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include <algorithm>
-using namespace llvm;
-
-STATISTIC(NumStores, "Number of stores added");
-STATISTIC(NumLoads , "Number of loads added");
-STATISTIC(NumFolded, "Number of loads/stores folded into instructions");
-
-namespace {
- static RegisterRegAlloc
- bigBlockRegAlloc("bigblock", " Big-block register allocator",
- createBigBlockRegisterAllocator);
-
-/// VRegKeyInfo - Defines magic values required to use VirtRegs as DenseMap
-/// keys.
- struct VRegKeyInfo {
- static inline unsigned getEmptyKey() { return -1U; }
- static inline unsigned getTombstoneKey() { return -2U; }
- static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; }
- static unsigned getHashValue(const unsigned &Key) { return Key; }
- };
-
-
-/// This register allocator is derived from RegAllocLocal.cpp. Like it, this
-/// allocator works on one basic block at a time, oblivious to others.
-/// However, the algorithm used here is suited for long blocks of
-/// instructions - registers are spilled by greedily choosing those holding
-/// values that will not be needed for the longest amount of time. This works
-/// particularly well for blocks with 10 or more times as many instructions
-/// as machine registers, but can be used for general code.
-///
-/// TODO: - automagically invoke linearscan for (groups of) small BBs?
-/// - break ties when picking regs? (probably not worth it in a
-/// JIT context)
-///
- class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass {
- public:
- static char ID;
- RABigBlock() : MachineFunctionPass((intptr_t)&ID) {}
- private:
- /// TM - For getting at TargetMachine info
- ///
- const TargetMachine *TM;
-
- /// MF - Our generic MachineFunction pointer
- ///
- MachineFunction *MF;
-
- /// RegInfo - For dealing with machine register info (aliases, folds
- /// etc)
- const TargetRegisterInfo *RegInfo;
-
- typedef SmallVector<unsigned, 2> VRegTimes;
-
- /// VRegReadTable - maps VRegs in a BB to the set of times they are read
- ///
- DenseMap<unsigned, VRegTimes*, VRegKeyInfo> VRegReadTable;
-
- /// VRegReadIdx - keeps track of the "current time" in terms of
- /// positions in VRegReadTable
- DenseMap<unsigned, unsigned , VRegKeyInfo> VRegReadIdx;
-
- /// StackSlotForVirtReg - Maps virtual regs to the frame index where these
- /// values are spilled.
- IndexedMap<unsigned, VirtReg2IndexFunctor> StackSlotForVirtReg;
-
- /// Virt2PhysRegMap - This map contains entries for each virtual register
- /// that is currently available in a physical register.
- IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
-
- /// PhysRegsUsed - This array is effectively a map, containing entries for
- /// each physical register that currently has a value (ie, it is in
- /// Virt2PhysRegMap). The value mapped to is the virtual register
- /// corresponding to the physical register (the inverse of the
- /// Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
- /// because it is used by a future instruction, and to -2 if it is not
- /// allocatable. If the entry for a physical register is -1, then the
- /// physical register is "not in the map".
- ///
- std::vector<int> PhysRegsUsed;
-
- /// VirtRegModified - This bitset contains information about which virtual
- /// registers need to be spilled back to memory when their registers are
- /// scavenged. If a virtual register has simply been rematerialized, there
- /// is no reason to spill it to memory when we need the register back.
- ///
- std::vector<int> VirtRegModified;
-
- /// MBBLastInsnTime - the number of the the last instruction in MBB
- ///
- int MBBLastInsnTime;
-
- /// MBBCurTime - the number of the the instruction being currently processed
- ///
- int MBBCurTime;
-
- unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
- return Virt2PhysRegMap[VirtReg];
- }
-
- unsigned &getVirt2StackSlot(unsigned VirtReg) {
- return StackSlotForVirtReg[VirtReg];
- }
-
- /// markVirtRegModified - Lets us flip bits in the VirtRegModified bitset
- ///
- void markVirtRegModified(unsigned Reg, bool Val = true) {
- assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
- Reg -= TargetRegisterInfo::FirstVirtualRegister;
- if (VirtRegModified.size() <= Reg)
- VirtRegModified.resize(Reg+1);
- VirtRegModified[Reg] = Val;
- }
-
- /// isVirtRegModified - Lets us query the VirtRegModified bitset
- ///
- bool isVirtRegModified(unsigned Reg) const {
- assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
- assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
- && "Illegal virtual register!");
- return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
- }
-
- public:
- /// getPassName - returns the BigBlock allocator's name
- ///
- virtual const char *getPassName() const {
- return "BigBlock Register Allocator";
- }
-
- /// getAnalaysisUsage - declares the required analyses
- ///
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequiredID(PHIEliminationID);
- AU.addRequiredID(TwoAddressInstructionPassID);
- MachineFunctionPass::getAnalysisUsage(AU);
- }
-
- private:
- /// runOnMachineFunction - Register allocate the whole function
- ///
- bool runOnMachineFunction(MachineFunction &Fn);
-
- /// AllocateBasicBlock - Register allocate the specified basic block.
- ///
- void AllocateBasicBlock(MachineBasicBlock &MBB);
-
- /// FillVRegReadTable - Fill out the table of vreg read times given a BB
- ///
- void FillVRegReadTable(MachineBasicBlock &MBB);
-
- /// areRegsEqual - This method returns true if the specified registers are
- /// related to each other. To do this, it checks to see if they are equal
- /// or if the first register is in the alias set of the second register.
- ///
- bool areRegsEqual(unsigned R1, unsigned R2) const {
- if (R1 == R2) return true;
- for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
- *AliasSet; ++AliasSet) {
- if (*AliasSet == R1) return true;
- }
- return false;
- }
-
- /// getStackSpaceFor - This returns the frame index of the specified virtual
- /// register on the stack, allocating space if necessary.
- int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
-
- /// removePhysReg - This method marks the specified physical register as no
- /// longer being in use.
- ///
- void removePhysReg(unsigned PhysReg);
-
- /// spillVirtReg - This method spills the value specified by PhysReg into
- /// the virtual register slot specified by VirtReg. It then updates the RA
- /// data structures to indicate the fact that PhysReg is now available.
- ///
- void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
- unsigned VirtReg, unsigned PhysReg);
-
- /// spillPhysReg - This method spills the specified physical register into
- /// the virtual register slot associated with it. If OnlyVirtRegs is set to
- /// true, then the request is ignored if the physical register does not
- /// contain a virtual register.
- ///
- void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
- unsigned PhysReg, bool OnlyVirtRegs = false);
-
- /// assignVirtToPhysReg - This method updates local state so that we know
- /// that PhysReg is the proper container for VirtReg now. The physical
- /// register must not be used for anything else when this is called.
- ///
- void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
-
- /// isPhysRegAvailable - Return true if the specified physical register is
- /// free and available for use. This also includes checking to see if
- /// aliased registers are all free...
- ///
- bool isPhysRegAvailable(unsigned PhysReg) const;
-
- /// getFreeReg - Look to see if there is a free register available in the
- /// specified register class. If not, return 0.
- ///
- unsigned getFreeReg(const TargetRegisterClass *RC);
-
- /// chooseReg - Pick a physical register to hold the specified
- /// virtual register by choosing the one which will be read furthest
- /// in the future.
- ///
- unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI,
- unsigned VirtReg);
-
- /// reloadVirtReg - This method transforms the specified specified virtual
- /// register use to refer to a physical register. This method may do this
- /// in one of several ways: if the register is available in a physical
- /// register already, it uses that physical register. If the value is not
- /// in a physical register, and if there are physical registers available,
- /// it loads it into a register. If register pressure is high, and it is
- /// possible, it tries to fold the load of the virtual register into the
- /// instruction itself. It avoids doing this if register pressure is low to
- /// improve the chance that subsequent instructions can use the reloaded
- /// value. This method returns the modified instruction.
- ///
- MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
- unsigned OpNum);
-
- };
- char RABigBlock::ID = 0;
-}
-
-/// getStackSpaceFor - This allocates space for the specified virtual register
-/// to be held on the stack.
-int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
- // Find the location Reg would belong...
- int FrameIdx = getVirt2StackSlot(VirtReg);
-
- if (FrameIdx)
- return FrameIdx - 1; // Already has space allocated?
-
- // Allocate a new stack object for this spill location...
- FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
- RC->getAlignment());
-
- // Assign the slot...
- getVirt2StackSlot(VirtReg) = FrameIdx + 1;
- return FrameIdx;
-}
-
-
-/// removePhysReg - This method marks the specified physical register as no
-/// longer being in use.
-///
-void RABigBlock::removePhysReg(unsigned PhysReg) {
- PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
-}
-
-
-/// spillVirtReg - This method spills the value specified by PhysReg into the
-/// virtual register slot specified by VirtReg. It then updates the RA data
-/// structures to indicate the fact that PhysReg is now available.
-///
-void RABigBlock::spillVirtReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I,
- unsigned VirtReg, unsigned PhysReg) {
- assert(VirtReg && "Spilling a physical register is illegal!"
- " Must not have appropriate kill for the register or use exists beyond"
- " the intended one.");
- DOUT << " Spilling register " << RegInfo->getName(PhysReg)
- << " containing %reg" << VirtReg;
-
- const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo();
-
- if (!isVirtRegModified(VirtReg))
- DOUT << " which has not been modified, so no store necessary!";
-
- // Otherwise, there is a virtual register corresponding to this physical
- // register. We only need to spill it into its stack slot if it has been
- // modified.
- if (isVirtRegModified(VirtReg)) {
- const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
- int FrameIndex = getStackSpaceFor(VirtReg, RC);
- DOUT << " to stack slot #" << FrameIndex;
- TII->storeRegToStackSlot(MBB, I, PhysReg, true, FrameIndex, RC);
- ++NumStores; // Update statistics
- }
-
- getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
-
- DOUT << "\n";
- removePhysReg(PhysReg);
-}
-
-
-/// spillPhysReg - This method spills the specified physical register into the
-/// virtual register slot associated with it. If OnlyVirtRegs is set to true,
-/// then the request is ignored if the physical register does not contain a
-/// virtual register.
-///
-void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
- unsigned PhysReg, bool OnlyVirtRegs) {
- if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
- assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
- if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
- spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
- } else {
- // If the selected register aliases any other registers, we must make
- // sure that one of the aliases isn't alive.
- for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
- *AliasSet; ++AliasSet)
- if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register.
- PhysRegsUsed[*AliasSet] != -2) // If allocatable.
- if (PhysRegsUsed[*AliasSet])
- spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
- }
-}
-
-
-/// assignVirtToPhysReg - This method updates local state so that we know
-/// that PhysReg is the proper container for VirtReg now. The physical
-/// register must not be used for anything else when this is called.
-///
-void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
- assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
- // Update information to note the fact that this register was just used, and
- // it holds VirtReg.
- PhysRegsUsed[PhysReg] = VirtReg;
- getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
-}
-
-
-/// isPhysRegAvailable - Return true if the specified physical register is free
-/// and available for use. This also includes checking to see if aliased
-/// registers are all free...
-///
-bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const {
- if (PhysRegsUsed[PhysReg] != -1) return false;
-
- // If the selected register aliases any other allocated registers, it is
- // not free!
- for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
- *AliasSet; ++AliasSet)
- if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
- return false; // Can't use this reg then.
- return true;
-}
-
-
-/// getFreeReg - Look to see if there is a free register available in the
-/// specified register class. If not, return 0.
-///
-unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) {
- // Get iterators defining the range of registers that are valid to allocate in
- // this class, which also specifies the preferred allocation order.
- TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
- TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
-
- for (; RI != RE; ++RI)
- if (isPhysRegAvailable(*RI)) { // Is reg unused?
- assert(*RI != 0 && "Cannot use register!");
- return *RI; // Found an unused register!
- }
- return 0;
-}
-
-
-/// chooseReg - Pick a physical register to hold the specified
-/// virtual register by choosing the one whose value will be read
-/// furthest in the future.
-///
-unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I,
- unsigned VirtReg) {
- const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
- // First check to see if we have a free register of the requested type...
- unsigned PhysReg = getFreeReg(RC);
-
- // If we didn't find an unused register, find the one which will be
- // read at the most distant point in time.
- if (PhysReg == 0) {
- unsigned delay=0, longest_delay=0;
- VRegTimes* ReadTimes;
-
- unsigned curTime = MBBCurTime;
-
- // for all physical regs in the RC,
- for(TargetRegisterClass::iterator pReg = RC->begin();
- pReg != RC->end(); ++pReg) {
- // how long until they're read?
- if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs
- ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]];
- if(ReadTimes && !ReadTimes->empty()) {
- unsigned& pt = VRegReadIdx[PhysRegsUsed[*pReg]];
- while(pt < ReadTimes->size() && (*ReadTimes)[pt] < curTime) {
- ++pt;
- }
-
- if(pt < ReadTimes->size())
- delay = (*ReadTimes)[pt] - curTime;
- else
- delay = MBBLastInsnTime + 1 - curTime;
- } else {
- // This register is only defined, but never
- // read in this MBB. Therefore the next read
- // happens after the end of this MBB
- delay = MBBLastInsnTime + 1 - curTime;
- }
-
-
- if(delay > longest_delay) {
- longest_delay = delay;
- PhysReg = *pReg;
- }
- }
- }
-
- if(PhysReg == 0) { // ok, now we're desperate. We couldn't choose
- // a register to spill by looking through the
- // read timetable, so now we just spill the
- // first allocatable register we find.
-
- // for all physical regs in the RC,
- for(TargetRegisterClass::iterator pReg = RC->begin();
- pReg != RC->end(); ++pReg) {
- // if we find a register we can spill
- if(PhysRegsUsed[*pReg]>=-1)
- PhysReg = *pReg; // choose it to be spilled
- }
- }
-
- assert(PhysReg && "couldn't choose a register to spill :( ");
- // TODO: assert that RC->contains(PhysReg) / handle aliased registers?
-
- // since we needed to look in the table we need to spill this register.
- spillPhysReg(MBB, I, PhysReg);
- }
-
- // assign the vreg to our chosen physical register
- assignVirtToPhysReg(VirtReg, PhysReg);
- return PhysReg; // and return it
-}
-
-
-/// reloadVirtReg - This method transforms an instruction with a virtual
-/// register use to one that references a physical register. It does this as
-/// follows:
-///
-/// 1) If the register is already in a physical register, it uses it.
-/// 2) Otherwise, if there is a free physical register, it uses that.
-/// 3) Otherwise, it calls chooseReg() to get the physical register
-/// holding the most distantly needed value, generating a spill in
-/// the process.
-///
-/// This method returns the modified instruction.
-MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
- unsigned OpNum) {
- unsigned VirtReg = MI->getOperand(OpNum).getReg();
- const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo();
-
- // If the virtual register is already available in a physical register,
- // just update the instruction and return.
- if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
- MI->getOperand(OpNum).setReg(PR);
- return MI;
- }
-
- // Otherwise, if we have free physical registers available to hold the
- // value, use them.
- const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
- unsigned PhysReg = getFreeReg(RC);
- int FrameIndex = getStackSpaceFor(VirtReg, RC);
-
- if (PhysReg) { // we have a free register, so use it.
- assignVirtToPhysReg(VirtReg, PhysReg);
- } else { // no free registers available.
- // try to fold the spill into the instruction
- SmallVector<unsigned, 2> Ops;
- Ops.push_back(OpNum);
- if(MachineInstr* FMI = TII->foldMemoryOperand(*MF, MI, Ops, FrameIndex)) {
- ++NumFolded;
- FMI->copyKillDeadInfo(MI);
- return MBB.insert(MBB.erase(MI), FMI);
- }
-
- // determine which of the physical registers we'll kill off, since we
- // couldn't fold.
- PhysReg = chooseReg(MBB, MI, VirtReg);
- }
-
- // this virtual register is now unmodified (since we just reloaded it)
- markVirtRegModified(VirtReg, false);
-
- DOUT << " Reloading %reg" << VirtReg << " into "
- << RegInfo->getName(PhysReg) << "\n";
-
- // Add move instruction(s)
- TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
- ++NumLoads; // Update statistics
-
- MF->getRegInfo().setPhysRegUsed(PhysReg);
- MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
- return MI;
-}
-
-/// Fill out the vreg read timetable. Since ReadTime increases
-/// monotonically, the individual readtime sets will be sorted
-/// in ascending order.
-void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) {
- // loop over each instruction
- MachineBasicBlock::iterator MII;
- unsigned ReadTime;
-
- for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) {
- MachineInstr *MI = MII;
-
- for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
- MachineOperand& MO = MI->getOperand(i);
- // look for vreg reads..
- if (MO.isRegister() && !MO.isDef() && MO.getReg() &&
- TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
- // ..and add them to the read table.
- VRegTimes* &Times = VRegReadTable[MO.getReg()];
- if(!VRegReadTable[MO.getReg()]) {
- Times = new VRegTimes;
- VRegReadIdx[MO.getReg()] = 0;
- }
- Times->push_back(ReadTime);
- }
- }
-
- }
-
- MBBLastInsnTime = ReadTime;
-
- for(DenseMap<unsigned, VRegTimes*, VRegKeyInfo>::iterator Reads = VRegReadTable.begin();
- Reads != VRegReadTable.end(); ++Reads) {
- if(Reads->second) {
- DOUT << "Reads[" << Reads->first << "]=" << Reads->second->size() << "\n";
- }
- }
-}
-
-/// isReadModWriteImplicitKill - True if this is an implicit kill for a
-/// read/mod/write register, i.e. update partial register.
-static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() &&
- MO.isDef() && !MO.isDead())
- return true;
- }
- return false;
-}
-
-/// isReadModWriteImplicitDef - True if this is an implicit def for a
-/// read/mod/write register, i.e. update partial register.
-static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() &&
- !MO.isDef() && MO.isKill())
- return true;
- }
- return false;
-}
-
-
-void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) {
- // loop over each instruction
- MachineBasicBlock::iterator MII = MBB.begin();
- const TargetInstrInfo &TII = *TM->getInstrInfo();
-
- DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
- if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
-
- // If this is the first basic block in the machine function, add live-in
- // registers as active.
- if (&MBB == &*MF->begin()) {
- for (MachineRegisterInfo::livein_iterator
- I = MF->getRegInfo().livein_begin(),
- E = MF->getRegInfo().livein_end(); I != E; ++I) {
- unsigned Reg = I->first;
- MF->getRegInfo().setPhysRegUsed(Reg);
- PhysRegsUsed[Reg] = 0; // It is free and reserved now
- for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
- *AliasSet; ++AliasSet) {
- if (PhysRegsUsed[*AliasSet] != -2) {
- PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
- MF->getRegInfo().setPhysRegUsed(*AliasSet);
- }
- }
- }
- }
-
- // Otherwise, sequentially allocate each instruction in the MBB.
- MBBCurTime = -1;
- while (MII != MBB.end()) {
- MachineInstr *MI = MII++;
- MBBCurTime++;
- const TargetInstrDesc &TID = MI->getDesc();
- DEBUG(DOUT << "\nTime=" << MBBCurTime << " Starting RegAlloc of: " << *MI;
- DOUT << " Regs have values: ";
- for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
- if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
- DOUT << "[" << RegInfo->getName(i)
- << ",%reg" << PhysRegsUsed[i] << "] ";
- DOUT << "\n");
-
- SmallVector<unsigned, 8> Kills;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (MO.isRegister() && MO.isKill()) {
- if (!MO.isImplicit())
- Kills.push_back(MO.getReg());
- else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
- // These are extra physical register kills when a sub-register
- // is defined (def of a sub-register is a read/mod/write of the
- // larger registers). Ignore.
- Kills.push_back(MO.getReg());
- }
- }
-
- // Get the used operands into registers. This has the potential to spill
- // incoming values if we are out of registers. Note that we completely
- // ignore physical register uses here. We assume that if an explicit
- // physical register is referenced by the instruction, that it is guaranteed
- // to be live-in, or the input is badly hosed.
- //
- for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
- MachineOperand& MO = MI->getOperand(i);
- // here we are looking for only used operands (never def&use)
- if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
- TargetRegisterInfo::isVirtualRegister(MO.getReg()))
- MI = reloadVirtReg(MBB, MI, i);
- }
-
- // If this instruction is the last user of this register, kill the
- // value, freeing the register being used, so it doesn't need to be
- // spilled to memory.
- //
- for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
- unsigned VirtReg = Kills[i];
- unsigned PhysReg = VirtReg;
- if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
- // If the virtual register was never materialized into a register, it
- // might not be in the map, but it won't hurt to zero it out anyway.
- unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
- PhysReg = PhysRegSlot;
- PhysRegSlot = 0;
- } else if (PhysRegsUsed[PhysReg] == -2) {
- // Unallocatable register dead, ignore.
- continue;
- } else {
- assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
- "Silently clearing a virtual register?");
- }
-
- if (PhysReg) {
- DOUT << " Last use of " << RegInfo->getName(PhysReg)
- << "[%reg" << VirtReg <<"], removing it from live set\n";
- removePhysReg(PhysReg);
- for (const unsigned *AliasSet = RegInfo->getSubRegisters(PhysReg);
- *AliasSet; ++AliasSet) {
- if (PhysRegsUsed[*AliasSet] != -2) {
- DOUT << " Last use of "
- << RegInfo->getName(*AliasSet)
- << "[%reg" << VirtReg <<"], removing it from live set\n";
- removePhysReg(*AliasSet);
- }
- }
- }
- }
-
- // Loop over all of the operands of the instruction, spilling registers that
- // are defined, and marking explicit destinations in the PhysRegsUsed map.
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
- TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
- unsigned Reg = MO.getReg();
- if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
- // These are extra physical register defs when a sub-register
- // is defined (def of a sub-register is a read/mod/write of the
- // larger registers). Ignore.
- if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
-
- MF->getRegInfo().setPhysRegUsed(Reg);
- spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
- PhysRegsUsed[Reg] = 0; // It is free and reserved now
- for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
- *AliasSet; ++AliasSet) {
- if (PhysRegsUsed[*AliasSet] != -2) {
- PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
- MF->getRegInfo().setPhysRegUsed(*AliasSet);
- }
- }
- }
- }
-
- // Loop over the implicit defs, spilling them as well.
- if (TID.getImplicitDefs()) {
- for (const unsigned *ImplicitDefs = TID.getImplicitDefs();
- *ImplicitDefs; ++ImplicitDefs) {
- unsigned Reg = *ImplicitDefs;
- if (PhysRegsUsed[Reg] != -2) {
- spillPhysReg(MBB, MI, Reg, true);
- PhysRegsUsed[Reg] = 0; // It is free and reserved now
- }
- MF->getRegInfo().setPhysRegUsed(Reg);
- for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
- *AliasSet; ++AliasSet) {
- if (PhysRegsUsed[*AliasSet] != -2) {
- PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
- MF->getRegInfo().setPhysRegUsed(*AliasSet);
- }
- }
- }
- }
-
- SmallVector<unsigned, 8> DeadDefs;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (MO.isRegister() && MO.isDead())
- DeadDefs.push_back(MO.getReg());
- }
-
- // Okay, we have allocated all of the source operands and spilled any values
- // that would be destroyed by defs of this instruction. Loop over the
- // explicit defs and assign them to a register, spilling incoming values if
- // we need to scavenge a register.
- //
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand& MO = MI->getOperand(i);
- if (MO.isRegister() && MO.isDef() && MO.getReg() &&
- TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
- unsigned DestVirtReg = MO.getReg();
- unsigned DestPhysReg;
-
- // If DestVirtReg already has a value, use it.
- if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
- DestPhysReg = chooseReg(MBB, MI, DestVirtReg);
- MF->getRegInfo().setPhysRegUsed(DestPhysReg);
- markVirtRegModified(DestVirtReg);
- MI->getOperand(i).setReg(DestPhysReg); // Assign the output register
- }
- }
-
- // If this instruction defines any registers that are immediately dead,
- // kill them now.
- //
- for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
- unsigned VirtReg = DeadDefs[i];
- unsigned PhysReg = VirtReg;
- if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
- unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
- PhysReg = PhysRegSlot;
- assert(PhysReg != 0);
- PhysRegSlot = 0;
- } else if (PhysRegsUsed[PhysReg] == -2) {
- // Unallocatable register dead, ignore.
- continue;
- }
-
- if (PhysReg) {
- DOUT << " Register " << RegInfo->getName(PhysReg)
- << " [%reg" << VirtReg
- << "] is never used, removing it frame live list\n";
- removePhysReg(PhysReg);
- for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
- *AliasSet; ++AliasSet) {
- if (PhysRegsUsed[*AliasSet] != -2) {
- DOUT << " Register " << RegInfo->getName(*AliasSet)
- << " [%reg" << *AliasSet
- << "] is never used, removing it frame live list\n";
- removePhysReg(*AliasSet);
- }
- }
- }
- }
-
- // Finally, if this is a noop copy instruction, zap it.
- unsigned SrcReg, DstReg;
- if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg)
- MBB.erase(MI);
- }
-
- MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
-
- // Spill all physical registers holding virtual registers now.
- for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
- if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
- if (unsigned VirtReg = PhysRegsUsed[i])
- spillVirtReg(MBB, MI, VirtReg, i);
- else
- removePhysReg(i);
- }
-}
-
-/// runOnMachineFunction - Register allocate the whole function
-///
-bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) {
- DOUT << "Machine Function " << "\n";
- MF = &Fn;
- TM = &Fn.getTarget();
- RegInfo = TM->getRegisterInfo();
-
- PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
-
- // At various places we want to efficiently check to see whether a register
- // is allocatable. To handle this, we mark all unallocatable registers as
- // being pinned down, permanently.
- {
- BitVector Allocable = RegInfo->getAllocatableSet(Fn);
- for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
- if (!Allocable[i])
- PhysRegsUsed[i] = -2; // Mark the reg unallocable.
- }
-
- // initialize the virtual->physical register map to have a 'null'
- // mapping for all virtual registers
- Virt2PhysRegMap.grow(MF->getRegInfo().getLastVirtReg());
- StackSlotForVirtReg.grow(MF->getRegInfo().getLastVirtReg());
- VirtRegModified.resize(MF->getRegInfo().getLastVirtReg() -
- TargetRegisterInfo::FirstVirtualRegister + 1, 0);
-
- // Loop over all of the basic blocks, eliminating virtual register references
- for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
- MBB != MBBe; ++MBB) {
- // fill out the read timetable
- FillVRegReadTable(*MBB);
- // use it to allocate the BB
- AllocateBasicBlock(*MBB);
- // clear it
- VRegReadTable.clear();
- }
-
- StackSlotForVirtReg.clear();
- PhysRegsUsed.clear();
- VirtRegModified.clear();
- Virt2PhysRegMap.clear();
- return true;
-}
-
-FunctionPass *llvm::createBigBlockRegisterAllocator() {
- return new RABigBlock();
-}
-