summaryrefslogtreecommitdiff
path: root/release_23/lib/ExecutionEngine/ExecutionEngine.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'release_23/lib/ExecutionEngine/ExecutionEngine.cpp')
-rw-r--r--release_23/lib/ExecutionEngine/ExecutionEngine.cpp980
1 files changed, 0 insertions, 980 deletions
diff --git a/release_23/lib/ExecutionEngine/ExecutionEngine.cpp b/release_23/lib/ExecutionEngine/ExecutionEngine.cpp
deleted file mode 100644
index a56951d2c526..000000000000
--- a/release_23/lib/ExecutionEngine/ExecutionEngine.cpp
+++ /dev/null
@@ -1,980 +0,0 @@
-//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the common interface used by the various execution engine
-// subclasses.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "jit"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/ModuleProvider.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Config/alloca.h"
-#include "llvm/ExecutionEngine/ExecutionEngine.h"
-#include "llvm/ExecutionEngine/GenericValue.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/MutexGuard.h"
-#include "llvm/System/DynamicLibrary.h"
-#include "llvm/System/Host.h"
-#include "llvm/Target/TargetData.h"
-#include <cmath>
-#include <cstring>
-using namespace llvm;
-
-STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
-STATISTIC(NumGlobals , "Number of global vars initialized");
-
-ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
-ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
-ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
-
-
-ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
- LazyCompilationDisabled = false;
- Modules.push_back(P);
- assert(P && "ModuleProvider is null?");
-}
-
-ExecutionEngine::~ExecutionEngine() {
- clearAllGlobalMappings();
- for (unsigned i = 0, e = Modules.size(); i != e; ++i)
- delete Modules[i];
-}
-
-/// removeModuleProvider - Remove a ModuleProvider from the list of modules.
-/// Release module from ModuleProvider.
-Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
- std::string *ErrInfo) {
- for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
- E = Modules.end(); I != E; ++I) {
- ModuleProvider *MP = *I;
- if (MP == P) {
- Modules.erase(I);
- return MP->releaseModule(ErrInfo);
- }
- }
- return NULL;
-}
-
-/// FindFunctionNamed - Search all of the active modules to find the one that
-/// defines FnName. This is very slow operation and shouldn't be used for
-/// general code.
-Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
- for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
- if (Function *F = Modules[i]->getModule()->getFunction(FnName))
- return F;
- }
- return 0;
-}
-
-
-/// addGlobalMapping - Tell the execution engine that the specified global is
-/// at the specified location. This is used internally as functions are JIT'd
-/// and as global variables are laid out in memory. It can and should also be
-/// used by clients of the EE that want to have an LLVM global overlay
-/// existing data in memory.
-void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
- MutexGuard locked(lock);
-
- void *&CurVal = state.getGlobalAddressMap(locked)[GV];
- assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
- CurVal = Addr;
-
- // If we are using the reverse mapping, add it too
- if (!state.getGlobalAddressReverseMap(locked).empty()) {
- const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
- assert((V == 0 || GV == 0) && "GlobalMapping already established!");
- V = GV;
- }
-}
-
-/// clearAllGlobalMappings - Clear all global mappings and start over again
-/// use in dynamic compilation scenarios when you want to move globals
-void ExecutionEngine::clearAllGlobalMappings() {
- MutexGuard locked(lock);
-
- state.getGlobalAddressMap(locked).clear();
- state.getGlobalAddressReverseMap(locked).clear();
-}
-
-/// updateGlobalMapping - Replace an existing mapping for GV with a new
-/// address. This updates both maps as required. If "Addr" is null, the
-/// entry for the global is removed from the mappings.
-void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
- MutexGuard locked(lock);
-
- std::map<const GlobalValue*, void *> &Map = state.getGlobalAddressMap(locked);
-
- // Deleting from the mapping?
- if (Addr == 0) {
- std::map<const GlobalValue*, void *>::iterator I = Map.find(GV);
- void *OldVal;
- if (I == Map.end())
- OldVal = 0;
- else {
- OldVal = I->second;
- Map.erase(I);
- }
-
- if (!state.getGlobalAddressReverseMap(locked).empty())
- state.getGlobalAddressReverseMap(locked).erase(Addr);
- return OldVal;
- }
-
- void *&CurVal = Map[GV];
- void *OldVal = CurVal;
-
- if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
- state.getGlobalAddressReverseMap(locked).erase(CurVal);
- CurVal = Addr;
-
- // If we are using the reverse mapping, add it too
- if (!state.getGlobalAddressReverseMap(locked).empty()) {
- const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
- assert((V == 0 || GV == 0) && "GlobalMapping already established!");
- V = GV;
- }
- return OldVal;
-}
-
-/// getPointerToGlobalIfAvailable - This returns the address of the specified
-/// global value if it is has already been codegen'd, otherwise it returns null.
-///
-void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
- MutexGuard locked(lock);
-
- std::map<const GlobalValue*, void*>::iterator I =
- state.getGlobalAddressMap(locked).find(GV);
- return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
-}
-
-/// getGlobalValueAtAddress - Return the LLVM global value object that starts
-/// at the specified address.
-///
-const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
- MutexGuard locked(lock);
-
- // If we haven't computed the reverse mapping yet, do so first.
- if (state.getGlobalAddressReverseMap(locked).empty()) {
- for (std::map<const GlobalValue*, void *>::iterator
- I = state.getGlobalAddressMap(locked).begin(),
- E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
- state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
- I->first));
- }
-
- std::map<void *, const GlobalValue*>::iterator I =
- state.getGlobalAddressReverseMap(locked).find(Addr);
- return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
-}
-
-// CreateArgv - Turn a vector of strings into a nice argv style array of
-// pointers to null terminated strings.
-//
-static void *CreateArgv(ExecutionEngine *EE,
- const std::vector<std::string> &InputArgv) {
- unsigned PtrSize = EE->getTargetData()->getPointerSize();
- char *Result = new char[(InputArgv.size()+1)*PtrSize];
-
- DOUT << "ARGV = " << (void*)Result << "\n";
- const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty);
-
- for (unsigned i = 0; i != InputArgv.size(); ++i) {
- unsigned Size = InputArgv[i].size()+1;
- char *Dest = new char[Size];
- DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n";
-
- std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
- Dest[Size-1] = 0;
-
- // Endian safe: Result[i] = (PointerTy)Dest;
- EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
- SBytePtr);
- }
-
- // Null terminate it
- EE->StoreValueToMemory(PTOGV(0),
- (GenericValue*)(Result+InputArgv.size()*PtrSize),
- SBytePtr);
- return Result;
-}
-
-
-/// runStaticConstructorsDestructors - This method is used to execute all of
-/// the static constructors or destructors for a program, depending on the
-/// value of isDtors.
-void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
- const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
-
- // Execute global ctors/dtors for each module in the program.
- for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
- GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name);
-
- // If this global has internal linkage, or if it has a use, then it must be
- // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
- // this is the case, don't execute any of the global ctors, __main will do
- // it.
- if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue;
-
- // Should be an array of '{ int, void ()* }' structs. The first value is
- // the init priority, which we ignore.
- ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
- if (!InitList) continue;
- for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
- if (ConstantStruct *CS =
- dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
- if (CS->getNumOperands() != 2) break; // Not array of 2-element structs.
-
- Constant *FP = CS->getOperand(1);
- if (FP->isNullValue())
- break; // Found a null terminator, exit.
-
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
- if (CE->isCast())
- FP = CE->getOperand(0);
- if (Function *F = dyn_cast<Function>(FP)) {
- // Execute the ctor/dtor function!
- runFunction(F, std::vector<GenericValue>());
- }
- }
- }
-}
-
-/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
-static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
- unsigned PtrSize = EE->getTargetData()->getPointerSize();
- for (unsigned i = 0; i < PtrSize; ++i)
- if (*(i + (uint8_t*)Loc))
- return false;
- return true;
-}
-
-/// runFunctionAsMain - This is a helper function which wraps runFunction to
-/// handle the common task of starting up main with the specified argc, argv,
-/// and envp parameters.
-int ExecutionEngine::runFunctionAsMain(Function *Fn,
- const std::vector<std::string> &argv,
- const char * const * envp) {
- std::vector<GenericValue> GVArgs;
- GenericValue GVArgc;
- GVArgc.IntVal = APInt(32, argv.size());
-
- // Check main() type
- unsigned NumArgs = Fn->getFunctionType()->getNumParams();
- const FunctionType *FTy = Fn->getFunctionType();
- const Type* PPInt8Ty =
- PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty));
- switch (NumArgs) {
- case 3:
- if (FTy->getParamType(2) != PPInt8Ty) {
- cerr << "Invalid type for third argument of main() supplied\n";
- abort();
- }
- // FALLS THROUGH
- case 2:
- if (FTy->getParamType(1) != PPInt8Ty) {
- cerr << "Invalid type for second argument of main() supplied\n";
- abort();
- }
- // FALLS THROUGH
- case 1:
- if (FTy->getParamType(0) != Type::Int32Ty) {
- cerr << "Invalid type for first argument of main() supplied\n";
- abort();
- }
- // FALLS THROUGH
- case 0:
- if (FTy->getReturnType() != Type::Int32Ty &&
- FTy->getReturnType() != Type::VoidTy) {
- cerr << "Invalid return type of main() supplied\n";
- abort();
- }
- break;
- default:
- cerr << "Invalid number of arguments of main() supplied\n";
- abort();
- }
-
- if (NumArgs) {
- GVArgs.push_back(GVArgc); // Arg #0 = argc.
- if (NumArgs > 1) {
- GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
- assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
- "argv[0] was null after CreateArgv");
- if (NumArgs > 2) {
- std::vector<std::string> EnvVars;
- for (unsigned i = 0; envp[i]; ++i)
- EnvVars.push_back(envp[i]);
- GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
- }
- }
- }
- return runFunction(Fn, GVArgs).IntVal.getZExtValue();
-}
-
-/// If possible, create a JIT, unless the caller specifically requests an
-/// Interpreter or there's an error. If even an Interpreter cannot be created,
-/// NULL is returned.
-///
-ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
- bool ForceInterpreter,
- std::string *ErrorStr) {
- ExecutionEngine *EE = 0;
-
- // Make sure we can resolve symbols in the program as well. The zero arg
- // to the function tells DynamicLibrary to load the program, not a library.
- if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
- return 0;
-
- // Unless the interpreter was explicitly selected, try making a JIT.
- if (!ForceInterpreter && JITCtor)
- EE = JITCtor(MP, ErrorStr);
-
- // If we can't make a JIT, make an interpreter instead.
- if (EE == 0 && InterpCtor)
- EE = InterpCtor(MP, ErrorStr);
-
- return EE;
-}
-
-ExecutionEngine *ExecutionEngine::create(Module *M) {
- return create(new ExistingModuleProvider(M));
-}
-
-/// getPointerToGlobal - This returns the address of the specified global
-/// value. This may involve code generation if it's a function.
-///
-void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
- if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
- return getPointerToFunction(F);
-
- MutexGuard locked(lock);
- void *p = state.getGlobalAddressMap(locked)[GV];
- if (p)
- return p;
-
- // Global variable might have been added since interpreter started.
- if (GlobalVariable *GVar =
- const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
- EmitGlobalVariable(GVar);
- else
- assert(0 && "Global hasn't had an address allocated yet!");
- return state.getGlobalAddressMap(locked)[GV];
-}
-
-/// This function converts a Constant* into a GenericValue. The interesting
-/// part is if C is a ConstantExpr.
-/// @brief Get a GenericValue for a Constant*
-GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
- // If its undefined, return the garbage.
- if (isa<UndefValue>(C))
- return GenericValue();
-
- // If the value is a ConstantExpr
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- Constant *Op0 = CE->getOperand(0);
- switch (CE->getOpcode()) {
- case Instruction::GetElementPtr: {
- // Compute the index
- GenericValue Result = getConstantValue(Op0);
- SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
- uint64_t Offset =
- TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
-
- char* tmp = (char*) Result.PointerVal;
- Result = PTOGV(tmp + Offset);
- return Result;
- }
- case Instruction::Trunc: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
- GV.IntVal = GV.IntVal.trunc(BitWidth);
- return GV;
- }
- case Instruction::ZExt: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
- GV.IntVal = GV.IntVal.zext(BitWidth);
- return GV;
- }
- case Instruction::SExt: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
- GV.IntVal = GV.IntVal.sext(BitWidth);
- return GV;
- }
- case Instruction::FPTrunc: {
- // FIXME long double
- GenericValue GV = getConstantValue(Op0);
- GV.FloatVal = float(GV.DoubleVal);
- return GV;
- }
- case Instruction::FPExt:{
- // FIXME long double
- GenericValue GV = getConstantValue(Op0);
- GV.DoubleVal = double(GV.FloatVal);
- return GV;
- }
- case Instruction::UIToFP: {
- GenericValue GV = getConstantValue(Op0);
- if (CE->getType() == Type::FloatTy)
- GV.FloatVal = float(GV.IntVal.roundToDouble());
- else if (CE->getType() == Type::DoubleTy)
- GV.DoubleVal = GV.IntVal.roundToDouble();
- else if (CE->getType() == Type::X86_FP80Ty) {
- const uint64_t zero[] = {0, 0};
- APFloat apf = APFloat(APInt(80, 2, zero));
- (void)apf.convertFromAPInt(GV.IntVal,
- false,
- APFloat::rmNearestTiesToEven);
- GV.IntVal = apf.convertToAPInt();
- }
- return GV;
- }
- case Instruction::SIToFP: {
- GenericValue GV = getConstantValue(Op0);
- if (CE->getType() == Type::FloatTy)
- GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
- else if (CE->getType() == Type::DoubleTy)
- GV.DoubleVal = GV.IntVal.signedRoundToDouble();
- else if (CE->getType() == Type::X86_FP80Ty) {
- const uint64_t zero[] = { 0, 0};
- APFloat apf = APFloat(APInt(80, 2, zero));
- (void)apf.convertFromAPInt(GV.IntVal,
- true,
- APFloat::rmNearestTiesToEven);
- GV.IntVal = apf.convertToAPInt();
- }
- return GV;
- }
- case Instruction::FPToUI: // double->APInt conversion handles sign
- case Instruction::FPToSI: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
- if (Op0->getType() == Type::FloatTy)
- GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
- else if (Op0->getType() == Type::DoubleTy)
- GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
- else if (Op0->getType() == Type::X86_FP80Ty) {
- APFloat apf = APFloat(GV.IntVal);
- uint64_t v;
- (void)apf.convertToInteger(&v, BitWidth,
- CE->getOpcode()==Instruction::FPToSI,
- APFloat::rmTowardZero);
- GV.IntVal = v; // endian?
- }
- return GV;
- }
- case Instruction::PtrToInt: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t PtrWidth = TD->getPointerSizeInBits();
- GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
- return GV;
- }
- case Instruction::IntToPtr: {
- GenericValue GV = getConstantValue(Op0);
- uint32_t PtrWidth = TD->getPointerSizeInBits();
- if (PtrWidth != GV.IntVal.getBitWidth())
- GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
- assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
- GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
- return GV;
- }
- case Instruction::BitCast: {
- GenericValue GV = getConstantValue(Op0);
- const Type* DestTy = CE->getType();
- switch (Op0->getType()->getTypeID()) {
- default: assert(0 && "Invalid bitcast operand");
- case Type::IntegerTyID:
- assert(DestTy->isFloatingPoint() && "invalid bitcast");
- if (DestTy == Type::FloatTy)
- GV.FloatVal = GV.IntVal.bitsToFloat();
- else if (DestTy == Type::DoubleTy)
- GV.DoubleVal = GV.IntVal.bitsToDouble();
- break;
- case Type::FloatTyID:
- assert(DestTy == Type::Int32Ty && "Invalid bitcast");
- GV.IntVal.floatToBits(GV.FloatVal);
- break;
- case Type::DoubleTyID:
- assert(DestTy == Type::Int64Ty && "Invalid bitcast");
- GV.IntVal.doubleToBits(GV.DoubleVal);
- break;
- case Type::PointerTyID:
- assert(isa<PointerType>(DestTy) && "Invalid bitcast");
- break; // getConstantValue(Op0) above already converted it
- }
- return GV;
- }
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- GenericValue LHS = getConstantValue(Op0);
- GenericValue RHS = getConstantValue(CE->getOperand(1));
- GenericValue GV;
- switch (CE->getOperand(0)->getType()->getTypeID()) {
- default: assert(0 && "Bad add type!"); abort();
- case Type::IntegerTyID:
- switch (CE->getOpcode()) {
- default: assert(0 && "Invalid integer opcode");
- case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
- case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
- case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
- case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
- case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
- case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
- case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
- case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
- case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
- case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
- }
- break;
- case Type::FloatTyID:
- switch (CE->getOpcode()) {
- default: assert(0 && "Invalid float opcode"); abort();
- case Instruction::Add:
- GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
- case Instruction::Sub:
- GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
- case Instruction::Mul:
- GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
- case Instruction::FDiv:
- GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
- case Instruction::FRem:
- GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
- }
- break;
- case Type::DoubleTyID:
- switch (CE->getOpcode()) {
- default: assert(0 && "Invalid double opcode"); abort();
- case Instruction::Add:
- GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
- case Instruction::Sub:
- GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
- case Instruction::Mul:
- GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
- case Instruction::FDiv:
- GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
- case Instruction::FRem:
- GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
- }
- break;
- case Type::X86_FP80TyID:
- case Type::PPC_FP128TyID:
- case Type::FP128TyID: {
- APFloat apfLHS = APFloat(LHS.IntVal);
- switch (CE->getOpcode()) {
- default: assert(0 && "Invalid long double opcode"); abort();
- case Instruction::Add:
- apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.convertToAPInt();
- break;
- case Instruction::Sub:
- apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.convertToAPInt();
- break;
- case Instruction::Mul:
- apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.convertToAPInt();
- break;
- case Instruction::FDiv:
- apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.convertToAPInt();
- break;
- case Instruction::FRem:
- apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
- GV.IntVal = apfLHS.convertToAPInt();
- break;
- }
- }
- break;
- }
- return GV;
- }
- default:
- break;
- }
- cerr << "ConstantExpr not handled: " << *CE << "\n";
- abort();
- }
-
- GenericValue Result;
- switch (C->getType()->getTypeID()) {
- case Type::FloatTyID:
- Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
- break;
- case Type::DoubleTyID:
- Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
- break;
- case Type::X86_FP80TyID:
- case Type::FP128TyID:
- case Type::PPC_FP128TyID:
- Result.IntVal = cast <ConstantFP>(C)->getValueAPF().convertToAPInt();
- break;
- case Type::IntegerTyID:
- Result.IntVal = cast<ConstantInt>(C)->getValue();
- break;
- case Type::PointerTyID:
- if (isa<ConstantPointerNull>(C))
- Result.PointerVal = 0;
- else if (const Function *F = dyn_cast<Function>(C))
- Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
- else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
- Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
- else
- assert(0 && "Unknown constant pointer type!");
- break;
- default:
- cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
- abort();
- }
- return Result;
-}
-
-/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
-/// with the integer held in IntVal.
-static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
- unsigned StoreBytes) {
- assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
- uint8_t *Src = (uint8_t *)IntVal.getRawData();
-
- if (sys::littleEndianHost())
- // Little-endian host - the source is ordered from LSB to MSB. Order the
- // destination from LSB to MSB: Do a straight copy.
- memcpy(Dst, Src, StoreBytes);
- else {
- // Big-endian host - the source is an array of 64 bit words ordered from
- // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
- // from MSB to LSB: Reverse the word order, but not the bytes in a word.
- while (StoreBytes > sizeof(uint64_t)) {
- StoreBytes -= sizeof(uint64_t);
- // May not be aligned so use memcpy.
- memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
- Src += sizeof(uint64_t);
- }
-
- memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
- }
-}
-
-/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
-/// is the address of the memory at which to store Val, cast to GenericValue *.
-/// It is not a pointer to a GenericValue containing the address at which to
-/// store Val.
-void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
- const Type *Ty) {
- const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
-
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
- break;
- case Type::FloatTyID:
- *((float*)Ptr) = Val.FloatVal;
- break;
- case Type::DoubleTyID:
- *((double*)Ptr) = Val.DoubleVal;
- break;
- case Type::X86_FP80TyID: {
- uint16_t *Dest = (uint16_t*)Ptr;
- const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData();
- // This is endian dependent, but it will only work on x86 anyway.
- Dest[0] = Src[4];
- Dest[1] = Src[0];
- Dest[2] = Src[1];
- Dest[3] = Src[2];
- Dest[4] = Src[3];
- break;
- }
- case Type::PointerTyID:
- // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
- if (StoreBytes != sizeof(PointerTy))
- memset(Ptr, 0, StoreBytes);
-
- *((PointerTy*)Ptr) = Val.PointerVal;
- break;
- default:
- cerr << "Cannot store value of type " << *Ty << "!\n";
- }
-
- if (sys::littleEndianHost() != getTargetData()->isLittleEndian())
- // Host and target are different endian - reverse the stored bytes.
- std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
-}
-
-/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
-/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
-static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
- assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
- uint8_t *Dst = (uint8_t *)IntVal.getRawData();
-
- if (sys::littleEndianHost())
- // Little-endian host - the destination must be ordered from LSB to MSB.
- // The source is ordered from LSB to MSB: Do a straight copy.
- memcpy(Dst, Src, LoadBytes);
- else {
- // Big-endian - the destination is an array of 64 bit words ordered from
- // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
- // ordered from MSB to LSB: Reverse the word order, but not the bytes in
- // a word.
- while (LoadBytes > sizeof(uint64_t)) {
- LoadBytes -= sizeof(uint64_t);
- // May not be aligned so use memcpy.
- memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
- Dst += sizeof(uint64_t);
- }
-
- memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
- }
-}
-
-/// FIXME: document
-///
-void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
- GenericValue *Ptr,
- const Type *Ty) {
- const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
-
- if (sys::littleEndianHost() != getTargetData()->isLittleEndian()) {
- // Host and target are different endian - reverse copy the stored
- // bytes into a buffer, and load from that.
- uint8_t *Src = (uint8_t*)Ptr;
- uint8_t *Buf = (uint8_t*)alloca(LoadBytes);
- std::reverse_copy(Src, Src + LoadBytes, Buf);
- Ptr = (GenericValue*)Buf;
- }
-
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- // An APInt with all words initially zero.
- Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
- LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
- break;
- case Type::FloatTyID:
- Result.FloatVal = *((float*)Ptr);
- break;
- case Type::DoubleTyID:
- Result.DoubleVal = *((double*)Ptr);
- break;
- case Type::PointerTyID:
- Result.PointerVal = *((PointerTy*)Ptr);
- break;
- case Type::X86_FP80TyID: {
- // This is endian dependent, but it will only work on x86 anyway.
- // FIXME: Will not trap if loading a signaling NaN.
- uint16_t *p = (uint16_t*)Ptr;
- union {
- uint16_t x[8];
- uint64_t y[2];
- };
- x[0] = p[1];
- x[1] = p[2];
- x[2] = p[3];
- x[3] = p[4];
- x[4] = p[0];
- Result.IntVal = APInt(80, 2, y);
- break;
- }
- default:
- cerr << "Cannot load value of type " << *Ty << "!\n";
- abort();
- }
-}
-
-// InitializeMemory - Recursive function to apply a Constant value into the
-// specified memory location...
-//
-void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
- if (isa<UndefValue>(Init)) {
- return;
- } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
- unsigned ElementSize =
- getTargetData()->getABITypeSize(CP->getType()->getElementType());
- for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
- InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
- return;
- } else if (isa<ConstantAggregateZero>(Init)) {
- memset(Addr, 0, (size_t)getTargetData()->getABITypeSize(Init->getType()));
- return;
- } else if (Init->getType()->isFirstClassType()) {
- GenericValue Val = getConstantValue(Init);
- StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
- return;
- }
-
- switch (Init->getType()->getTypeID()) {
- case Type::ArrayTyID: {
- const ConstantArray *CPA = cast<ConstantArray>(Init);
- unsigned ElementSize =
- getTargetData()->getABITypeSize(CPA->getType()->getElementType());
- for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
- InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
- return;
- }
-
- case Type::StructTyID: {
- const ConstantStruct *CPS = cast<ConstantStruct>(Init);
- const StructLayout *SL =
- getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
- for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
- InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
- return;
- }
-
- default:
- cerr << "Bad Type: " << *Init->getType() << "\n";
- assert(0 && "Unknown constant type to initialize memory with!");
- }
-}
-
-/// EmitGlobals - Emit all of the global variables to memory, storing their
-/// addresses into GlobalAddress. This must make sure to copy the contents of
-/// their initializers into the memory.
-///
-void ExecutionEngine::emitGlobals() {
- const TargetData *TD = getTargetData();
-
- // Loop over all of the global variables in the program, allocating the memory
- // to hold them. If there is more than one module, do a prepass over globals
- // to figure out how the different modules should link together.
- //
- std::map<std::pair<std::string, const Type*>,
- const GlobalValue*> LinkedGlobalsMap;
-
- if (Modules.size() != 1) {
- for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
- Module &M = *Modules[m]->getModule();
- for (Module::const_global_iterator I = M.global_begin(),
- E = M.global_end(); I != E; ++I) {
- const GlobalValue *GV = I;
- if (GV->hasInternalLinkage() || GV->isDeclaration() ||
- GV->hasAppendingLinkage() || !GV->hasName())
- continue;// Ignore external globals and globals with internal linkage.
-
- const GlobalValue *&GVEntry =
- LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
-
- // If this is the first time we've seen this global, it is the canonical
- // version.
- if (!GVEntry) {
- GVEntry = GV;
- continue;
- }
-
- // If the existing global is strong, never replace it.
- if (GVEntry->hasExternalLinkage() ||
- GVEntry->hasDLLImportLinkage() ||
- GVEntry->hasDLLExportLinkage())
- continue;
-
- // Otherwise, we know it's linkonce/weak, replace it if this is a strong
- // symbol.
- if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
- GVEntry = GV;
- }
- }
- }
-
- std::vector<const GlobalValue*> NonCanonicalGlobals;
- for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
- Module &M = *Modules[m]->getModule();
- for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I) {
- // In the multi-module case, see what this global maps to.
- if (!LinkedGlobalsMap.empty()) {
- if (const GlobalValue *GVEntry =
- LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
- // If something else is the canonical global, ignore this one.
- if (GVEntry != &*I) {
- NonCanonicalGlobals.push_back(I);
- continue;
- }
- }
- }
-
- if (!I->isDeclaration()) {
- // Get the type of the global.
- const Type *Ty = I->getType()->getElementType();
-
- // Allocate some memory for it!
- unsigned Size = TD->getABITypeSize(Ty);
- addGlobalMapping(I, new char[Size]);
- } else {
- // External variable reference. Try to use the dynamic loader to
- // get a pointer to it.
- if (void *SymAddr =
- sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
- addGlobalMapping(I, SymAddr);
- else {
- cerr << "Could not resolve external global address: "
- << I->getName() << "\n";
- abort();
- }
- }
- }
-
- // If there are multiple modules, map the non-canonical globals to their
- // canonical location.
- if (!NonCanonicalGlobals.empty()) {
- for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
- const GlobalValue *GV = NonCanonicalGlobals[i];
- const GlobalValue *CGV =
- LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
- void *Ptr = getPointerToGlobalIfAvailable(CGV);
- assert(Ptr && "Canonical global wasn't codegen'd!");
- addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV));
- }
- }
-
- // Now that all of the globals are set up in memory, loop through them all
- // and initialize their contents.
- for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I) {
- if (!I->isDeclaration()) {
- if (!LinkedGlobalsMap.empty()) {
- if (const GlobalValue *GVEntry =
- LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
- if (GVEntry != &*I) // Not the canonical variable.
- continue;
- }
- EmitGlobalVariable(I);
- }
- }
- }
-}
-
-// EmitGlobalVariable - This method emits the specified global variable to the
-// address specified in GlobalAddresses, or allocates new memory if it's not
-// already in the map.
-void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
- void *GA = getPointerToGlobalIfAvailable(GV);
- DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n";
-
- const Type *ElTy = GV->getType()->getElementType();
- size_t GVSize = (size_t)getTargetData()->getABITypeSize(ElTy);
- if (GA == 0) {
- // If it's not already specified, allocate memory for the global.
- GA = new char[GVSize];
- addGlobalMapping(GV, GA);
- }
-
- InitializeMemory(GV->getInitializer(), GA);
- NumInitBytes += (unsigned)GVSize;
- ++NumGlobals;
-}