summaryrefslogtreecommitdiff
path: root/release_23/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'release_23/lib/Target/PowerPC/PPCISelDAGToDAG.cpp')
-rw-r--r--release_23/lib/Target/PowerPC/PPCISelDAGToDAG.cpp1142
1 files changed, 0 insertions, 1142 deletions
diff --git a/release_23/lib/Target/PowerPC/PPCISelDAGToDAG.cpp b/release_23/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
deleted file mode 100644
index d73d8aa37050..000000000000
--- a/release_23/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
+++ /dev/null
@@ -1,1142 +0,0 @@
-//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines a pattern matching instruction selector for PowerPC,
-// converting from a legalized dag to a PPC dag.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "ppc-codegen"
-#include "PPC.h"
-#include "PPCPredicates.h"
-#include "PPCTargetMachine.h"
-#include "PPCISelLowering.h"
-#include "PPCHazardRecognizers.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/CodeGen/SelectionDAGISel.h"
-#include "llvm/Target/TargetOptions.h"
-#include "llvm/Constants.h"
-#include "llvm/GlobalValue.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/Compiler.h"
-#include <queue>
-#include <set>
-using namespace llvm;
-
-namespace {
- //===--------------------------------------------------------------------===//
- /// PPCDAGToDAGISel - PPC specific code to select PPC machine
- /// instructions for SelectionDAG operations.
- ///
- class VISIBILITY_HIDDEN PPCDAGToDAGISel : public SelectionDAGISel {
- PPCTargetMachine &TM;
- PPCTargetLowering PPCLowering;
- const PPCSubtarget &PPCSubTarget;
- unsigned GlobalBaseReg;
- public:
- PPCDAGToDAGISel(PPCTargetMachine &tm)
- : SelectionDAGISel(PPCLowering), TM(tm),
- PPCLowering(*TM.getTargetLowering()),
- PPCSubTarget(*TM.getSubtargetImpl()) {}
-
- virtual bool runOnFunction(Function &Fn) {
- // Make sure we re-emit a set of the global base reg if necessary
- GlobalBaseReg = 0;
- SelectionDAGISel::runOnFunction(Fn);
-
- InsertVRSaveCode(Fn);
- return true;
- }
-
- /// getI32Imm - Return a target constant with the specified value, of type
- /// i32.
- inline SDOperand getI32Imm(unsigned Imm) {
- return CurDAG->getTargetConstant(Imm, MVT::i32);
- }
-
- /// getI64Imm - Return a target constant with the specified value, of type
- /// i64.
- inline SDOperand getI64Imm(uint64_t Imm) {
- return CurDAG->getTargetConstant(Imm, MVT::i64);
- }
-
- /// getSmallIPtrImm - Return a target constant of pointer type.
- inline SDOperand getSmallIPtrImm(unsigned Imm) {
- return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
- }
-
- /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
- /// with any number of 0s on either side. The 1s are allowed to wrap from
- /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
- /// 0x0F0F0000 is not, since all 1s are not contiguous.
- static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
-
-
- /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
- /// rotate and mask opcode and mask operation.
- static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
- unsigned &SH, unsigned &MB, unsigned &ME);
-
- /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
- /// base register. Return the virtual register that holds this value.
- SDNode *getGlobalBaseReg();
-
- // Select - Convert the specified operand from a target-independent to a
- // target-specific node if it hasn't already been changed.
- SDNode *Select(SDOperand Op);
-
- SDNode *SelectBitfieldInsert(SDNode *N);
-
- /// SelectCC - Select a comparison of the specified values with the
- /// specified condition code, returning the CR# of the expression.
- SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
-
- /// SelectAddrImm - Returns true if the address N can be represented by
- /// a base register plus a signed 16-bit displacement [r+imm].
- bool SelectAddrImm(SDOperand Op, SDOperand N, SDOperand &Disp,
- SDOperand &Base) {
- return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
- }
-
- /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
- /// immediate field. Because preinc imms have already been validated, just
- /// accept it.
- bool SelectAddrImmOffs(SDOperand Op, SDOperand N, SDOperand &Out) const {
- Out = N;
- return true;
- }
-
- /// SelectAddrIdx - Given the specified addressed, check to see if it can be
- /// represented as an indexed [r+r] operation. Returns false if it can
- /// be represented by [r+imm], which are preferred.
- bool SelectAddrIdx(SDOperand Op, SDOperand N, SDOperand &Base,
- SDOperand &Index) {
- return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
- }
-
- /// SelectAddrIdxOnly - Given the specified addressed, force it to be
- /// represented as an indexed [r+r] operation.
- bool SelectAddrIdxOnly(SDOperand Op, SDOperand N, SDOperand &Base,
- SDOperand &Index) {
- return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
- }
-
- /// SelectAddrImmShift - Returns true if the address N can be represented by
- /// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable
- /// for use by STD and friends.
- bool SelectAddrImmShift(SDOperand Op, SDOperand N, SDOperand &Disp,
- SDOperand &Base) {
- return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
- }
-
- /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
- /// inline asm expressions.
- virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
- char ConstraintCode,
- std::vector<SDOperand> &OutOps,
- SelectionDAG &DAG) {
- SDOperand Op0, Op1;
- switch (ConstraintCode) {
- default: return true;
- case 'm': // memory
- if (!SelectAddrIdx(Op, Op, Op0, Op1))
- SelectAddrImm(Op, Op, Op0, Op1);
- break;
- case 'o': // offsetable
- if (!SelectAddrImm(Op, Op, Op0, Op1)) {
- Op0 = Op;
- AddToISelQueue(Op0); // r+0.
- Op1 = getSmallIPtrImm(0);
- }
- break;
- case 'v': // not offsetable
- SelectAddrIdxOnly(Op, Op, Op0, Op1);
- break;
- }
-
- OutOps.push_back(Op0);
- OutOps.push_back(Op1);
- return false;
- }
-
- SDOperand BuildSDIVSequence(SDNode *N);
- SDOperand BuildUDIVSequence(SDNode *N);
-
- /// InstructionSelectBasicBlock - This callback is invoked by
- /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
- virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
-
- void InsertVRSaveCode(Function &Fn);
-
- virtual const char *getPassName() const {
- return "PowerPC DAG->DAG Pattern Instruction Selection";
- }
-
- /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
- /// this target when scheduling the DAG.
- virtual HazardRecognizer *CreateTargetHazardRecognizer() {
- // Should use subtarget info to pick the right hazard recognizer. For
- // now, always return a PPC970 recognizer.
- const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo();
- assert(II && "No InstrInfo?");
- return new PPCHazardRecognizer970(*II);
- }
-
-// Include the pieces autogenerated from the target description.
-#include "PPCGenDAGISel.inc"
-
-private:
- SDNode *SelectSETCC(SDOperand Op);
- };
-}
-
-/// InstructionSelectBasicBlock - This callback is invoked by
-/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
-void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
- DEBUG(BB->dump());
-
- // Select target instructions for the DAG.
- DAG.setRoot(SelectRoot(DAG.getRoot()));
- DAG.RemoveDeadNodes();
-
- // Emit machine code to BB.
- ScheduleAndEmitDAG(DAG);
-}
-
-/// InsertVRSaveCode - Once the entire function has been instruction selected,
-/// all virtual registers are created and all machine instructions are built,
-/// check to see if we need to save/restore VRSAVE. If so, do it.
-void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
- // Check to see if this function uses vector registers, which means we have to
- // save and restore the VRSAVE register and update it with the regs we use.
- //
- // In this case, there will be virtual registers of vector type type created
- // by the scheduler. Detect them now.
- MachineFunction &Fn = MachineFunction::get(&F);
- bool HasVectorVReg = false;
- for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
- e = RegInfo->getLastVirtReg()+1; i != e; ++i)
- if (RegInfo->getRegClass(i) == &PPC::VRRCRegClass) {
- HasVectorVReg = true;
- break;
- }
- if (!HasVectorVReg) return; // nothing to do.
-
- // If we have a vector register, we want to emit code into the entry and exit
- // blocks to save and restore the VRSAVE register. We do this here (instead
- // of marking all vector instructions as clobbering VRSAVE) for two reasons:
- //
- // 1. This (trivially) reduces the load on the register allocator, by not
- // having to represent the live range of the VRSAVE register.
- // 2. This (more significantly) allows us to create a temporary virtual
- // register to hold the saved VRSAVE value, allowing this temporary to be
- // register allocated, instead of forcing it to be spilled to the stack.
-
- // Create two vregs - one to hold the VRSAVE register that is live-in to the
- // function and one for the value after having bits or'd into it.
- unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
- unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
-
- const TargetInstrInfo &TII = *TM.getInstrInfo();
- MachineBasicBlock &EntryBB = *Fn.begin();
- // Emit the following code into the entry block:
- // InVRSAVE = MFVRSAVE
- // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
- // MTVRSAVE UpdatedVRSAVE
- MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
- BuildMI(EntryBB, IP, TII.get(PPC::MFVRSAVE), InVRSAVE);
- BuildMI(EntryBB, IP, TII.get(PPC::UPDATE_VRSAVE),
- UpdatedVRSAVE).addReg(InVRSAVE);
- BuildMI(EntryBB, IP, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
-
- // Find all return blocks, outputting a restore in each epilog.
- for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
- if (!BB->empty() && BB->back().getDesc().isReturn()) {
- IP = BB->end(); --IP;
-
- // Skip over all terminator instructions, which are part of the return
- // sequence.
- MachineBasicBlock::iterator I2 = IP;
- while (I2 != BB->begin() && (--I2)->getDesc().isTerminator())
- IP = I2;
-
- // Emit: MTVRSAVE InVRSave
- BuildMI(*BB, IP, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
- }
- }
-}
-
-
-/// getGlobalBaseReg - Output the instructions required to put the
-/// base address to use for accessing globals into a register.
-///
-SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
- if (!GlobalBaseReg) {
- const TargetInstrInfo &TII = *TM.getInstrInfo();
- // Insert the set of GlobalBaseReg into the first MBB of the function
- MachineBasicBlock &FirstMBB = BB->getParent()->front();
- MachineBasicBlock::iterator MBBI = FirstMBB.begin();
-
- if (PPCLowering.getPointerTy() == MVT::i32) {
- GlobalBaseReg = RegInfo->createVirtualRegister(PPC::GPRCRegisterClass);
- BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR), PPC::LR);
- BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR), GlobalBaseReg);
- } else {
- GlobalBaseReg = RegInfo->createVirtualRegister(PPC::G8RCRegisterClass);
- BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR8), PPC::LR8);
- BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR8), GlobalBaseReg);
- }
- }
- return CurDAG->getRegister(GlobalBaseReg, PPCLowering.getPointerTy()).Val;
-}
-
-/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
-/// or 64-bit immediate, and if the value can be accurately represented as a
-/// sign extension from a 16-bit value. If so, this returns true and the
-/// immediate.
-static bool isIntS16Immediate(SDNode *N, short &Imm) {
- if (N->getOpcode() != ISD::Constant)
- return false;
-
- Imm = (short)cast<ConstantSDNode>(N)->getValue();
- if (N->getValueType(0) == MVT::i32)
- return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
- else
- return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
-}
-
-static bool isIntS16Immediate(SDOperand Op, short &Imm) {
- return isIntS16Immediate(Op.Val, Imm);
-}
-
-
-/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
-/// operand. If so Imm will receive the 32-bit value.
-static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
- if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
- Imm = cast<ConstantSDNode>(N)->getValue();
- return true;
- }
- return false;
-}
-
-/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
-/// operand. If so Imm will receive the 64-bit value.
-static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
- if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
- Imm = cast<ConstantSDNode>(N)->getValue();
- return true;
- }
- return false;
-}
-
-// isInt32Immediate - This method tests to see if a constant operand.
-// If so Imm will receive the 32 bit value.
-static bool isInt32Immediate(SDOperand N, unsigned &Imm) {
- return isInt32Immediate(N.Val, Imm);
-}
-
-
-// isOpcWithIntImmediate - This method tests to see if the node is a specific
-// opcode and that it has a immediate integer right operand.
-// If so Imm will receive the 32 bit value.
-static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
- return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).Val, Imm);
-}
-
-bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
- if (isShiftedMask_32(Val)) {
- // look for the first non-zero bit
- MB = CountLeadingZeros_32(Val);
- // look for the first zero bit after the run of ones
- ME = CountLeadingZeros_32((Val - 1) ^ Val);
- return true;
- } else {
- Val = ~Val; // invert mask
- if (isShiftedMask_32(Val)) {
- // effectively look for the first zero bit
- ME = CountLeadingZeros_32(Val) - 1;
- // effectively look for the first one bit after the run of zeros
- MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
- return true;
- }
- }
- // no run present
- return false;
-}
-
-bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
- bool IsShiftMask, unsigned &SH,
- unsigned &MB, unsigned &ME) {
- // Don't even go down this path for i64, since different logic will be
- // necessary for rldicl/rldicr/rldimi.
- if (N->getValueType(0) != MVT::i32)
- return false;
-
- unsigned Shift = 32;
- unsigned Indeterminant = ~0; // bit mask marking indeterminant results
- unsigned Opcode = N->getOpcode();
- if (N->getNumOperands() != 2 ||
- !isInt32Immediate(N->getOperand(1).Val, Shift) || (Shift > 31))
- return false;
-
- if (Opcode == ISD::SHL) {
- // apply shift left to mask if it comes first
- if (IsShiftMask) Mask = Mask << Shift;
- // determine which bits are made indeterminant by shift
- Indeterminant = ~(0xFFFFFFFFu << Shift);
- } else if (Opcode == ISD::SRL) {
- // apply shift right to mask if it comes first
- if (IsShiftMask) Mask = Mask >> Shift;
- // determine which bits are made indeterminant by shift
- Indeterminant = ~(0xFFFFFFFFu >> Shift);
- // adjust for the left rotate
- Shift = 32 - Shift;
- } else if (Opcode == ISD::ROTL) {
- Indeterminant = 0;
- } else {
- return false;
- }
-
- // if the mask doesn't intersect any Indeterminant bits
- if (Mask && !(Mask & Indeterminant)) {
- SH = Shift & 31;
- // make sure the mask is still a mask (wrap arounds may not be)
- return isRunOfOnes(Mask, MB, ME);
- }
- return false;
-}
-
-/// SelectBitfieldInsert - turn an or of two masked values into
-/// the rotate left word immediate then mask insert (rlwimi) instruction.
-SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
- SDOperand Op0 = N->getOperand(0);
- SDOperand Op1 = N->getOperand(1);
-
- APInt LKZ, LKO, RKZ, RKO;
- CurDAG->ComputeMaskedBits(Op0, APInt::getAllOnesValue(32), LKZ, LKO);
- CurDAG->ComputeMaskedBits(Op1, APInt::getAllOnesValue(32), RKZ, RKO);
-
- unsigned TargetMask = LKZ.getZExtValue();
- unsigned InsertMask = RKZ.getZExtValue();
-
- if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
- unsigned Op0Opc = Op0.getOpcode();
- unsigned Op1Opc = Op1.getOpcode();
- unsigned Value, SH = 0;
- TargetMask = ~TargetMask;
- InsertMask = ~InsertMask;
-
- // If the LHS has a foldable shift and the RHS does not, then swap it to the
- // RHS so that we can fold the shift into the insert.
- if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
- if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
- Op0.getOperand(0).getOpcode() == ISD::SRL) {
- if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
- Op1.getOperand(0).getOpcode() != ISD::SRL) {
- std::swap(Op0, Op1);
- std::swap(Op0Opc, Op1Opc);
- std::swap(TargetMask, InsertMask);
- }
- }
- } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
- if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
- Op1.getOperand(0).getOpcode() != ISD::SRL) {
- std::swap(Op0, Op1);
- std::swap(Op0Opc, Op1Opc);
- std::swap(TargetMask, InsertMask);
- }
- }
-
- unsigned MB, ME;
- if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
- SDOperand Tmp1, Tmp2, Tmp3;
- bool DisjointMask = (TargetMask ^ InsertMask) == 0xFFFFFFFF;
-
- if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
- isInt32Immediate(Op1.getOperand(1), Value)) {
- Op1 = Op1.getOperand(0);
- SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
- }
- if (Op1Opc == ISD::AND) {
- unsigned SHOpc = Op1.getOperand(0).getOpcode();
- if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
- isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
- Op1 = Op1.getOperand(0).getOperand(0);
- SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
- } else {
- Op1 = Op1.getOperand(0);
- }
- }
-
- Tmp3 = (Op0Opc == ISD::AND && DisjointMask) ? Op0.getOperand(0) : Op0;
- AddToISelQueue(Tmp3);
- AddToISelQueue(Op1);
- SH &= 31;
- SDOperand Ops[] = { Tmp3, Op1, getI32Imm(SH), getI32Imm(MB),
- getI32Imm(ME) };
- return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
- }
- }
- return 0;
-}
-
-/// SelectCC - Select a comparison of the specified values with the specified
-/// condition code, returning the CR# of the expression.
-SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
- ISD::CondCode CC) {
- // Always select the LHS.
- AddToISelQueue(LHS);
- unsigned Opc;
-
- if (LHS.getValueType() == MVT::i32) {
- unsigned Imm;
- if (CC == ISD::SETEQ || CC == ISD::SETNE) {
- if (isInt32Immediate(RHS, Imm)) {
- // SETEQ/SETNE comparison with 16-bit immediate, fold it.
- if (isUInt16(Imm))
- return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
- getI32Imm(Imm & 0xFFFF)), 0);
- // If this is a 16-bit signed immediate, fold it.
- if (isInt16((int)Imm))
- return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
- getI32Imm(Imm & 0xFFFF)), 0);
-
- // For non-equality comparisons, the default code would materialize the
- // constant, then compare against it, like this:
- // lis r2, 4660
- // ori r2, r2, 22136
- // cmpw cr0, r3, r2
- // Since we are just comparing for equality, we can emit this instead:
- // xoris r0,r3,0x1234
- // cmplwi cr0,r0,0x5678
- // beq cr0,L6
- SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS, MVT::i32, LHS,
- getI32Imm(Imm >> 16)), 0);
- return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, Xor,
- getI32Imm(Imm & 0xFFFF)), 0);
- }
- Opc = PPC::CMPLW;
- } else if (ISD::isUnsignedIntSetCC(CC)) {
- if (isInt32Immediate(RHS, Imm) && isUInt16(Imm))
- return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
- getI32Imm(Imm & 0xFFFF)), 0);
- Opc = PPC::CMPLW;
- } else {
- short SImm;
- if (isIntS16Immediate(RHS, SImm))
- return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
- getI32Imm((int)SImm & 0xFFFF)),
- 0);
- Opc = PPC::CMPW;
- }
- } else if (LHS.getValueType() == MVT::i64) {
- uint64_t Imm;
- if (CC == ISD::SETEQ || CC == ISD::SETNE) {
- if (isInt64Immediate(RHS.Val, Imm)) {
- // SETEQ/SETNE comparison with 16-bit immediate, fold it.
- if (isUInt16(Imm))
- return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
- getI32Imm(Imm & 0xFFFF)), 0);
- // If this is a 16-bit signed immediate, fold it.
- if (isInt16(Imm))
- return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
- getI32Imm(Imm & 0xFFFF)), 0);
-
- // For non-equality comparisons, the default code would materialize the
- // constant, then compare against it, like this:
- // lis r2, 4660
- // ori r2, r2, 22136
- // cmpd cr0, r3, r2
- // Since we are just comparing for equality, we can emit this instead:
- // xoris r0,r3,0x1234
- // cmpldi cr0,r0,0x5678
- // beq cr0,L6
- if (isUInt32(Imm)) {
- SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS8, MVT::i64, LHS,
- getI64Imm(Imm >> 16)), 0);
- return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, Xor,
- getI64Imm(Imm & 0xFFFF)), 0);
- }
- }
- Opc = PPC::CMPLD;
- } else if (ISD::isUnsignedIntSetCC(CC)) {
- if (isInt64Immediate(RHS.Val, Imm) && isUInt16(Imm))
- return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
- getI64Imm(Imm & 0xFFFF)), 0);
- Opc = PPC::CMPLD;
- } else {
- short SImm;
- if (isIntS16Immediate(RHS, SImm))
- return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
- getI64Imm(SImm & 0xFFFF)),
- 0);
- Opc = PPC::CMPD;
- }
- } else if (LHS.getValueType() == MVT::f32) {
- Opc = PPC::FCMPUS;
- } else {
- assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
- Opc = PPC::FCMPUD;
- }
- AddToISelQueue(RHS);
- return SDOperand(CurDAG->getTargetNode(Opc, MVT::i32, LHS, RHS), 0);
-}
-
-static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
- switch (CC) {
- default: assert(0 && "Unknown condition!"); abort();
- case ISD::SETOEQ: // FIXME: This is incorrect see PR642.
- case ISD::SETUEQ:
- case ISD::SETEQ: return PPC::PRED_EQ;
- case ISD::SETONE: // FIXME: This is incorrect see PR642.
- case ISD::SETUNE:
- case ISD::SETNE: return PPC::PRED_NE;
- case ISD::SETOLT: // FIXME: This is incorrect see PR642.
- case ISD::SETULT:
- case ISD::SETLT: return PPC::PRED_LT;
- case ISD::SETOLE: // FIXME: This is incorrect see PR642.
- case ISD::SETULE:
- case ISD::SETLE: return PPC::PRED_LE;
- case ISD::SETOGT: // FIXME: This is incorrect see PR642.
- case ISD::SETUGT:
- case ISD::SETGT: return PPC::PRED_GT;
- case ISD::SETOGE: // FIXME: This is incorrect see PR642.
- case ISD::SETUGE:
- case ISD::SETGE: return PPC::PRED_GE;
-
- case ISD::SETO: return PPC::PRED_NU;
- case ISD::SETUO: return PPC::PRED_UN;
- }
-}
-
-/// getCRIdxForSetCC - Return the index of the condition register field
-/// associated with the SetCC condition, and whether or not the field is
-/// treated as inverted. That is, lt = 0; ge = 0 inverted.
-///
-/// If this returns with Other != -1, then the returned comparison is an or of
-/// two simpler comparisons. In this case, Invert is guaranteed to be false.
-static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
- Invert = false;
- Other = -1;
- switch (CC) {
- default: assert(0 && "Unknown condition!"); abort();
- case ISD::SETOLT:
- case ISD::SETLT: return 0; // Bit #0 = SETOLT
- case ISD::SETOGT:
- case ISD::SETGT: return 1; // Bit #1 = SETOGT
- case ISD::SETOEQ:
- case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
- case ISD::SETUO: return 3; // Bit #3 = SETUO
- case ISD::SETUGE:
- case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
- case ISD::SETULE:
- case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
- case ISD::SETUNE:
- case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
- case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
- case ISD::SETULT: Other = 0; return 3; // SETOLT | SETUO
- case ISD::SETUGT: Other = 1; return 3; // SETOGT | SETUO
- case ISD::SETUEQ: Other = 2; return 3; // SETOEQ | SETUO
- case ISD::SETOGE: Other = 1; return 2; // SETOGT | SETOEQ
- case ISD::SETOLE: Other = 0; return 2; // SETOLT | SETOEQ
- case ISD::SETONE: Other = 0; return 1; // SETOLT | SETOGT
- }
- return 0;
-}
-
-SDNode *PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
- SDNode *N = Op.Val;
- unsigned Imm;
- ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
- if (isInt32Immediate(N->getOperand(1), Imm)) {
- // We can codegen setcc op, imm very efficiently compared to a brcond.
- // Check for those cases here.
- // setcc op, 0
- if (Imm == 0) {
- SDOperand Op = N->getOperand(0);
- AddToISelQueue(Op);
- switch (CC) {
- default: break;
- case ISD::SETEQ: {
- Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0);
- SDOperand Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
- return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
- }
- case ISD::SETNE: {
- SDOperand AD =
- SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
- Op, getI32Imm(~0U)), 0);
- return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
- AD.getValue(1));
- }
- case ISD::SETLT: {
- SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
- return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
- }
- case ISD::SETGT: {
- SDOperand T =
- SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0);
- T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0);
- SDOperand Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
- return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
- }
- }
- } else if (Imm == ~0U) { // setcc op, -1
- SDOperand Op = N->getOperand(0);
- AddToISelQueue(Op);
- switch (CC) {
- default: break;
- case ISD::SETEQ:
- Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
- Op, getI32Imm(1)), 0);
- return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
- SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32,
- getI32Imm(0)), 0),
- Op.getValue(1));
- case ISD::SETNE: {
- Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0);
- SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
- Op, getI32Imm(~0U));
- return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0),
- Op, SDOperand(AD, 1));
- }
- case ISD::SETLT: {
- SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
- getI32Imm(1)), 0);
- SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD,
- Op), 0);
- SDOperand Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
- return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
- }
- case ISD::SETGT: {
- SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
- Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
- return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
- getI32Imm(1));
- }
- }
- }
- }
-
- bool Inv;
- int OtherCondIdx;
- unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx);
- SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
- SDOperand IntCR;
-
- // Force the ccreg into CR7.
- SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
-
- SDOperand InFlag(0, 0); // Null incoming flag value.
- CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg,
- InFlag).getValue(1);
-
- if (PPCSubTarget.isGigaProcessor() && OtherCondIdx == -1)
- IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg,
- CCReg), 0);
- else
- IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0);
-
- SDOperand Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
- getI32Imm(31), getI32Imm(31) };
- if (OtherCondIdx == -1 && !Inv)
- return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
-
- // Get the specified bit.
- SDOperand Tmp =
- SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
- if (Inv) {
- assert(OtherCondIdx == -1 && "Can't have split plus negation");
- return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
- }
-
- // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT.
- // We already got the bit for the first part of the comparison (e.g. SETULE).
-
- // Get the other bit of the comparison.
- Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31);
- SDOperand OtherCond =
- SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
-
- return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond);
-}
-
-
-// Select - Convert the specified operand from a target-independent to a
-// target-specific node if it hasn't already been changed.
-SDNode *PPCDAGToDAGISel::Select(SDOperand Op) {
- SDNode *N = Op.Val;
- if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
- N->getOpcode() < PPCISD::FIRST_NUMBER)
- return NULL; // Already selected.
-
- switch (N->getOpcode()) {
- default: break;
-
- case ISD::Constant: {
- if (N->getValueType(0) == MVT::i64) {
- // Get 64 bit value.
- int64_t Imm = cast<ConstantSDNode>(N)->getValue();
- // Assume no remaining bits.
- unsigned Remainder = 0;
- // Assume no shift required.
- unsigned Shift = 0;
-
- // If it can't be represented as a 32 bit value.
- if (!isInt32(Imm)) {
- Shift = CountTrailingZeros_64(Imm);
- int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
-
- // If the shifted value fits 32 bits.
- if (isInt32(ImmSh)) {
- // Go with the shifted value.
- Imm = ImmSh;
- } else {
- // Still stuck with a 64 bit value.
- Remainder = Imm;
- Shift = 32;
- Imm >>= 32;
- }
- }
-
- // Intermediate operand.
- SDNode *Result;
-
- // Handle first 32 bits.
- unsigned Lo = Imm & 0xFFFF;
- unsigned Hi = (Imm >> 16) & 0xFFFF;
-
- // Simple value.
- if (isInt16(Imm)) {
- // Just the Lo bits.
- Result = CurDAG->getTargetNode(PPC::LI8, MVT::i64, getI32Imm(Lo));
- } else if (Lo) {
- // Handle the Hi bits.
- unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
- Result = CurDAG->getTargetNode(OpC, MVT::i64, getI32Imm(Hi));
- // And Lo bits.
- Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
- SDOperand(Result, 0), getI32Imm(Lo));
- } else {
- // Just the Hi bits.
- Result = CurDAG->getTargetNode(PPC::LIS8, MVT::i64, getI32Imm(Hi));
- }
-
- // If no shift, we're done.
- if (!Shift) return Result;
-
- // Shift for next step if the upper 32-bits were not zero.
- if (Imm) {
- Result = CurDAG->getTargetNode(PPC::RLDICR, MVT::i64,
- SDOperand(Result, 0),
- getI32Imm(Shift), getI32Imm(63 - Shift));
- }
-
- // Add in the last bits as required.
- if ((Hi = (Remainder >> 16) & 0xFFFF)) {
- Result = CurDAG->getTargetNode(PPC::ORIS8, MVT::i64,
- SDOperand(Result, 0), getI32Imm(Hi));
- }
- if ((Lo = Remainder & 0xFFFF)) {
- Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
- SDOperand(Result, 0), getI32Imm(Lo));
- }
-
- return Result;
- }
- break;
- }
-
- case ISD::SETCC:
- return SelectSETCC(Op);
- case PPCISD::GlobalBaseReg:
- return getGlobalBaseReg();
-
- case ISD::FrameIndex: {
- int FI = cast<FrameIndexSDNode>(N)->getIndex();
- SDOperand TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
- unsigned Opc = Op.getValueType() == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
- if (N->hasOneUse())
- return CurDAG->SelectNodeTo(N, Opc, Op.getValueType(), TFI,
- getSmallIPtrImm(0));
- return CurDAG->getTargetNode(Opc, Op.getValueType(), TFI,
- getSmallIPtrImm(0));
- }
-
- case PPCISD::MFCR: {
- SDOperand InFlag = N->getOperand(1);
- AddToISelQueue(InFlag);
- // Use MFOCRF if supported.
- if (PPCSubTarget.isGigaProcessor())
- return CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32,
- N->getOperand(0), InFlag);
- else
- return CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag);
- }
-
- case ISD::SDIV: {
- // FIXME: since this depends on the setting of the carry flag from the srawi
- // we should really be making notes about that for the scheduler.
- // FIXME: It sure would be nice if we could cheaply recognize the
- // srl/add/sra pattern the dag combiner will generate for this as
- // sra/addze rather than having to handle sdiv ourselves. oh well.
- unsigned Imm;
- if (isInt32Immediate(N->getOperand(1), Imm)) {
- SDOperand N0 = N->getOperand(0);
- AddToISelQueue(N0);
- if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
- SDNode *Op =
- CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
- N0, getI32Imm(Log2_32(Imm)));
- return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
- SDOperand(Op, 0), SDOperand(Op, 1));
- } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
- SDNode *Op =
- CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
- N0, getI32Imm(Log2_32(-Imm)));
- SDOperand PT =
- SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32,
- SDOperand(Op, 0), SDOperand(Op, 1)),
- 0);
- return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
- }
- }
-
- // Other cases are autogenerated.
- break;
- }
-
- case ISD::LOAD: {
- // Handle preincrement loads.
- LoadSDNode *LD = cast<LoadSDNode>(Op);
- MVT::ValueType LoadedVT = LD->getMemoryVT();
-
- // Normal loads are handled by code generated from the .td file.
- if (LD->getAddressingMode() != ISD::PRE_INC)
- break;
-
- SDOperand Offset = LD->getOffset();
- if (isa<ConstantSDNode>(Offset) ||
- Offset.getOpcode() == ISD::TargetGlobalAddress) {
-
- unsigned Opcode;
- bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
- if (LD->getValueType(0) != MVT::i64) {
- // Handle PPC32 integer and normal FP loads.
- assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
- switch (LoadedVT) {
- default: assert(0 && "Invalid PPC load type!");
- case MVT::f64: Opcode = PPC::LFDU; break;
- case MVT::f32: Opcode = PPC::LFSU; break;
- case MVT::i32: Opcode = PPC::LWZU; break;
- case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
- case MVT::i1:
- case MVT::i8: Opcode = PPC::LBZU; break;
- }
- } else {
- assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
- assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
- switch (LoadedVT) {
- default: assert(0 && "Invalid PPC load type!");
- case MVT::i64: Opcode = PPC::LDU; break;
- case MVT::i32: Opcode = PPC::LWZU8; break;
- case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
- case MVT::i1:
- case MVT::i8: Opcode = PPC::LBZU8; break;
- }
- }
-
- SDOperand Chain = LD->getChain();
- SDOperand Base = LD->getBasePtr();
- AddToISelQueue(Chain);
- AddToISelQueue(Base);
- AddToISelQueue(Offset);
- SDOperand Ops[] = { Offset, Base, Chain };
- // FIXME: PPC64
- return CurDAG->getTargetNode(Opcode, MVT::i32, MVT::i32,
- MVT::Other, Ops, 3);
- } else {
- assert(0 && "R+R preindex loads not supported yet!");
- }
- }
-
- case ISD::AND: {
- unsigned Imm, Imm2, SH, MB, ME;
-
- // If this is an and of a value rotated between 0 and 31 bits and then and'd
- // with a mask, emit rlwinm
- if (isInt32Immediate(N->getOperand(1), Imm) &&
- isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
- SDOperand Val = N->getOperand(0).getOperand(0);
- AddToISelQueue(Val);
- SDOperand Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
- return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
- }
- // If this is just a masked value where the input is not handled above, and
- // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
- if (isInt32Immediate(N->getOperand(1), Imm) &&
- isRunOfOnes(Imm, MB, ME) &&
- N->getOperand(0).getOpcode() != ISD::ROTL) {
- SDOperand Val = N->getOperand(0);
- AddToISelQueue(Val);
- SDOperand Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
- return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
- }
- // AND X, 0 -> 0, not "rlwinm 32".
- if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
- AddToISelQueue(N->getOperand(1));
- ReplaceUses(SDOperand(N, 0), N->getOperand(1));
- return NULL;
- }
- // ISD::OR doesn't get all the bitfield insertion fun.
- // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
- if (isInt32Immediate(N->getOperand(1), Imm) &&
- N->getOperand(0).getOpcode() == ISD::OR &&
- isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
- unsigned MB, ME;
- Imm = ~(Imm^Imm2);
- if (isRunOfOnes(Imm, MB, ME)) {
- AddToISelQueue(N->getOperand(0).getOperand(0));
- AddToISelQueue(N->getOperand(0).getOperand(1));
- SDOperand Ops[] = { N->getOperand(0).getOperand(0),
- N->getOperand(0).getOperand(1),
- getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
- return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
- }
- }
-
- // Other cases are autogenerated.
- break;
- }
- case ISD::OR:
- if (N->getValueType(0) == MVT::i32)
- if (SDNode *I = SelectBitfieldInsert(N))
- return I;
-
- // Other cases are autogenerated.
- break;
- case ISD::SHL: {
- unsigned Imm, SH, MB, ME;
- if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
- isRotateAndMask(N, Imm, true, SH, MB, ME)) {
- AddToISelQueue(N->getOperand(0).getOperand(0));
- SDOperand Ops[] = { N->getOperand(0).getOperand(0),
- getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
- return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
- }
-
- // Other cases are autogenerated.
- break;
- }
- case ISD::SRL: {
- unsigned Imm, SH, MB, ME;
- if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
- isRotateAndMask(N, Imm, true, SH, MB, ME)) {
- AddToISelQueue(N->getOperand(0).getOperand(0));
- SDOperand Ops[] = { N->getOperand(0).getOperand(0),
- getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
- return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
- }
-
- // Other cases are autogenerated.
- break;
- }
- case ISD::SELECT_CC: {
- ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
-
- // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
- if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
- if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
- if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
- if (N1C->isNullValue() && N3C->isNullValue() &&
- N2C->getValue() == 1ULL && CC == ISD::SETNE &&
- // FIXME: Implement this optzn for PPC64.
- N->getValueType(0) == MVT::i32) {
- AddToISelQueue(N->getOperand(0));
- SDNode *Tmp =
- CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
- N->getOperand(0), getI32Imm(~0U));
- return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
- SDOperand(Tmp, 0), N->getOperand(0),
- SDOperand(Tmp, 1));
- }
-
- SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
- unsigned BROpc = getPredicateForSetCC(CC);
-
- unsigned SelectCCOp;
- if (N->getValueType(0) == MVT::i32)
- SelectCCOp = PPC::SELECT_CC_I4;
- else if (N->getValueType(0) == MVT::i64)
- SelectCCOp = PPC::SELECT_CC_I8;
- else if (N->getValueType(0) == MVT::f32)
- SelectCCOp = PPC::SELECT_CC_F4;
- else if (N->getValueType(0) == MVT::f64)
- SelectCCOp = PPC::SELECT_CC_F8;
- else
- SelectCCOp = PPC::SELECT_CC_VRRC;
-
- AddToISelQueue(N->getOperand(2));
- AddToISelQueue(N->getOperand(3));
- SDOperand Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
- getI32Imm(BROpc) };
- return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
- }
- case PPCISD::COND_BRANCH: {
- AddToISelQueue(N->getOperand(0)); // Op #0 is the Chain.
- // Op #1 is the PPC::PRED_* number.
- // Op #2 is the CR#
- // Op #3 is the Dest MBB
- AddToISelQueue(N->getOperand(4)); // Op #4 is the Flag.
- // Prevent PPC::PRED_* from being selected into LI.
- SDOperand Pred =
- getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getValue());
- SDOperand Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
- N->getOperand(0), N->getOperand(4) };
- return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
- }
- case ISD::BR_CC: {
- AddToISelQueue(N->getOperand(0));
- ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
- SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
- SDOperand Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
- N->getOperand(4), N->getOperand(0) };
- return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
- }
- case ISD::BRIND: {
- // FIXME: Should custom lower this.
- SDOperand Chain = N->getOperand(0);
- SDOperand Target = N->getOperand(1);
- AddToISelQueue(Chain);
- AddToISelQueue(Target);
- unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
- Chain = SDOperand(CurDAG->getTargetNode(Opc, MVT::Other, Target,
- Chain), 0);
- return CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
- }
- }
-
- return SelectCode(Op);
-}
-
-
-
-/// createPPCISelDag - This pass converts a legalized DAG into a
-/// PowerPC-specific DAG, ready for instruction scheduling.
-///
-FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
- return new PPCDAGToDAGISel(TM);
-}
-