summaryrefslogtreecommitdiff
path: root/release_23/lib/CodeGen/ShadowStackCollector.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'release_23/lib/CodeGen/ShadowStackCollector.cpp')
-rw-r--r--release_23/lib/CodeGen/ShadowStackCollector.cpp438
1 files changed, 0 insertions, 438 deletions
diff --git a/release_23/lib/CodeGen/ShadowStackCollector.cpp b/release_23/lib/CodeGen/ShadowStackCollector.cpp
deleted file mode 100644
index 092671ce562f..000000000000
--- a/release_23/lib/CodeGen/ShadowStackCollector.cpp
+++ /dev/null
@@ -1,438 +0,0 @@
-//===-- ShadowStackCollector.cpp - GC support for uncooperative targets ---===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements lowering for the llvm.gc* intrinsics for targets that do
-// not natively support them (which includes the C backend). Note that the code
-// generated is not quite as efficient as collectors which generate stack maps
-// to identify roots.
-//
-// This pass implements the code transformation described in this paper:
-// "Accurate Garbage Collection in an Uncooperative Environment"
-// Fergus Henderson, ISMM, 2002
-//
-// In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with
-// this collector.
-//
-// In order to support this particular transformation, all stack roots are
-// coallocated in the stack. This allows a fully target-independent stack map
-// while introducing only minor runtime overhead.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "shadowstackgc"
-#include "llvm/CodeGen/Collectors.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/CodeGen/Collector.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Module.h"
-#include "llvm/Support/IRBuilder.h"
-
-using namespace llvm;
-
-namespace {
-
- class VISIBILITY_HIDDEN ShadowStackCollector : public Collector {
- /// RootChain - This is the global linked-list that contains the chain of GC
- /// roots.
- GlobalVariable *Head;
-
- /// StackEntryTy - Abstract type of a link in the shadow stack.
- ///
- const StructType *StackEntryTy;
-
- /// Roots - GC roots in the current function. Each is a pair of the
- /// intrinsic call and its corresponding alloca.
- std::vector<std::pair<CallInst*,AllocaInst*> > Roots;
-
- public:
- ShadowStackCollector();
-
- bool initializeCustomLowering(Module &M);
- bool performCustomLowering(Function &F);
-
- private:
- bool IsNullValue(Value *V);
- Constant *GetFrameMap(Function &F);
- const Type* GetConcreteStackEntryType(Function &F);
- void CollectRoots(Function &F);
- static GetElementPtrInst *CreateGEP(IRBuilder &B, Value *BasePtr,
- int Idx1, const char *Name);
- static GetElementPtrInst *CreateGEP(IRBuilder &B, Value *BasePtr,
- int Idx1, int Idx2, const char *Name);
- };
-
- CollectorRegistry::Add<ShadowStackCollector>
- Y("shadow-stack",
- "Very portable collector for uncooperative code generators");
-
- /// EscapeEnumerator - This is a little algorithm to find all escape points
- /// from a function so that "finally"-style code can be inserted. In addition
- /// to finding the existing return and unwind instructions, it also (if
- /// necessary) transforms any call instructions into invokes and sends them to
- /// a landing pad.
- ///
- /// It's wrapped up in a state machine using the same transform C# uses for
- /// 'yield return' enumerators, This transform allows it to be non-allocating.
- class VISIBILITY_HIDDEN EscapeEnumerator {
- Function &F;
- const char *CleanupBBName;
-
- // State.
- int State;
- Function::iterator StateBB, StateE;
- IRBuilder Builder;
-
- public:
- EscapeEnumerator(Function &F, const char *N = "cleanup")
- : F(F), CleanupBBName(N), State(0) {}
-
- IRBuilder *Next() {
- switch (State) {
- default:
- return 0;
-
- case 0:
- StateBB = F.begin();
- StateE = F.end();
- State = 1;
-
- case 1:
- // Find all 'return' and 'unwind' instructions.
- while (StateBB != StateE) {
- BasicBlock *CurBB = StateBB++;
-
- // Branches and invokes do not escape, only unwind and return do.
- TerminatorInst *TI = CurBB->getTerminator();
- if (!isa<UnwindInst>(TI) && !isa<ReturnInst>(TI))
- continue;
-
- Builder.SetInsertPoint(TI->getParent(), TI);
- return &Builder;
- }
-
- State = 2;
-
- // Find all 'call' instructions.
- SmallVector<Instruction*,16> Calls;
- for (Function::iterator BB = F.begin(),
- E = F.end(); BB != E; ++BB)
- for (BasicBlock::iterator II = BB->begin(),
- EE = BB->end(); II != EE; ++II)
- if (CallInst *CI = dyn_cast<CallInst>(II))
- if (!CI->getCalledFunction() ||
- !CI->getCalledFunction()->getIntrinsicID())
- Calls.push_back(CI);
-
- if (Calls.empty())
- return 0;
-
- // Create a cleanup block.
- BasicBlock *CleanupBB = BasicBlock::Create(CleanupBBName, &F);
- UnwindInst *UI = new UnwindInst(CleanupBB);
-
- // Transform the 'call' instructions into 'invoke's branching to the
- // cleanup block. Go in reverse order to make prettier BB names.
- SmallVector<Value*,16> Args;
- for (unsigned I = Calls.size(); I != 0; ) {
- CallInst *CI = cast<CallInst>(Calls[--I]);
-
- // Split the basic block containing the function call.
- BasicBlock *CallBB = CI->getParent();
- BasicBlock *NewBB =
- CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont");
-
- // Remove the unconditional branch inserted at the end of CallBB.
- CallBB->getInstList().pop_back();
- NewBB->getInstList().remove(CI);
-
- // Create a new invoke instruction.
- Args.clear();
- Args.append(CI->op_begin() + 1, CI->op_end());
-
- InvokeInst *II = InvokeInst::Create(CI->getOperand(0),
- NewBB, CleanupBB,
- Args.begin(), Args.end(),
- CI->getName(), CallBB);
- II->setCallingConv(CI->getCallingConv());
- II->setParamAttrs(CI->getParamAttrs());
- CI->replaceAllUsesWith(II);
- delete CI;
- }
-
- Builder.SetInsertPoint(UI->getParent(), UI);
- return &Builder;
- }
- }
- };
-
-}
-
-// -----------------------------------------------------------------------------
-
-Collector *llvm::createShadowStackCollector() {
- return new ShadowStackCollector();
-}
-
-ShadowStackCollector::ShadowStackCollector() : Head(0), StackEntryTy(0) {
- InitRoots = true;
- CustomRoots = true;
-}
-
-Constant *ShadowStackCollector::GetFrameMap(Function &F) {
- // doInitialization creates the abstract type of this value.
-
- Type *VoidPtr = PointerType::getUnqual(Type::Int8Ty);
-
- // Truncate the ShadowStackDescriptor if some metadata is null.
- unsigned NumMeta = 0;
- SmallVector<Constant*,16> Metadata;
- for (unsigned I = 0; I != Roots.size(); ++I) {
- Constant *C = cast<Constant>(Roots[I].first->getOperand(2));
- if (!C->isNullValue())
- NumMeta = I + 1;
- Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
- }
-
- Constant *BaseElts[] = {
- ConstantInt::get(Type::Int32Ty, Roots.size(), false),
- ConstantInt::get(Type::Int32Ty, NumMeta, false),
- };
-
- Constant *DescriptorElts[] = {
- ConstantStruct::get(BaseElts, 2),
- ConstantArray::get(ArrayType::get(VoidPtr, NumMeta),
- Metadata.begin(), NumMeta)
- };
-
- Constant *FrameMap = ConstantStruct::get(DescriptorElts, 2);
-
- std::string TypeName("gc_map.");
- TypeName += utostr(NumMeta);
- F.getParent()->addTypeName(TypeName, FrameMap->getType());
-
- // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
- // that, short of multithreaded LLVM, it should be safe; all that is
- // necessary is that a simple Module::iterator loop not be invalidated.
- // Appending to the GlobalVariable list is safe in that sense.
- //
- // All of the output passes emit globals last. The ExecutionEngine
- // explicitly supports adding globals to the module after
- // initialization.
- //
- // Still, if it isn't deemed acceptable, then this transformation needs
- // to be a ModulePass (which means it cannot be in the 'llc' pipeline
- // (which uses a FunctionPassManager (which segfaults (not asserts) if
- // provided a ModulePass))).
- Constant *GV = new GlobalVariable(FrameMap->getType(), true,
- GlobalVariable::InternalLinkage,
- FrameMap, "__gc_" + F.getName(),
- F.getParent());
-
- Constant *GEPIndices[2] = { ConstantInt::get(Type::Int32Ty, 0),
- ConstantInt::get(Type::Int32Ty, 0) };
- return ConstantExpr::getGetElementPtr(GV, GEPIndices, 2);
-}
-
-const Type* ShadowStackCollector::GetConcreteStackEntryType(Function &F) {
- // doInitialization creates the generic version of this type.
- std::vector<const Type*> EltTys;
- EltTys.push_back(StackEntryTy);
- for (size_t I = 0; I != Roots.size(); I++)
- EltTys.push_back(Roots[I].second->getAllocatedType());
- Type *Ty = StructType::get(EltTys);
-
- std::string TypeName("gc_stackentry.");
- TypeName += F.getName();
- F.getParent()->addTypeName(TypeName, Ty);
-
- return Ty;
-}
-
-/// doInitialization - If this module uses the GC intrinsics, find them now. If
-/// not, exit fast.
-bool ShadowStackCollector::initializeCustomLowering(Module &M) {
- // struct FrameMap {
- // int32_t NumRoots; // Number of roots in stack frame.
- // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots.
- // void *Meta[]; // May be absent for roots without metadata.
- // };
- std::vector<const Type*> EltTys;
- EltTys.push_back(Type::Int32Ty); // 32 bits is ok up to a 32GB stack frame. :)
- EltTys.push_back(Type::Int32Ty); // Specifies length of variable length array.
- StructType *FrameMapTy = StructType::get(EltTys);
- M.addTypeName("gc_map", FrameMapTy);
- PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
-
- // struct StackEntry {
- // ShadowStackEntry *Next; // Caller's stack entry.
- // FrameMap *Map; // Pointer to constant FrameMap.
- // void *Roots[]; // Stack roots (in-place array, so we pretend).
- // };
- OpaqueType *RecursiveTy = OpaqueType::get();
-
- EltTys.clear();
- EltTys.push_back(PointerType::getUnqual(RecursiveTy));
- EltTys.push_back(FrameMapPtrTy);
- PATypeHolder LinkTyH = StructType::get(EltTys);
-
- RecursiveTy->refineAbstractTypeTo(LinkTyH.get());
- StackEntryTy = cast<StructType>(LinkTyH.get());
- const PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
- M.addTypeName("gc_stackentry", LinkTyH.get()); // FIXME: Is this safe from
- // a FunctionPass?
-
- // Get the root chain if it already exists.
- Head = M.getGlobalVariable("llvm_gc_root_chain");
- if (!Head) {
- // If the root chain does not exist, insert a new one with linkonce
- // linkage!
- Head = new GlobalVariable(StackEntryPtrTy, false,
- GlobalValue::LinkOnceLinkage,
- Constant::getNullValue(StackEntryPtrTy),
- "llvm_gc_root_chain", &M);
- } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
- Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
- Head->setLinkage(GlobalValue::LinkOnceLinkage);
- }
-
- return true;
-}
-
-bool ShadowStackCollector::IsNullValue(Value *V) {
- if (Constant *C = dyn_cast<Constant>(V))
- return C->isNullValue();
- return false;
-}
-
-void ShadowStackCollector::CollectRoots(Function &F) {
- // FIXME: Account for original alignment. Could fragment the root array.
- // Approach 1: Null initialize empty slots at runtime. Yuck.
- // Approach 2: Emit a map of the array instead of just a count.
-
- assert(Roots.empty() && "Not cleaned up?");
-
- SmallVector<std::pair<CallInst*,AllocaInst*>,16> MetaRoots;
-
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
- for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
- if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
- if (Function *F = CI->getCalledFunction())
- if (F->getIntrinsicID() == Intrinsic::gcroot) {
- std::pair<CallInst*,AllocaInst*> Pair = std::make_pair(
- CI, cast<AllocaInst>(CI->getOperand(1)->stripPointerCasts()));
- if (IsNullValue(CI->getOperand(2)))
- Roots.push_back(Pair);
- else
- MetaRoots.push_back(Pair);
- }
-
- // Number roots with metadata (usually empty) at the beginning, so that the
- // FrameMap::Meta array can be elided.
- Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
-}
-
-GetElementPtrInst *
-ShadowStackCollector::CreateGEP(IRBuilder &B, Value *BasePtr,
- int Idx, int Idx2, const char *Name) {
- Value *Indices[] = { ConstantInt::get(Type::Int32Ty, 0),
- ConstantInt::get(Type::Int32Ty, Idx),
- ConstantInt::get(Type::Int32Ty, Idx2) };
- Value* Val = B.CreateGEP(BasePtr, Indices, Indices + 3, Name);
-
- assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
-
- return dyn_cast<GetElementPtrInst>(Val);
-}
-
-GetElementPtrInst *
-ShadowStackCollector::CreateGEP(IRBuilder &B, Value *BasePtr,
- int Idx, const char *Name) {
- Value *Indices[] = { ConstantInt::get(Type::Int32Ty, 0),
- ConstantInt::get(Type::Int32Ty, Idx) };
- Value *Val = B.CreateGEP(BasePtr, Indices, Indices + 2, Name);
-
- assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
-
- return dyn_cast<GetElementPtrInst>(Val);
-}
-
-/// runOnFunction - Insert code to maintain the shadow stack.
-bool ShadowStackCollector::performCustomLowering(Function &F) {
- // Find calls to llvm.gcroot.
- CollectRoots(F);
-
- // If there are no roots in this function, then there is no need to add a
- // stack map entry for it.
- if (Roots.empty())
- return false;
-
- // Build the constant map and figure the type of the shadow stack entry.
- Value *FrameMap = GetFrameMap(F);
- const Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
-
- // Build the shadow stack entry at the very start of the function.
- BasicBlock::iterator IP = F.getEntryBlock().begin();
- IRBuilder AtEntry(IP->getParent(), IP);
-
- Instruction *StackEntry = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0,
- "gc_frame");
-
- while (isa<AllocaInst>(IP)) ++IP;
- AtEntry.SetInsertPoint(IP->getParent(), IP);
-
- // Initialize the map pointer and load the current head of the shadow stack.
- Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead");
- Instruction *EntryMapPtr = CreateGEP(AtEntry, StackEntry,0,1,"gc_frame.map");
- AtEntry.CreateStore(FrameMap, EntryMapPtr);
-
- // After all the allocas...
- for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
- // For each root, find the corresponding slot in the aggregate...
- Value *SlotPtr = CreateGEP(AtEntry, StackEntry, 1 + I, "gc_root");
-
- // And use it in lieu of the alloca.
- AllocaInst *OriginalAlloca = Roots[I].second;
- SlotPtr->takeName(OriginalAlloca);
- OriginalAlloca->replaceAllUsesWith(SlotPtr);
- }
-
- // Move past the original stores inserted by Collector::InitRoots. This isn't
- // really necessary (the collector would never see the intermediate state),
- // but it's nicer not to push the half-initialized entry onto the stack.
- while (isa<StoreInst>(IP)) ++IP;
- AtEntry.SetInsertPoint(IP->getParent(), IP);
-
- // Push the entry onto the shadow stack.
- Instruction *EntryNextPtr = CreateGEP(AtEntry,StackEntry,0,0,"gc_frame.next");
- Instruction *NewHeadVal = CreateGEP(AtEntry,StackEntry, 0, "gc_newhead");
- AtEntry.CreateStore(CurrentHead, EntryNextPtr);
- AtEntry.CreateStore(NewHeadVal, Head);
-
- // For each instruction that escapes...
- EscapeEnumerator EE(F, "gc_cleanup");
- while (IRBuilder *AtExit = EE.Next()) {
- // Pop the entry from the shadow stack. Don't reuse CurrentHead from
- // AtEntry, since that would make the value live for the entire function.
- Instruction *EntryNextPtr2 = CreateGEP(*AtExit, StackEntry, 0, 0,
- "gc_frame.next");
- Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
- AtExit->CreateStore(SavedHead, Head);
- }
-
- // Delete the original allocas (which are no longer used) and the intrinsic
- // calls (which are no longer valid). Doing this last avoids invalidating
- // iterators.
- for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
- Roots[I].first->eraseFromParent();
- Roots[I].second->eraseFromParent();
- }
-
- Roots.clear();
- return true;
-}