summaryrefslogtreecommitdiff
path: root/release_23/lib/CodeGen/SelectionDAG/LegalizeTypesFloatToInt.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'release_23/lib/CodeGen/SelectionDAG/LegalizeTypesFloatToInt.cpp')
-rw-r--r--release_23/lib/CodeGen/SelectionDAG/LegalizeTypesFloatToInt.cpp356
1 files changed, 0 insertions, 356 deletions
diff --git a/release_23/lib/CodeGen/SelectionDAG/LegalizeTypesFloatToInt.cpp b/release_23/lib/CodeGen/SelectionDAG/LegalizeTypesFloatToInt.cpp
deleted file mode 100644
index f23b63eb1d57..000000000000
--- a/release_23/lib/CodeGen/SelectionDAG/LegalizeTypesFloatToInt.cpp
+++ /dev/null
@@ -1,356 +0,0 @@
-//===-- LegalizeTypesFloatToInt.cpp - LegalizeTypes float to int support --===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements float to integer conversion for LegalizeTypes. This
-// is the act of turning a computation in an invalid floating point type into
-// a computation in an integer type of the same size. For example, turning
-// f32 arithmetic into operations using i32. Also known as "soft float".
-// The result is equivalent to bitcasting the float value to the integer type.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/PseudoSourceValue.h"
-#include "llvm/DerivedTypes.h"
-#include "LegalizeTypes.h"
-using namespace llvm;
-
-/// GetFPLibCall - Return the right libcall for the given floating point type.
-static RTLIB::Libcall GetFPLibCall(MVT::ValueType VT,
- RTLIB::Libcall Call_F32,
- RTLIB::Libcall Call_F64,
- RTLIB::Libcall Call_F80,
- RTLIB::Libcall Call_PPCF128) {
- return
- VT == MVT::f32 ? Call_F32 :
- VT == MVT::f64 ? Call_F64 :
- VT == MVT::f80 ? Call_F80 :
- VT == MVT::ppcf128 ? Call_PPCF128 :
- RTLIB::UNKNOWN_LIBCALL;
-}
-
-//===----------------------------------------------------------------------===//
-// Result Float to Integer Conversion.
-//===----------------------------------------------------------------------===//
-
-void DAGTypeLegalizer::FloatToIntResult(SDNode *N, unsigned ResNo) {
- DEBUG(cerr << "FloatToInt node result " << ResNo << ": "; N->dump(&DAG);
- cerr << "\n");
- SDOperand R = SDOperand();
-
- // FIXME: Custom lowering for float-to-int?
-#if 0
- // See if the target wants to custom convert this node to an integer.
- if (TLI.getOperationAction(N->getOpcode(), N->getValueType(0)) ==
- TargetLowering::Custom) {
- // If the target wants to, allow it to lower this itself.
- if (SDNode *P = TLI.FloatToIntOperationResult(N, DAG)) {
- // Everything that once used N now uses P. We are guaranteed that the
- // result value types of N and the result value types of P match.
- ReplaceNodeWith(N, P);
- return;
- }
- }
-#endif
-
- switch (N->getOpcode()) {
- default:
-#ifndef NDEBUG
- cerr << "FloatToIntResult #" << ResNo << ": ";
- N->dump(&DAG); cerr << "\n";
-#endif
- assert(0 && "Do not know how to convert the result of this operator!");
- abort();
-
- case ISD::BIT_CONVERT: R = FloatToIntRes_BIT_CONVERT(N); break;
- case ISD::BUILD_PAIR: R = FloatToIntRes_BUILD_PAIR(N); break;
- case ISD::ConstantFP:
- R = FloatToIntRes_ConstantFP(cast<ConstantFPSDNode>(N));
- break;
- case ISD::FCOPYSIGN: R = FloatToIntRes_FCOPYSIGN(N); break;
- case ISD::LOAD: R = FloatToIntRes_LOAD(N); break;
- case ISD::SINT_TO_FP:
- case ISD::UINT_TO_FP: R = FloatToIntRes_XINT_TO_FP(N); break;
-
- case ISD::FADD: R = FloatToIntRes_FADD(N); break;
- case ISD::FMUL: R = FloatToIntRes_FMUL(N); break;
- case ISD::FSUB: R = FloatToIntRes_FSUB(N); break;
- }
-
- // If R is null, the sub-method took care of registering the result.
- if (R.Val)
- SetIntegerOp(SDOperand(N, ResNo), R);
-}
-
-SDOperand DAGTypeLegalizer::FloatToIntRes_BIT_CONVERT(SDNode *N) {
- return BitConvertToInteger(N->getOperand(0));
-}
-
-SDOperand DAGTypeLegalizer::FloatToIntRes_BUILD_PAIR(SDNode *N) {
- // Convert the inputs to integers, and build a new pair out of them.
- return DAG.getNode(ISD::BUILD_PAIR,
- TLI.getTypeToTransformTo(N->getValueType(0)),
- BitConvertToInteger(N->getOperand(0)),
- BitConvertToInteger(N->getOperand(1)));
-}
-
-SDOperand DAGTypeLegalizer::FloatToIntRes_ConstantFP(ConstantFPSDNode *N) {
- return DAG.getConstant(N->getValueAPF().convertToAPInt(),
- TLI.getTypeToTransformTo(N->getValueType(0)));
-}
-
-SDOperand DAGTypeLegalizer::FloatToIntRes_FADD(SDNode *N) {
- MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
- SDOperand Ops[2] = { GetIntegerOp(N->getOperand(0)),
- GetIntegerOp(N->getOperand(1)) };
- return MakeLibCall(GetFPLibCall(N->getValueType(0),
- RTLIB::ADD_F32,
- RTLIB::ADD_F64,
- RTLIB::ADD_F80,
- RTLIB::ADD_PPCF128),
- NVT, Ops, 2, false/*sign irrelevant*/);
-}
-
-SDOperand DAGTypeLegalizer::FloatToIntRes_FCOPYSIGN(SDNode *N) {
- SDOperand LHS = GetIntegerOp(N->getOperand(0));
- SDOperand RHS = BitConvertToInteger(N->getOperand(1));
-
- MVT::ValueType LVT = LHS.getValueType();
- MVT::ValueType RVT = RHS.getValueType();
-
- unsigned LSize = MVT::getSizeInBits(LVT);
- unsigned RSize = MVT::getSizeInBits(RVT);
-
- // First get the sign bit of second operand.
- SDOperand SignBit = DAG.getNode(ISD::SHL, RVT, DAG.getConstant(1, RVT),
- DAG.getConstant(RSize - 1,
- TLI.getShiftAmountTy()));
- SignBit = DAG.getNode(ISD::AND, RVT, RHS, SignBit);
-
- // Shift right or sign-extend it if the two operands have different types.
- int SizeDiff = MVT::getSizeInBits(RVT) - MVT::getSizeInBits(LVT);
- if (SizeDiff > 0) {
- SignBit = DAG.getNode(ISD::SRL, RVT, SignBit,
- DAG.getConstant(SizeDiff, TLI.getShiftAmountTy()));
- SignBit = DAG.getNode(ISD::TRUNCATE, LVT, SignBit);
- } else if (SizeDiff < 0) {
- SignBit = DAG.getNode(ISD::ANY_EXTEND, LVT, SignBit);
- SignBit = DAG.getNode(ISD::SHL, LVT, SignBit,
- DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy()));
- }
-
- // Clear the sign bit of the first operand.
- SDOperand Mask = DAG.getNode(ISD::SHL, LVT, DAG.getConstant(1, LVT),
- DAG.getConstant(LSize - 1,
- TLI.getShiftAmountTy()));
- Mask = DAG.getNode(ISD::SUB, LVT, Mask, DAG.getConstant(1, LVT));
- LHS = DAG.getNode(ISD::AND, LVT, LHS, Mask);
-
- // Or the value with the sign bit.
- return DAG.getNode(ISD::OR, LVT, LHS, SignBit);
-}
-
-SDOperand DAGTypeLegalizer::FloatToIntRes_FMUL(SDNode *N) {
- MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
- SDOperand Ops[2] = { GetIntegerOp(N->getOperand(0)),
- GetIntegerOp(N->getOperand(1)) };
- return MakeLibCall(GetFPLibCall(N->getValueType(0),
- RTLIB::MUL_F32,
- RTLIB::MUL_F64,
- RTLIB::MUL_F80,
- RTLIB::MUL_PPCF128),
- NVT, Ops, 2, false/*sign irrelevant*/);
-}
-
-SDOperand DAGTypeLegalizer::FloatToIntRes_FSUB(SDNode *N) {
- MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
- SDOperand Ops[2] = { GetIntegerOp(N->getOperand(0)),
- GetIntegerOp(N->getOperand(1)) };
- return MakeLibCall(GetFPLibCall(N->getValueType(0),
- RTLIB::SUB_F32,
- RTLIB::SUB_F64,
- RTLIB::SUB_F80,
- RTLIB::SUB_PPCF128),
- NVT, Ops, 2, false/*sign irrelevant*/);
-}
-
-SDOperand DAGTypeLegalizer::FloatToIntRes_LOAD(SDNode *N) {
- LoadSDNode *L = cast<LoadSDNode>(N);
- MVT::ValueType VT = N->getValueType(0);
- MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
-
- if (L->getExtensionType() == ISD::NON_EXTLOAD)
- return DAG.getLoad(L->getAddressingMode(), L->getExtensionType(),
- NVT, L->getChain(), L->getBasePtr(), L->getOffset(),
- L->getSrcValue(), L->getSrcValueOffset(), NVT,
- L->isVolatile(), L->getAlignment());
-
- // Do a non-extending load followed by FP_EXTEND.
- SDOperand NL = DAG.getLoad(L->getAddressingMode(), ISD::NON_EXTLOAD,
- L->getMemoryVT(), L->getChain(),
- L->getBasePtr(), L->getOffset(),
- L->getSrcValue(), L->getSrcValueOffset(),
- L->getMemoryVT(),
- L->isVolatile(), L->getAlignment());
- return BitConvertToInteger(DAG.getNode(ISD::FP_EXTEND, VT, NL));
-}
-
-SDOperand DAGTypeLegalizer::FloatToIntRes_XINT_TO_FP(SDNode *N) {
- bool isSigned = N->getOpcode() == ISD::SINT_TO_FP;
- MVT::ValueType DestVT = N->getValueType(0);
- SDOperand Op = N->getOperand(0);
-
- if (Op.getValueType() == MVT::i32) {
- // simple 32-bit [signed|unsigned] integer to float/double expansion
-
- // Get the stack frame index of a 8 byte buffer.
- SDOperand StackSlot = DAG.CreateStackTemporary(MVT::f64);
-
- // word offset constant for Hi/Lo address computation
- SDOperand Offset = DAG.getConstant(MVT::getSizeInBits(MVT::i32) / 8,
- TLI.getPointerTy());
- // set up Hi and Lo (into buffer) address based on endian
- SDOperand Hi = StackSlot;
- SDOperand Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot, Offset);
- if (TLI.isLittleEndian())
- std::swap(Hi, Lo);
-
- // if signed map to unsigned space
- SDOperand OpMapped;
- if (isSigned) {
- // constant used to invert sign bit (signed to unsigned mapping)
- SDOperand SignBit = DAG.getConstant(0x80000000u, MVT::i32);
- OpMapped = DAG.getNode(ISD::XOR, MVT::i32, Op, SignBit);
- } else {
- OpMapped = Op;
- }
- // store the lo of the constructed double - based on integer input
- SDOperand Store1 = DAG.getStore(DAG.getEntryNode(),
- OpMapped, Lo, NULL, 0);
- // initial hi portion of constructed double
- SDOperand InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
- // store the hi of the constructed double - biased exponent
- SDOperand Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0);
- // load the constructed double
- SDOperand Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0);
- // FP constant to bias correct the final result
- SDOperand Bias = DAG.getConstantFP(isSigned ?
- BitsToDouble(0x4330000080000000ULL)
- : BitsToDouble(0x4330000000000000ULL),
- MVT::f64);
- // subtract the bias
- SDOperand Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias);
- // final result
- SDOperand Result;
- // handle final rounding
- if (DestVT == MVT::f64) {
- // do nothing
- Result = Sub;
- } else if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(MVT::f64)) {
- Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub,
- DAG.getIntPtrConstant(0));
- } else if (MVT::getSizeInBits(DestVT) > MVT::getSizeInBits(MVT::f64)) {
- Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub);
- }
- return BitConvertToInteger(Result);
- }
- assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
- SDOperand Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op);
-
- SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultType(Op), Op,
- DAG.getConstant(0, Op.getValueType()),
- ISD::SETLT);
- SDOperand Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
- SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
- SignSet, Four, Zero);
-
- // If the sign bit of the integer is set, the large number will be treated
- // as a negative number. To counteract this, the dynamic code adds an
- // offset depending on the data type.
- uint64_t FF;
- switch (Op.getValueType()) {
- default: assert(0 && "Unsupported integer type!");
- case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
- case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
- case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
- case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
- }
- if (TLI.isLittleEndian()) FF <<= 32;
- static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
-
- SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
- CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
- SDOperand FudgeInReg;
- if (DestVT == MVT::f32)
- FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx,
- PseudoSourceValue::getConstantPool(), 0);
- else {
- FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestVT,
- DAG.getEntryNode(), CPIdx,
- PseudoSourceValue::getConstantPool(), 0,
- MVT::f32);
- }
-
- return BitConvertToInteger(DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg));
-}
-
-
-//===----------------------------------------------------------------------===//
-// Operand Float to Integer Conversion..
-//===----------------------------------------------------------------------===//
-
-bool DAGTypeLegalizer::FloatToIntOperand(SDNode *N, unsigned OpNo) {
- DEBUG(cerr << "FloatToInt node operand " << OpNo << ": "; N->dump(&DAG);
- cerr << "\n");
- SDOperand Res(0, 0);
-
- // FIXME: Custom lowering for float-to-int?
-#if 0
- if (TLI.getOperationAction(N->getOpcode(), N->getOperand(OpNo).getValueType())
- == TargetLowering::Custom)
- Res = TLI.LowerOperation(SDOperand(N, 0), DAG);
-#endif
-
- if (Res.Val == 0) {
- switch (N->getOpcode()) {
- default:
-#ifndef NDEBUG
- cerr << "FloatToIntOperand Op #" << OpNo << ": ";
- N->dump(&DAG); cerr << "\n";
-#endif
- assert(0 && "Do not know how to convert this operator's operand!");
- abort();
-
- case ISD::BIT_CONVERT: Res = FloatToIntOp_BIT_CONVERT(N); break;
- }
- }
-
- // If the result is null, the sub-method took care of registering results etc.
- if (!Res.Val) return false;
-
- // If the result is N, the sub-method updated N in place. Check to see if any
- // operands are new, and if so, mark them.
- if (Res.Val == N) {
- // Mark N as new and remark N and its operands. This allows us to correctly
- // revisit N if it needs another step of promotion and allows us to visit
- // any new operands to N.
- ReanalyzeNode(N);
- return true;
- }
-
- assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
- "Invalid operand expansion");
-
- ReplaceValueWith(SDOperand(N, 0), Res);
- return false;
-}
-
-SDOperand DAGTypeLegalizer::FloatToIntOp_BIT_CONVERT(SDNode *N) {
- return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0),
- GetIntegerOp(N->getOperand(0)));
-}