summaryrefslogtreecommitdiff
path: root/release_23/lib/Target/X86/X86FloatingPoint.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'release_23/lib/Target/X86/X86FloatingPoint.cpp')
-rw-r--r--release_23/lib/Target/X86/X86FloatingPoint.cpp1126
1 files changed, 0 insertions, 1126 deletions
diff --git a/release_23/lib/Target/X86/X86FloatingPoint.cpp b/release_23/lib/Target/X86/X86FloatingPoint.cpp
deleted file mode 100644
index 3cda3006a388..000000000000
--- a/release_23/lib/Target/X86/X86FloatingPoint.cpp
+++ /dev/null
@@ -1,1126 +0,0 @@
-//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the pass which converts floating point instructions from
-// virtual registers into register stack instructions. This pass uses live
-// variable information to indicate where the FPn registers are used and their
-// lifetimes.
-//
-// This pass is hampered by the lack of decent CFG manipulation routines for
-// machine code. In particular, this wants to be able to split critical edges
-// as necessary, traverse the machine basic block CFG in depth-first order, and
-// allow there to be multiple machine basic blocks for each LLVM basicblock
-// (needed for critical edge splitting).
-//
-// In particular, this pass currently barfs on critical edges. Because of this,
-// it requires the instruction selector to insert FP_REG_KILL instructions on
-// the exits of any basic block that has critical edges going from it, or which
-// branch to a critical basic block.
-//
-// FIXME: this is not implemented yet. The stackifier pass only works on local
-// basic blocks.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "x86-codegen"
-#include "X86.h"
-#include "X86InstrInfo.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/STLExtras.h"
-#include <algorithm>
-#include <set>
-using namespace llvm;
-
-STATISTIC(NumFXCH, "Number of fxch instructions inserted");
-STATISTIC(NumFP , "Number of floating point instructions");
-
-namespace {
- struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
- static char ID;
- FPS() : MachineFunctionPass((intptr_t)&ID) {}
-
- virtual bool runOnMachineFunction(MachineFunction &MF);
-
- virtual const char *getPassName() const { return "X86 FP Stackifier"; }
-
- private:
- const TargetInstrInfo *TII; // Machine instruction info.
- MachineBasicBlock *MBB; // Current basic block
- unsigned Stack[8]; // FP<n> Registers in each stack slot...
- unsigned RegMap[8]; // Track which stack slot contains each register
- unsigned StackTop; // The current top of the FP stack.
-
- void dumpStack() const {
- cerr << "Stack contents:";
- for (unsigned i = 0; i != StackTop; ++i) {
- cerr << " FP" << Stack[i];
- assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
- }
- cerr << "\n";
- }
- private:
- /// isStackEmpty - Return true if the FP stack is empty.
- bool isStackEmpty() const {
- return StackTop == 0;
- }
-
- // getSlot - Return the stack slot number a particular register number is
- // in.
- unsigned getSlot(unsigned RegNo) const {
- assert(RegNo < 8 && "Regno out of range!");
- return RegMap[RegNo];
- }
-
- // getStackEntry - Return the X86::FP<n> register in register ST(i).
- unsigned getStackEntry(unsigned STi) const {
- assert(STi < StackTop && "Access past stack top!");
- return Stack[StackTop-1-STi];
- }
-
- // getSTReg - Return the X86::ST(i) register which contains the specified
- // FP<RegNo> register.
- unsigned getSTReg(unsigned RegNo) const {
- return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
- }
-
- // pushReg - Push the specified FP<n> register onto the stack.
- void pushReg(unsigned Reg) {
- assert(Reg < 8 && "Register number out of range!");
- assert(StackTop < 8 && "Stack overflow!");
- Stack[StackTop] = Reg;
- RegMap[Reg] = StackTop++;
- }
-
- bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
- void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
- if (isAtTop(RegNo)) return;
-
- unsigned STReg = getSTReg(RegNo);
- unsigned RegOnTop = getStackEntry(0);
-
- // Swap the slots the regs are in.
- std::swap(RegMap[RegNo], RegMap[RegOnTop]);
-
- // Swap stack slot contents.
- assert(RegMap[RegOnTop] < StackTop);
- std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
-
- // Emit an fxch to update the runtime processors version of the state.
- BuildMI(*MBB, I, TII->get(X86::XCH_F)).addReg(STReg);
- NumFXCH++;
- }
-
- void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
- unsigned STReg = getSTReg(RegNo);
- pushReg(AsReg); // New register on top of stack
-
- BuildMI(*MBB, I, TII->get(X86::LD_Frr)).addReg(STReg);
- }
-
- // popStackAfter - Pop the current value off of the top of the FP stack
- // after the specified instruction.
- void popStackAfter(MachineBasicBlock::iterator &I);
-
- // freeStackSlotAfter - Free the specified register from the register stack,
- // so that it is no longer in a register. If the register is currently at
- // the top of the stack, we just pop the current instruction, otherwise we
- // store the current top-of-stack into the specified slot, then pop the top
- // of stack.
- void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
-
- bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
-
- void handleZeroArgFP(MachineBasicBlock::iterator &I);
- void handleOneArgFP(MachineBasicBlock::iterator &I);
- void handleOneArgFPRW(MachineBasicBlock::iterator &I);
- void handleTwoArgFP(MachineBasicBlock::iterator &I);
- void handleCompareFP(MachineBasicBlock::iterator &I);
- void handleCondMovFP(MachineBasicBlock::iterator &I);
- void handleSpecialFP(MachineBasicBlock::iterator &I);
- };
- char FPS::ID = 0;
-}
-
-FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
-
-/// getFPReg - Return the X86::FPx register number for the specified operand.
-/// For example, this returns 3 for X86::FP3.
-static unsigned getFPReg(const MachineOperand &MO) {
- assert(MO.isRegister() && "Expected an FP register!");
- unsigned Reg = MO.getReg();
- assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
- return Reg - X86::FP0;
-}
-
-
-/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
-/// register references into FP stack references.
-///
-bool FPS::runOnMachineFunction(MachineFunction &MF) {
- // We only need to run this pass if there are any FP registers used in this
- // function. If it is all integer, there is nothing for us to do!
- bool FPIsUsed = false;
-
- assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
- for (unsigned i = 0; i <= 6; ++i)
- if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
- FPIsUsed = true;
- break;
- }
-
- // Early exit.
- if (!FPIsUsed) return false;
-
- TII = MF.getTarget().getInstrInfo();
- StackTop = 0;
-
- // Process the function in depth first order so that we process at least one
- // of the predecessors for every reachable block in the function.
- std::set<MachineBasicBlock*> Processed;
- MachineBasicBlock *Entry = MF.begin();
-
- bool Changed = false;
- for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
- I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
- I != E; ++I)
- Changed |= processBasicBlock(MF, **I);
-
- return Changed;
-}
-
-/// processBasicBlock - Loop over all of the instructions in the basic block,
-/// transforming FP instructions into their stack form.
-///
-bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
- bool Changed = false;
- MBB = &BB;
-
- for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
- MachineInstr *MI = I;
- unsigned Flags = MI->getDesc().TSFlags;
-
- unsigned FPInstClass = Flags & X86II::FPTypeMask;
- if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
- FPInstClass = X86II::SpecialFP;
-
- if (FPInstClass == X86II::NotFP)
- continue; // Efficiently ignore non-fp insts!
-
- MachineInstr *PrevMI = 0;
- if (I != BB.begin())
- PrevMI = prior(I);
-
- ++NumFP; // Keep track of # of pseudo instrs
- DOUT << "\nFPInst:\t" << *MI;
-
- // Get dead variables list now because the MI pointer may be deleted as part
- // of processing!
- SmallVector<unsigned, 8> DeadRegs;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (MO.isRegister() && MO.isDead())
- DeadRegs.push_back(MO.getReg());
- }
-
- switch (FPInstClass) {
- case X86II::ZeroArgFP: handleZeroArgFP(I); break;
- case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
- case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
- case X86II::TwoArgFP: handleTwoArgFP(I); break;
- case X86II::CompareFP: handleCompareFP(I); break;
- case X86II::CondMovFP: handleCondMovFP(I); break;
- case X86II::SpecialFP: handleSpecialFP(I); break;
- default: assert(0 && "Unknown FP Type!");
- }
-
- // Check to see if any of the values defined by this instruction are dead
- // after definition. If so, pop them.
- for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
- unsigned Reg = DeadRegs[i];
- if (Reg >= X86::FP0 && Reg <= X86::FP6) {
- DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
- freeStackSlotAfter(I, Reg-X86::FP0);
- }
- }
-
- // Print out all of the instructions expanded to if -debug
- DEBUG(
- MachineBasicBlock::iterator PrevI(PrevMI);
- if (I == PrevI) {
- cerr << "Just deleted pseudo instruction\n";
- } else {
- MachineBasicBlock::iterator Start = I;
- // Rewind to first instruction newly inserted.
- while (Start != BB.begin() && prior(Start) != PrevI) --Start;
- cerr << "Inserted instructions:\n\t";
- Start->print(*cerr.stream(), &MF.getTarget());
- while (++Start != next(I)) {}
- }
- dumpStack();
- );
-
- Changed = true;
- }
-
- assert(isStackEmpty() && "Stack not empty at end of basic block?");
- return Changed;
-}
-
-//===----------------------------------------------------------------------===//
-// Efficient Lookup Table Support
-//===----------------------------------------------------------------------===//
-
-namespace {
- struct TableEntry {
- unsigned from;
- unsigned to;
- bool operator<(const TableEntry &TE) const { return from < TE.from; }
- friend bool operator<(const TableEntry &TE, unsigned V) {
- return TE.from < V;
- }
- friend bool operator<(unsigned V, const TableEntry &TE) {
- return V < TE.from;
- }
- };
-}
-
-static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
- for (unsigned i = 0; i != NumEntries-1; ++i)
- if (!(Table[i] < Table[i+1])) return false;
- return true;
-}
-
-static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
- const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
- if (I != Table+N && I->from == Opcode)
- return I->to;
- return -1;
-}
-
-#ifdef NDEBUG
-#define ASSERT_SORTED(TABLE)
-#else
-#define ASSERT_SORTED(TABLE) \
- { static bool TABLE##Checked = false; \
- if (!TABLE##Checked) { \
- assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
- "All lookup tables must be sorted for efficient access!"); \
- TABLE##Checked = true; \
- } \
- }
-#endif
-
-//===----------------------------------------------------------------------===//
-// Register File -> Register Stack Mapping Methods
-//===----------------------------------------------------------------------===//
-
-// OpcodeTable - Sorted map of register instructions to their stack version.
-// The first element is an register file pseudo instruction, the second is the
-// concrete X86 instruction which uses the register stack.
-//
-static const TableEntry OpcodeTable[] = {
- { X86::ABS_Fp32 , X86::ABS_F },
- { X86::ABS_Fp64 , X86::ABS_F },
- { X86::ABS_Fp80 , X86::ABS_F },
- { X86::ADD_Fp32m , X86::ADD_F32m },
- { X86::ADD_Fp64m , X86::ADD_F64m },
- { X86::ADD_Fp64m32 , X86::ADD_F32m },
- { X86::ADD_Fp80m32 , X86::ADD_F32m },
- { X86::ADD_Fp80m64 , X86::ADD_F64m },
- { X86::ADD_FpI16m32 , X86::ADD_FI16m },
- { X86::ADD_FpI16m64 , X86::ADD_FI16m },
- { X86::ADD_FpI16m80 , X86::ADD_FI16m },
- { X86::ADD_FpI32m32 , X86::ADD_FI32m },
- { X86::ADD_FpI32m64 , X86::ADD_FI32m },
- { X86::ADD_FpI32m80 , X86::ADD_FI32m },
- { X86::CHS_Fp32 , X86::CHS_F },
- { X86::CHS_Fp64 , X86::CHS_F },
- { X86::CHS_Fp80 , X86::CHS_F },
- { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
- { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
- { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
- { X86::CMOVB_Fp32 , X86::CMOVB_F },
- { X86::CMOVB_Fp64 , X86::CMOVB_F },
- { X86::CMOVB_Fp80 , X86::CMOVB_F },
- { X86::CMOVE_Fp32 , X86::CMOVE_F },
- { X86::CMOVE_Fp64 , X86::CMOVE_F },
- { X86::CMOVE_Fp80 , X86::CMOVE_F },
- { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
- { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
- { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
- { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
- { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
- { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
- { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
- { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
- { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
- { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
- { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
- { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
- { X86::CMOVP_Fp32 , X86::CMOVP_F },
- { X86::CMOVP_Fp64 , X86::CMOVP_F },
- { X86::CMOVP_Fp80 , X86::CMOVP_F },
- { X86::COS_Fp32 , X86::COS_F },
- { X86::COS_Fp64 , X86::COS_F },
- { X86::COS_Fp80 , X86::COS_F },
- { X86::DIVR_Fp32m , X86::DIVR_F32m },
- { X86::DIVR_Fp64m , X86::DIVR_F64m },
- { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
- { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
- { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
- { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
- { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
- { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
- { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
- { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
- { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
- { X86::DIV_Fp32m , X86::DIV_F32m },
- { X86::DIV_Fp64m , X86::DIV_F64m },
- { X86::DIV_Fp64m32 , X86::DIV_F32m },
- { X86::DIV_Fp80m32 , X86::DIV_F32m },
- { X86::DIV_Fp80m64 , X86::DIV_F64m },
- { X86::DIV_FpI16m32 , X86::DIV_FI16m },
- { X86::DIV_FpI16m64 , X86::DIV_FI16m },
- { X86::DIV_FpI16m80 , X86::DIV_FI16m },
- { X86::DIV_FpI32m32 , X86::DIV_FI32m },
- { X86::DIV_FpI32m64 , X86::DIV_FI32m },
- { X86::DIV_FpI32m80 , X86::DIV_FI32m },
- { X86::ILD_Fp16m32 , X86::ILD_F16m },
- { X86::ILD_Fp16m64 , X86::ILD_F16m },
- { X86::ILD_Fp16m80 , X86::ILD_F16m },
- { X86::ILD_Fp32m32 , X86::ILD_F32m },
- { X86::ILD_Fp32m64 , X86::ILD_F32m },
- { X86::ILD_Fp32m80 , X86::ILD_F32m },
- { X86::ILD_Fp64m32 , X86::ILD_F64m },
- { X86::ILD_Fp64m64 , X86::ILD_F64m },
- { X86::ILD_Fp64m80 , X86::ILD_F64m },
- { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
- { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
- { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
- { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
- { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
- { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
- { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
- { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
- { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
- { X86::IST_Fp16m32 , X86::IST_F16m },
- { X86::IST_Fp16m64 , X86::IST_F16m },
- { X86::IST_Fp16m80 , X86::IST_F16m },
- { X86::IST_Fp32m32 , X86::IST_F32m },
- { X86::IST_Fp32m64 , X86::IST_F32m },
- { X86::IST_Fp32m80 , X86::IST_F32m },
- { X86::IST_Fp64m32 , X86::IST_FP64m },
- { X86::IST_Fp64m64 , X86::IST_FP64m },
- { X86::IST_Fp64m80 , X86::IST_FP64m },
- { X86::LD_Fp032 , X86::LD_F0 },
- { X86::LD_Fp064 , X86::LD_F0 },
- { X86::LD_Fp080 , X86::LD_F0 },
- { X86::LD_Fp132 , X86::LD_F1 },
- { X86::LD_Fp164 , X86::LD_F1 },
- { X86::LD_Fp180 , X86::LD_F1 },
- { X86::LD_Fp32m , X86::LD_F32m },
- { X86::LD_Fp32m64 , X86::LD_F32m },
- { X86::LD_Fp32m80 , X86::LD_F32m },
- { X86::LD_Fp64m , X86::LD_F64m },
- { X86::LD_Fp64m80 , X86::LD_F64m },
- { X86::LD_Fp80m , X86::LD_F80m },
- { X86::MUL_Fp32m , X86::MUL_F32m },
- { X86::MUL_Fp64m , X86::MUL_F64m },
- { X86::MUL_Fp64m32 , X86::MUL_F32m },
- { X86::MUL_Fp80m32 , X86::MUL_F32m },
- { X86::MUL_Fp80m64 , X86::MUL_F64m },
- { X86::MUL_FpI16m32 , X86::MUL_FI16m },
- { X86::MUL_FpI16m64 , X86::MUL_FI16m },
- { X86::MUL_FpI16m80 , X86::MUL_FI16m },
- { X86::MUL_FpI32m32 , X86::MUL_FI32m },
- { X86::MUL_FpI32m64 , X86::MUL_FI32m },
- { X86::MUL_FpI32m80 , X86::MUL_FI32m },
- { X86::SIN_Fp32 , X86::SIN_F },
- { X86::SIN_Fp64 , X86::SIN_F },
- { X86::SIN_Fp80 , X86::SIN_F },
- { X86::SQRT_Fp32 , X86::SQRT_F },
- { X86::SQRT_Fp64 , X86::SQRT_F },
- { X86::SQRT_Fp80 , X86::SQRT_F },
- { X86::ST_Fp32m , X86::ST_F32m },
- { X86::ST_Fp64m , X86::ST_F64m },
- { X86::ST_Fp64m32 , X86::ST_F32m },
- { X86::ST_Fp80m32 , X86::ST_F32m },
- { X86::ST_Fp80m64 , X86::ST_F64m },
- { X86::ST_FpP80m , X86::ST_FP80m },
- { X86::SUBR_Fp32m , X86::SUBR_F32m },
- { X86::SUBR_Fp64m , X86::SUBR_F64m },
- { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
- { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
- { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
- { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
- { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
- { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
- { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
- { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
- { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
- { X86::SUB_Fp32m , X86::SUB_F32m },
- { X86::SUB_Fp64m , X86::SUB_F64m },
- { X86::SUB_Fp64m32 , X86::SUB_F32m },
- { X86::SUB_Fp80m32 , X86::SUB_F32m },
- { X86::SUB_Fp80m64 , X86::SUB_F64m },
- { X86::SUB_FpI16m32 , X86::SUB_FI16m },
- { X86::SUB_FpI16m64 , X86::SUB_FI16m },
- { X86::SUB_FpI16m80 , X86::SUB_FI16m },
- { X86::SUB_FpI32m32 , X86::SUB_FI32m },
- { X86::SUB_FpI32m64 , X86::SUB_FI32m },
- { X86::SUB_FpI32m80 , X86::SUB_FI32m },
- { X86::TST_Fp32 , X86::TST_F },
- { X86::TST_Fp64 , X86::TST_F },
- { X86::TST_Fp80 , X86::TST_F },
- { X86::UCOM_FpIr32 , X86::UCOM_FIr },
- { X86::UCOM_FpIr64 , X86::UCOM_FIr },
- { X86::UCOM_FpIr80 , X86::UCOM_FIr },
- { X86::UCOM_Fpr32 , X86::UCOM_Fr },
- { X86::UCOM_Fpr64 , X86::UCOM_Fr },
- { X86::UCOM_Fpr80 , X86::UCOM_Fr },
-};
-
-static unsigned getConcreteOpcode(unsigned Opcode) {
- ASSERT_SORTED(OpcodeTable);
- int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
- assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
- return Opc;
-}
-
-//===----------------------------------------------------------------------===//
-// Helper Methods
-//===----------------------------------------------------------------------===//
-
-// PopTable - Sorted map of instructions to their popping version. The first
-// element is an instruction, the second is the version which pops.
-//
-static const TableEntry PopTable[] = {
- { X86::ADD_FrST0 , X86::ADD_FPrST0 },
-
- { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
- { X86::DIV_FrST0 , X86::DIV_FPrST0 },
-
- { X86::IST_F16m , X86::IST_FP16m },
- { X86::IST_F32m , X86::IST_FP32m },
-
- { X86::MUL_FrST0 , X86::MUL_FPrST0 },
-
- { X86::ST_F32m , X86::ST_FP32m },
- { X86::ST_F64m , X86::ST_FP64m },
- { X86::ST_Frr , X86::ST_FPrr },
-
- { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
- { X86::SUB_FrST0 , X86::SUB_FPrST0 },
-
- { X86::UCOM_FIr , X86::UCOM_FIPr },
-
- { X86::UCOM_FPr , X86::UCOM_FPPr },
- { X86::UCOM_Fr , X86::UCOM_FPr },
-};
-
-/// popStackAfter - Pop the current value off of the top of the FP stack after
-/// the specified instruction. This attempts to be sneaky and combine the pop
-/// into the instruction itself if possible. The iterator is left pointing to
-/// the last instruction, be it a new pop instruction inserted, or the old
-/// instruction if it was modified in place.
-///
-void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
- ASSERT_SORTED(PopTable);
- assert(StackTop > 0 && "Cannot pop empty stack!");
- RegMap[Stack[--StackTop]] = ~0; // Update state
-
- // Check to see if there is a popping version of this instruction...
- int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
- if (Opcode != -1) {
- I->setDesc(TII->get(Opcode));
- if (Opcode == X86::UCOM_FPPr)
- I->RemoveOperand(0);
- } else { // Insert an explicit pop
- I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
- }
-}
-
-/// freeStackSlotAfter - Free the specified register from the register stack, so
-/// that it is no longer in a register. If the register is currently at the top
-/// of the stack, we just pop the current instruction, otherwise we store the
-/// current top-of-stack into the specified slot, then pop the top of stack.
-void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
- if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
- popStackAfter(I);
- return;
- }
-
- // Otherwise, store the top of stack into the dead slot, killing the operand
- // without having to add in an explicit xchg then pop.
- //
- unsigned STReg = getSTReg(FPRegNo);
- unsigned OldSlot = getSlot(FPRegNo);
- unsigned TopReg = Stack[StackTop-1];
- Stack[OldSlot] = TopReg;
- RegMap[TopReg] = OldSlot;
- RegMap[FPRegNo] = ~0;
- Stack[--StackTop] = ~0;
- I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(STReg);
-}
-
-
-//===----------------------------------------------------------------------===//
-// Instruction transformation implementation
-//===----------------------------------------------------------------------===//
-
-/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
-///
-void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
- MachineInstr *MI = I;
- unsigned DestReg = getFPReg(MI->getOperand(0));
-
- // Change from the pseudo instruction to the concrete instruction.
- MI->RemoveOperand(0); // Remove the explicit ST(0) operand
- MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
-
- // Result gets pushed on the stack.
- pushReg(DestReg);
-}
-
-/// handleOneArgFP - fst <mem>, ST(0)
-///
-void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
- MachineInstr *MI = I;
- unsigned NumOps = MI->getDesc().getNumOperands();
- assert((NumOps == 5 || NumOps == 1) &&
- "Can only handle fst* & ftst instructions!");
-
- // Is this the last use of the source register?
- unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
- bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
-
- // FISTP64m is strange because there isn't a non-popping versions.
- // If we have one _and_ we don't want to pop the operand, duplicate the value
- // on the stack instead of moving it. This ensure that popping the value is
- // always ok.
- // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
- //
- if (!KillsSrc &&
- (MI->getOpcode() == X86::IST_Fp64m32 ||
- MI->getOpcode() == X86::ISTT_Fp16m32 ||
- MI->getOpcode() == X86::ISTT_Fp32m32 ||
- MI->getOpcode() == X86::ISTT_Fp64m32 ||
- MI->getOpcode() == X86::IST_Fp64m64 ||
- MI->getOpcode() == X86::ISTT_Fp16m64 ||
- MI->getOpcode() == X86::ISTT_Fp32m64 ||
- MI->getOpcode() == X86::ISTT_Fp64m64 ||
- MI->getOpcode() == X86::IST_Fp64m80 ||
- MI->getOpcode() == X86::ISTT_Fp16m80 ||
- MI->getOpcode() == X86::ISTT_Fp32m80 ||
- MI->getOpcode() == X86::ISTT_Fp64m80 ||
- MI->getOpcode() == X86::ST_FpP80m)) {
- duplicateToTop(Reg, 7 /*temp register*/, I);
- } else {
- moveToTop(Reg, I); // Move to the top of the stack...
- }
-
- // Convert from the pseudo instruction to the concrete instruction.
- MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
- MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
-
- if (MI->getOpcode() == X86::IST_FP64m ||
- MI->getOpcode() == X86::ISTT_FP16m ||
- MI->getOpcode() == X86::ISTT_FP32m ||
- MI->getOpcode() == X86::ISTT_FP64m ||
- MI->getOpcode() == X86::ST_FP80m) {
- assert(StackTop > 0 && "Stack empty??");
- --StackTop;
- } else if (KillsSrc) { // Last use of operand?
- popStackAfter(I);
- }
-}
-
-
-/// handleOneArgFPRW: Handle instructions that read from the top of stack and
-/// replace the value with a newly computed value. These instructions may have
-/// non-fp operands after their FP operands.
-///
-/// Examples:
-/// R1 = fchs R2
-/// R1 = fadd R2, [mem]
-///
-void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
- MachineInstr *MI = I;
- unsigned NumOps = MI->getDesc().getNumOperands();
- assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
-
- // Is this the last use of the source register?
- unsigned Reg = getFPReg(MI->getOperand(1));
- bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
-
- if (KillsSrc) {
- // If this is the last use of the source register, just make sure it's on
- // the top of the stack.
- moveToTop(Reg, I);
- assert(StackTop > 0 && "Stack cannot be empty!");
- --StackTop;
- pushReg(getFPReg(MI->getOperand(0)));
- } else {
- // If this is not the last use of the source register, _copy_ it to the top
- // of the stack.
- duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
- }
-
- // Change from the pseudo instruction to the concrete instruction.
- MI->RemoveOperand(1); // Drop the source operand.
- MI->RemoveOperand(0); // Drop the destination operand.
- MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
-}
-
-
-//===----------------------------------------------------------------------===//
-// Define tables of various ways to map pseudo instructions
-//
-
-// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
-static const TableEntry ForwardST0Table[] = {
- { X86::ADD_Fp32 , X86::ADD_FST0r },
- { X86::ADD_Fp64 , X86::ADD_FST0r },
- { X86::ADD_Fp80 , X86::ADD_FST0r },
- { X86::DIV_Fp32 , X86::DIV_FST0r },
- { X86::DIV_Fp64 , X86::DIV_FST0r },
- { X86::DIV_Fp80 , X86::DIV_FST0r },
- { X86::MUL_Fp32 , X86::MUL_FST0r },
- { X86::MUL_Fp64 , X86::MUL_FST0r },
- { X86::MUL_Fp80 , X86::MUL_FST0r },
- { X86::SUB_Fp32 , X86::SUB_FST0r },
- { X86::SUB_Fp64 , X86::SUB_FST0r },
- { X86::SUB_Fp80 , X86::SUB_FST0r },
-};
-
-// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
-static const TableEntry ReverseST0Table[] = {
- { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
- { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
- { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
- { X86::DIV_Fp32 , X86::DIVR_FST0r },
- { X86::DIV_Fp64 , X86::DIVR_FST0r },
- { X86::DIV_Fp80 , X86::DIVR_FST0r },
- { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
- { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
- { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
- { X86::SUB_Fp32 , X86::SUBR_FST0r },
- { X86::SUB_Fp64 , X86::SUBR_FST0r },
- { X86::SUB_Fp80 , X86::SUBR_FST0r },
-};
-
-// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
-static const TableEntry ForwardSTiTable[] = {
- { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
- { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
- { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
- { X86::DIV_Fp32 , X86::DIVR_FrST0 },
- { X86::DIV_Fp64 , X86::DIVR_FrST0 },
- { X86::DIV_Fp80 , X86::DIVR_FrST0 },
- { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
- { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
- { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
- { X86::SUB_Fp32 , X86::SUBR_FrST0 },
- { X86::SUB_Fp64 , X86::SUBR_FrST0 },
- { X86::SUB_Fp80 , X86::SUBR_FrST0 },
-};
-
-// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
-static const TableEntry ReverseSTiTable[] = {
- { X86::ADD_Fp32 , X86::ADD_FrST0 },
- { X86::ADD_Fp64 , X86::ADD_FrST0 },
- { X86::ADD_Fp80 , X86::ADD_FrST0 },
- { X86::DIV_Fp32 , X86::DIV_FrST0 },
- { X86::DIV_Fp64 , X86::DIV_FrST0 },
- { X86::DIV_Fp80 , X86::DIV_FrST0 },
- { X86::MUL_Fp32 , X86::MUL_FrST0 },
- { X86::MUL_Fp64 , X86::MUL_FrST0 },
- { X86::MUL_Fp80 , X86::MUL_FrST0 },
- { X86::SUB_Fp32 , X86::SUB_FrST0 },
- { X86::SUB_Fp64 , X86::SUB_FrST0 },
- { X86::SUB_Fp80 , X86::SUB_FrST0 },
-};
-
-
-/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
-/// instructions which need to be simplified and possibly transformed.
-///
-/// Result: ST(0) = fsub ST(0), ST(i)
-/// ST(i) = fsub ST(0), ST(i)
-/// ST(0) = fsubr ST(0), ST(i)
-/// ST(i) = fsubr ST(0), ST(i)
-///
-void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
- ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
- ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
- MachineInstr *MI = I;
-
- unsigned NumOperands = MI->getDesc().getNumOperands();
- assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
- unsigned Dest = getFPReg(MI->getOperand(0));
- unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
- unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
- bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
- bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
-
- unsigned TOS = getStackEntry(0);
-
- // One of our operands must be on the top of the stack. If neither is yet, we
- // need to move one.
- if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
- // We can choose to move either operand to the top of the stack. If one of
- // the operands is killed by this instruction, we want that one so that we
- // can update right on top of the old version.
- if (KillsOp0) {
- moveToTop(Op0, I); // Move dead operand to TOS.
- TOS = Op0;
- } else if (KillsOp1) {
- moveToTop(Op1, I);
- TOS = Op1;
- } else {
- // All of the operands are live after this instruction executes, so we
- // cannot update on top of any operand. Because of this, we must
- // duplicate one of the stack elements to the top. It doesn't matter
- // which one we pick.
- //
- duplicateToTop(Op0, Dest, I);
- Op0 = TOS = Dest;
- KillsOp0 = true;
- }
- } else if (!KillsOp0 && !KillsOp1) {
- // If we DO have one of our operands at the top of the stack, but we don't
- // have a dead operand, we must duplicate one of the operands to a new slot
- // on the stack.
- duplicateToTop(Op0, Dest, I);
- Op0 = TOS = Dest;
- KillsOp0 = true;
- }
-
- // Now we know that one of our operands is on the top of the stack, and at
- // least one of our operands is killed by this instruction.
- assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
- "Stack conditions not set up right!");
-
- // We decide which form to use based on what is on the top of the stack, and
- // which operand is killed by this instruction.
- const TableEntry *InstTable;
- bool isForward = TOS == Op0;
- bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
- if (updateST0) {
- if (isForward)
- InstTable = ForwardST0Table;
- else
- InstTable = ReverseST0Table;
- } else {
- if (isForward)
- InstTable = ForwardSTiTable;
- else
- InstTable = ReverseSTiTable;
- }
-
- int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
- MI->getOpcode());
- assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
-
- // NotTOS - The register which is not on the top of stack...
- unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
-
- // Replace the old instruction with a new instruction
- MBB->remove(I++);
- I = BuildMI(*MBB, I, TII->get(Opcode)).addReg(getSTReg(NotTOS));
-
- // If both operands are killed, pop one off of the stack in addition to
- // overwriting the other one.
- if (KillsOp0 && KillsOp1 && Op0 != Op1) {
- assert(!updateST0 && "Should have updated other operand!");
- popStackAfter(I); // Pop the top of stack
- }
-
- // Update stack information so that we know the destination register is now on
- // the stack.
- unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
- assert(UpdatedSlot < StackTop && Dest < 7);
- Stack[UpdatedSlot] = Dest;
- RegMap[Dest] = UpdatedSlot;
- delete MI; // Remove the old instruction
-}
-
-/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
-/// register arguments and no explicit destinations.
-///
-void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
- ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
- ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
- MachineInstr *MI = I;
-
- unsigned NumOperands = MI->getDesc().getNumOperands();
- assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
- unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
- unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
- bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
- bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
-
- // Make sure the first operand is on the top of stack, the other one can be
- // anywhere.
- moveToTop(Op0, I);
-
- // Change from the pseudo instruction to the concrete instruction.
- MI->getOperand(0).setReg(getSTReg(Op1));
- MI->RemoveOperand(1);
- MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
-
- // If any of the operands are killed by this instruction, free them.
- if (KillsOp0) freeStackSlotAfter(I, Op0);
- if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
-}
-
-/// handleCondMovFP - Handle two address conditional move instructions. These
-/// instructions move a st(i) register to st(0) iff a condition is true. These
-/// instructions require that the first operand is at the top of the stack, but
-/// otherwise don't modify the stack at all.
-void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
- MachineInstr *MI = I;
-
- unsigned Op0 = getFPReg(MI->getOperand(0));
- unsigned Op1 = getFPReg(MI->getOperand(2));
- bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
-
- // The first operand *must* be on the top of the stack.
- moveToTop(Op0, I);
-
- // Change the second operand to the stack register that the operand is in.
- // Change from the pseudo instruction to the concrete instruction.
- MI->RemoveOperand(0);
- MI->RemoveOperand(1);
- MI->getOperand(0).setReg(getSTReg(Op1));
- MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
-
- // If we kill the second operand, make sure to pop it from the stack.
- if (Op0 != Op1 && KillsOp1) {
- // Get this value off of the register stack.
- freeStackSlotAfter(I, Op1);
- }
-}
-
-
-/// handleSpecialFP - Handle special instructions which behave unlike other
-/// floating point instructions. This is primarily intended for use by pseudo
-/// instructions.
-///
-void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
- MachineInstr *MI = I;
- switch (MI->getOpcode()) {
- default: assert(0 && "Unknown SpecialFP instruction!");
- case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
- case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
- case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
- assert(StackTop == 0 && "Stack should be empty after a call!");
- pushReg(getFPReg(MI->getOperand(0)));
- break;
- case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
- case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
- case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
- // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
- // The pattern we expect is:
- // CALL
- // FP1 = FpGET_ST0
- // FP4 = FpGET_ST1
- //
- // At this point, we've pushed FP1 on the top of stack, so it should be
- // present if it isn't dead. If it was dead, we already emitted a pop to
- // remove it from the stack and StackTop = 0.
-
- // Push FP4 as top of stack next.
- pushReg(getFPReg(MI->getOperand(0)));
-
- // If StackTop was 0 before we pushed our operand, then ST(0) must have been
- // dead. In this case, the ST(1) value is the only thing that is live, so
- // it should be on the TOS (after the pop that was emitted) and is. Just
- // continue in this case.
- if (StackTop == 1)
- break;
-
- // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
- // elements so that our accounting is correct.
- unsigned RegOnTop = getStackEntry(0);
- unsigned RegNo = getStackEntry(1);
-
- // Swap the slots the regs are in.
- std::swap(RegMap[RegNo], RegMap[RegOnTop]);
-
- // Swap stack slot contents.
- assert(RegMap[RegOnTop] < StackTop);
- std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
- break;
- }
- case X86::FpSET_ST0_32:
- case X86::FpSET_ST0_64:
- case X86::FpSET_ST0_80:
- assert(StackTop == 1 && "Stack should have one element on it to return!");
- --StackTop; // "Forget" we have something on the top of stack!
- break;
- case X86::MOV_Fp3232:
- case X86::MOV_Fp3264:
- case X86::MOV_Fp6432:
- case X86::MOV_Fp6464:
- case X86::MOV_Fp3280:
- case X86::MOV_Fp6480:
- case X86::MOV_Fp8032:
- case X86::MOV_Fp8064:
- case X86::MOV_Fp8080: {
- unsigned SrcReg = getFPReg(MI->getOperand(1));
- unsigned DestReg = getFPReg(MI->getOperand(0));
-
- if (MI->killsRegister(X86::FP0+SrcReg)) {
- // If the input operand is killed, we can just change the owner of the
- // incoming stack slot into the result.
- unsigned Slot = getSlot(SrcReg);
- assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
- Stack[Slot] = DestReg;
- RegMap[DestReg] = Slot;
-
- } else {
- // For FMOV we just duplicate the specified value to a new stack slot.
- // This could be made better, but would require substantial changes.
- duplicateToTop(SrcReg, DestReg, I);
- }
- }
- break;
- case TargetInstrInfo::INLINEASM: {
- // The inline asm MachineInstr currently only *uses* FP registers for the
- // 'f' constraint. These should be turned into the current ST(x) register
- // in the machine instr. Also, any kills should be explicitly popped after
- // the inline asm.
- unsigned Kills[7];
- unsigned NumKills = 0;
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &Op = MI->getOperand(i);
- if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
- continue;
- assert(Op.isUse() && "Only handle inline asm uses right now");
-
- unsigned FPReg = getFPReg(Op);
- Op.setReg(getSTReg(FPReg));
-
- // If we kill this operand, make sure to pop it from the stack after the
- // asm. We just remember it for now, and pop them all off at the end in
- // a batch.
- if (Op.isKill())
- Kills[NumKills++] = FPReg;
- }
-
- // If this asm kills any FP registers (is the last use of them) we must
- // explicitly emit pop instructions for them. Do this now after the asm has
- // executed so that the ST(x) numbers are not off (which would happen if we
- // did this inline with operand rewriting).
- //
- // Note: this might be a non-optimal pop sequence. We might be able to do
- // better by trying to pop in stack order or something.
- MachineBasicBlock::iterator InsertPt = MI;
- while (NumKills)
- freeStackSlotAfter(InsertPt, Kills[--NumKills]);
-
- // Don't delete the inline asm!
- return;
- }
-
- case X86::RET:
- case X86::RETI:
- // If RET has an FP register use operand, pass the first one in ST(0) and
- // the second one in ST(1).
- if (isStackEmpty()) return; // Quick check to see if any are possible.
-
- // Find the register operands.
- unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
-
- for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
- MachineOperand &Op = MI->getOperand(i);
- if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
- continue;
- // FP Register uses must be kills unless there are two uses of the same
- // register, in which case only one will be a kill.
- assert(Op.isUse() &&
- (Op.isKill() || // Marked kill.
- getFPReg(Op) == FirstFPRegOp || // Second instance.
- MI->killsRegister(Op.getReg())) && // Later use is marked kill.
- "Ret only defs operands, and values aren't live beyond it");
-
- if (FirstFPRegOp == ~0U)
- FirstFPRegOp = getFPReg(Op);
- else {
- assert(SecondFPRegOp == ~0U && "More than two fp operands!");
- SecondFPRegOp = getFPReg(Op);
- }
-
- // Remove the operand so that later passes don't see it.
- MI->RemoveOperand(i);
- --i, --e;
- }
-
- // There are only four possibilities here:
- // 1) we are returning a single FP value. In this case, it has to be in
- // ST(0) already, so just declare success by removing the value from the
- // FP Stack.
- if (SecondFPRegOp == ~0U) {
- // Assert that the top of stack contains the right FP register.
- assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
- "Top of stack not the right register for RET!");
-
- // Ok, everything is good, mark the value as not being on the stack
- // anymore so that our assertion about the stack being empty at end of
- // block doesn't fire.
- StackTop = 0;
- return;
- }
-
- // Otherwise, we are returning two values:
- // 2) If returning the same value for both, we only have one thing in the FP
- // stack. Consider: RET FP1, FP1
- if (StackTop == 1) {
- assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
- "Stack misconfiguration for RET!");
-
- // Duplicate the TOS so that we return it twice. Just pick some other FPx
- // register to hold it.
- unsigned NewReg = (FirstFPRegOp+1)%7;
- duplicateToTop(FirstFPRegOp, NewReg, MI);
- FirstFPRegOp = NewReg;
- }
-
- /// Okay we know we have two different FPx operands now:
- assert(StackTop == 2 && "Must have two values live!");
-
- /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
- /// in ST(1). In this case, emit an fxch.
- if (getStackEntry(0) == SecondFPRegOp) {
- assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
- moveToTop(FirstFPRegOp, MI);
- }
-
- /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
- /// ST(1). Just remove both from our understanding of the stack and return.
- assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
- assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
- StackTop = 0;
- return;
- }
-
- I = MBB->erase(I); // Remove the pseudo instruction
- --I;
-}