summaryrefslogtreecommitdiff
path: root/release_23/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'release_23/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp')
-rw-r--r--release_23/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp571
1 files changed, 0 insertions, 571 deletions
diff --git a/release_23/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp b/release_23/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
deleted file mode 100644
index c2fae2506794..000000000000
--- a/release_23/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
+++ /dev/null
@@ -1,571 +0,0 @@
-//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This implements a top-down list scheduler, using standard algorithms.
-// The basic approach uses a priority queue of available nodes to schedule.
-// One at a time, nodes are taken from the priority queue (thus in priority
-// order), checked for legality to schedule, and emitted if legal.
-//
-// Nodes may not be legal to schedule either due to structural hazards (e.g.
-// pipeline or resource constraints) or because an input to the instruction has
-// not completed execution.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "pre-RA-sched"
-#include "llvm/CodeGen/ScheduleDAG.h"
-#include "llvm/CodeGen/SchedulerRegistry.h"
-#include "llvm/CodeGen/SelectionDAGISel.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/ADT/Statistic.h"
-#include <climits>
-#include <queue>
-using namespace llvm;
-
-STATISTIC(NumNoops , "Number of noops inserted");
-STATISTIC(NumStalls, "Number of pipeline stalls");
-
-static RegisterScheduler
- tdListDAGScheduler("list-td", " Top-down list scheduler",
- createTDListDAGScheduler);
-
-namespace {
-//===----------------------------------------------------------------------===//
-/// ScheduleDAGList - The actual list scheduler implementation. This supports
-/// top-down scheduling.
-///
-class VISIBILITY_HIDDEN ScheduleDAGList : public ScheduleDAG {
-private:
- /// AvailableQueue - The priority queue to use for the available SUnits.
- ///
- SchedulingPriorityQueue *AvailableQueue;
-
- /// PendingQueue - This contains all of the instructions whose operands have
- /// been issued, but their results are not ready yet (due to the latency of
- /// the operation). Once the operands becomes available, the instruction is
- /// added to the AvailableQueue. This keeps track of each SUnit and the
- /// number of cycles left to execute before the operation is available.
- std::vector<std::pair<unsigned, SUnit*> > PendingQueue;
-
- /// HazardRec - The hazard recognizer to use.
- HazardRecognizer *HazardRec;
-
-public:
- ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
- const TargetMachine &tm,
- SchedulingPriorityQueue *availqueue,
- HazardRecognizer *HR)
- : ScheduleDAG(dag, bb, tm),
- AvailableQueue(availqueue), HazardRec(HR) {
- }
-
- ~ScheduleDAGList() {
- delete HazardRec;
- delete AvailableQueue;
- }
-
- void Schedule();
-
-private:
- void ReleaseSucc(SUnit *SuccSU, bool isChain);
- void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
- void ListScheduleTopDown();
-};
-} // end anonymous namespace
-
-HazardRecognizer::~HazardRecognizer() {}
-
-
-/// Schedule - Schedule the DAG using list scheduling.
-void ScheduleDAGList::Schedule() {
- DOUT << "********** List Scheduling **********\n";
-
- // Build scheduling units.
- BuildSchedUnits();
-
- AvailableQueue->initNodes(SUnitMap, SUnits);
-
- ListScheduleTopDown();
-
- AvailableQueue->releaseState();
-
- DOUT << "*** Final schedule ***\n";
- DEBUG(dumpSchedule());
- DOUT << "\n";
-
- // Emit in scheduled order
- EmitSchedule();
-}
-
-//===----------------------------------------------------------------------===//
-// Top-Down Scheduling
-//===----------------------------------------------------------------------===//
-
-/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
-/// the PendingQueue if the count reaches zero.
-void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
- SuccSU->NumPredsLeft--;
-
- assert(SuccSU->NumPredsLeft >= 0 &&
- "List scheduling internal error");
-
- if (SuccSU->NumPredsLeft == 0) {
- // Compute how many cycles it will be before this actually becomes
- // available. This is the max of the start time of all predecessors plus
- // their latencies.
- unsigned AvailableCycle = 0;
- for (SUnit::pred_iterator I = SuccSU->Preds.begin(),
- E = SuccSU->Preds.end(); I != E; ++I) {
- // If this is a token edge, we don't need to wait for the latency of the
- // preceeding instruction (e.g. a long-latency load) unless there is also
- // some other data dependence.
- SUnit &Pred = *I->Dep;
- unsigned PredDoneCycle = Pred.Cycle;
- if (!I->isCtrl)
- PredDoneCycle += Pred.Latency;
- else if (Pred.Latency)
- PredDoneCycle += 1;
-
- AvailableCycle = std::max(AvailableCycle, PredDoneCycle);
- }
-
- PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU));
- }
-}
-
-/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
-/// count of its successors. If a successor pending count is zero, add it to
-/// the Available queue.
-void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
- DOUT << "*** Scheduling [" << CurCycle << "]: ";
- DEBUG(SU->dump(&DAG));
-
- Sequence.push_back(SU);
- SU->Cycle = CurCycle;
-
- // Bottom up: release successors.
- for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
- I != E; ++I)
- ReleaseSucc(I->Dep, I->isCtrl);
-}
-
-/// ListScheduleTopDown - The main loop of list scheduling for top-down
-/// schedulers.
-void ScheduleDAGList::ListScheduleTopDown() {
- unsigned CurCycle = 0;
-
- // All leaves to Available queue.
- for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
- // It is available if it has no predecessors.
- if (SUnits[i].Preds.empty()) {
- AvailableQueue->push(&SUnits[i]);
- SUnits[i].isAvailable = SUnits[i].isPending = true;
- }
- }
-
- // While Available queue is not empty, grab the node with the highest
- // priority. If it is not ready put it back. Schedule the node.
- std::vector<SUnit*> NotReady;
- while (!AvailableQueue->empty() || !PendingQueue.empty()) {
- // Check to see if any of the pending instructions are ready to issue. If
- // so, add them to the available queue.
- for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
- if (PendingQueue[i].first == CurCycle) {
- AvailableQueue->push(PendingQueue[i].second);
- PendingQueue[i].second->isAvailable = true;
- PendingQueue[i] = PendingQueue.back();
- PendingQueue.pop_back();
- --i; --e;
- } else {
- assert(PendingQueue[i].first > CurCycle && "Negative latency?");
- }
- }
-
- // If there are no instructions available, don't try to issue anything, and
- // don't advance the hazard recognizer.
- if (AvailableQueue->empty()) {
- ++CurCycle;
- continue;
- }
-
- SUnit *FoundSUnit = 0;
- SDNode *FoundNode = 0;
-
- bool HasNoopHazards = false;
- while (!AvailableQueue->empty()) {
- SUnit *CurSUnit = AvailableQueue->pop();
-
- // Get the node represented by this SUnit.
- FoundNode = CurSUnit->Node;
-
- // If this is a pseudo op, like copyfromreg, look to see if there is a
- // real target node flagged to it. If so, use the target node.
- for (unsigned i = 0, e = CurSUnit->FlaggedNodes.size();
- FoundNode->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i)
- FoundNode = CurSUnit->FlaggedNodes[i];
-
- HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode);
- if (HT == HazardRecognizer::NoHazard) {
- FoundSUnit = CurSUnit;
- break;
- }
-
- // Remember if this is a noop hazard.
- HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
-
- NotReady.push_back(CurSUnit);
- }
-
- // Add the nodes that aren't ready back onto the available list.
- if (!NotReady.empty()) {
- AvailableQueue->push_all(NotReady);
- NotReady.clear();
- }
-
- // If we found a node to schedule, do it now.
- if (FoundSUnit) {
- ScheduleNodeTopDown(FoundSUnit, CurCycle);
- HazardRec->EmitInstruction(FoundNode);
- FoundSUnit->isScheduled = true;
- AvailableQueue->ScheduledNode(FoundSUnit);
-
- // If this is a pseudo-op node, we don't want to increment the current
- // cycle.
- if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
- ++CurCycle;
- } else if (!HasNoopHazards) {
- // Otherwise, we have a pipeline stall, but no other problem, just advance
- // the current cycle and try again.
- DOUT << "*** Advancing cycle, no work to do\n";
- HazardRec->AdvanceCycle();
- ++NumStalls;
- ++CurCycle;
- } else {
- // Otherwise, we have no instructions to issue and we have instructions
- // that will fault if we don't do this right. This is the case for
- // processors without pipeline interlocks and other cases.
- DOUT << "*** Emitting noop\n";
- HazardRec->EmitNoop();
- Sequence.push_back(0); // NULL SUnit* -> noop
- ++NumNoops;
- ++CurCycle;
- }
- }
-
-#ifndef NDEBUG
- // Verify that all SUnits were scheduled.
- bool AnyNotSched = false;
- for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
- if (SUnits[i].NumPredsLeft != 0) {
- if (!AnyNotSched)
- cerr << "*** List scheduling failed! ***\n";
- SUnits[i].dump(&DAG);
- cerr << "has not been scheduled!\n";
- AnyNotSched = true;
- }
- }
- assert(!AnyNotSched);
-#endif
-}
-
-//===----------------------------------------------------------------------===//
-// LatencyPriorityQueue Implementation
-//===----------------------------------------------------------------------===//
-//
-// This is a SchedulingPriorityQueue that schedules using latency information to
-// reduce the length of the critical path through the basic block.
-//
-namespace {
- class LatencyPriorityQueue;
-
- /// Sorting functions for the Available queue.
- struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
- LatencyPriorityQueue *PQ;
- latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
- latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
-
- bool operator()(const SUnit* left, const SUnit* right) const;
- };
-} // end anonymous namespace
-
-namespace {
- class LatencyPriorityQueue : public SchedulingPriorityQueue {
- // SUnits - The SUnits for the current graph.
- std::vector<SUnit> *SUnits;
-
- // Latencies - The latency (max of latency from this node to the bb exit)
- // for each node.
- std::vector<int> Latencies;
-
- /// NumNodesSolelyBlocking - This vector contains, for every node in the
- /// Queue, the number of nodes that the node is the sole unscheduled
- /// predecessor for. This is used as a tie-breaker heuristic for better
- /// mobility.
- std::vector<unsigned> NumNodesSolelyBlocking;
-
- std::priority_queue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
-public:
- LatencyPriorityQueue() : Queue(latency_sort(this)) {
- }
-
- void initNodes(DenseMap<SDNode*, std::vector<SUnit*> > &sumap,
- std::vector<SUnit> &sunits) {
- SUnits = &sunits;
- // Calculate node priorities.
- CalculatePriorities();
- }
-
- void addNode(const SUnit *SU) {
- Latencies.resize(SUnits->size(), -1);
- NumNodesSolelyBlocking.resize(SUnits->size(), 0);
- CalcLatency(*SU);
- }
-
- void updateNode(const SUnit *SU) {
- Latencies[SU->NodeNum] = -1;
- CalcLatency(*SU);
- }
-
- void releaseState() {
- SUnits = 0;
- Latencies.clear();
- }
-
- unsigned getLatency(unsigned NodeNum) const {
- assert(NodeNum < Latencies.size());
- return Latencies[NodeNum];
- }
-
- unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
- assert(NodeNum < NumNodesSolelyBlocking.size());
- return NumNodesSolelyBlocking[NodeNum];
- }
-
- unsigned size() const { return Queue.size(); }
-
- bool empty() const { return Queue.empty(); }
-
- virtual void push(SUnit *U) {
- push_impl(U);
- }
- void push_impl(SUnit *U);
-
- void push_all(const std::vector<SUnit *> &Nodes) {
- for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
- push_impl(Nodes[i]);
- }
-
- SUnit *pop() {
- if (empty()) return NULL;
- SUnit *V = Queue.top();
- Queue.pop();
- return V;
- }
-
- /// remove - This is a really inefficient way to remove a node from a
- /// priority queue. We should roll our own heap to make this better or
- /// something.
- void remove(SUnit *SU) {
- std::vector<SUnit*> Temp;
-
- assert(!Queue.empty() && "Not in queue!");
- while (Queue.top() != SU) {
- Temp.push_back(Queue.top());
- Queue.pop();
- assert(!Queue.empty() && "Not in queue!");
- }
-
- // Remove the node from the PQ.
- Queue.pop();
-
- // Add all the other nodes back.
- for (unsigned i = 0, e = Temp.size(); i != e; ++i)
- Queue.push(Temp[i]);
- }
-
- // ScheduledNode - As nodes are scheduled, we look to see if there are any
- // successor nodes that have a single unscheduled predecessor. If so, that
- // single predecessor has a higher priority, since scheduling it will make
- // the node available.
- void ScheduledNode(SUnit *Node);
-
-private:
- void CalculatePriorities();
- int CalcLatency(const SUnit &SU);
- void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
- SUnit *getSingleUnscheduledPred(SUnit *SU);
- };
-}
-
-bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
- unsigned LHSNum = LHS->NodeNum;
- unsigned RHSNum = RHS->NodeNum;
-
- // The most important heuristic is scheduling the critical path.
- unsigned LHSLatency = PQ->getLatency(LHSNum);
- unsigned RHSLatency = PQ->getLatency(RHSNum);
- if (LHSLatency < RHSLatency) return true;
- if (LHSLatency > RHSLatency) return false;
-
- // After that, if two nodes have identical latencies, look to see if one will
- // unblock more other nodes than the other.
- unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
- unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
- if (LHSBlocked < RHSBlocked) return true;
- if (LHSBlocked > RHSBlocked) return false;
-
- // Finally, just to provide a stable ordering, use the node number as a
- // deciding factor.
- return LHSNum < RHSNum;
-}
-
-
-/// CalcNodePriority - Calculate the maximal path from the node to the exit.
-///
-int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
- int &Latency = Latencies[SU.NodeNum];
- if (Latency != -1)
- return Latency;
-
- std::vector<const SUnit*> WorkList;
- WorkList.push_back(&SU);
- while (!WorkList.empty()) {
- const SUnit *Cur = WorkList.back();
- bool AllDone = true;
- int MaxSuccLatency = 0;
- for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end();
- I != E; ++I) {
- int SuccLatency = Latencies[I->Dep->NodeNum];
- if (SuccLatency == -1) {
- AllDone = false;
- WorkList.push_back(I->Dep);
- } else {
- MaxSuccLatency = std::max(MaxSuccLatency, SuccLatency);
- }
- }
- if (AllDone) {
- Latencies[Cur->NodeNum] = MaxSuccLatency + Cur->Latency;
- WorkList.pop_back();
- }
- }
-
- return Latency;
-}
-
-/// CalculatePriorities - Calculate priorities of all scheduling units.
-void LatencyPriorityQueue::CalculatePriorities() {
- Latencies.assign(SUnits->size(), -1);
- NumNodesSolelyBlocking.assign(SUnits->size(), 0);
-
- // For each node, calculate the maximal path from the node to the exit.
- std::vector<std::pair<const SUnit*, unsigned> > WorkList;
- for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
- const SUnit *SU = &(*SUnits)[i];
- if (SU->Succs.empty())
- WorkList.push_back(std::make_pair(SU, 0U));
- }
-
- while (!WorkList.empty()) {
- const SUnit *SU = WorkList.back().first;
- unsigned SuccLat = WorkList.back().second;
- WorkList.pop_back();
- int &Latency = Latencies[SU->NodeNum];
- if (Latency == -1 || (SU->Latency + SuccLat) > (unsigned)Latency) {
- Latency = SU->Latency + SuccLat;
- for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
- I != E; ++I)
- WorkList.push_back(std::make_pair(I->Dep, Latency));
- }
- }
-}
-
-/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
-/// of SU, return it, otherwise return null.
-SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
- SUnit *OnlyAvailablePred = 0;
- for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
- I != E; ++I) {
- SUnit &Pred = *I->Dep;
- if (!Pred.isScheduled) {
- // We found an available, but not scheduled, predecessor. If it's the
- // only one we have found, keep track of it... otherwise give up.
- if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
- return 0;
- OnlyAvailablePred = &Pred;
- }
- }
-
- return OnlyAvailablePred;
-}
-
-void LatencyPriorityQueue::push_impl(SUnit *SU) {
- // Look at all of the successors of this node. Count the number of nodes that
- // this node is the sole unscheduled node for.
- unsigned NumNodesBlocking = 0;
- for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
- I != E; ++I)
- if (getSingleUnscheduledPred(I->Dep) == SU)
- ++NumNodesBlocking;
- NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
-
- Queue.push(SU);
-}
-
-
-// ScheduledNode - As nodes are scheduled, we look to see if there are any
-// successor nodes that have a single unscheduled predecessor. If so, that
-// single predecessor has a higher priority, since scheduling it will make
-// the node available.
-void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
- for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
- I != E; ++I)
- AdjustPriorityOfUnscheduledPreds(I->Dep);
-}
-
-/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
-/// scheduled. If SU is not itself available, then there is at least one
-/// predecessor node that has not been scheduled yet. If SU has exactly ONE
-/// unscheduled predecessor, we want to increase its priority: it getting
-/// scheduled will make this node available, so it is better than some other
-/// node of the same priority that will not make a node available.
-void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
- if (SU->isPending) return; // All preds scheduled.
-
- SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
- if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
-
- // Okay, we found a single predecessor that is available, but not scheduled.
- // Since it is available, it must be in the priority queue. First remove it.
- remove(OnlyAvailablePred);
-
- // Reinsert the node into the priority queue, which recomputes its
- // NumNodesSolelyBlocking value.
- push(OnlyAvailablePred);
-}
-
-
-//===----------------------------------------------------------------------===//
-// Public Constructor Functions
-//===----------------------------------------------------------------------===//
-
-/// createTDListDAGScheduler - This creates a top-down list scheduler with a
-/// new hazard recognizer. This scheduler takes ownership of the hazard
-/// recognizer and deletes it when done.
-ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAGISel *IS,
- SelectionDAG *DAG,
- MachineBasicBlock *BB) {
- return new ScheduleDAGList(*DAG, BB, DAG->getTarget(),
- new LatencyPriorityQueue(),
- IS->CreateTargetHazardRecognizer());
-}