summaryrefslogtreecommitdiff
path: root/release_23/lib/Transforms/Scalar/Reassociate.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'release_23/lib/Transforms/Scalar/Reassociate.cpp')
-rw-r--r--release_23/lib/Transforms/Scalar/Reassociate.cpp883
1 files changed, 0 insertions, 883 deletions
diff --git a/release_23/lib/Transforms/Scalar/Reassociate.cpp b/release_23/lib/Transforms/Scalar/Reassociate.cpp
deleted file mode 100644
index 0a118cd338b9..000000000000
--- a/release_23/lib/Transforms/Scalar/Reassociate.cpp
+++ /dev/null
@@ -1,883 +0,0 @@
-//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass reassociates commutative expressions in an order that is designed
-// to promote better constant propagation, GCSE, LICM, PRE...
-//
-// For example: 4 + (x + 5) -> x + (4 + 5)
-//
-// In the implementation of this algorithm, constants are assigned rank = 0,
-// function arguments are rank = 1, and other values are assigned ranks
-// corresponding to the reverse post order traversal of current function
-// (starting at 2), which effectively gives values in deep loops higher rank
-// than values not in loops.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "reassociate"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/Assembly/Writer.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/Statistic.h"
-#include <algorithm>
-#include <map>
-using namespace llvm;
-
-STATISTIC(NumLinear , "Number of insts linearized");
-STATISTIC(NumChanged, "Number of insts reassociated");
-STATISTIC(NumAnnihil, "Number of expr tree annihilated");
-STATISTIC(NumFactor , "Number of multiplies factored");
-
-namespace {
- struct VISIBILITY_HIDDEN ValueEntry {
- unsigned Rank;
- Value *Op;
- ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
- };
- inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
- return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
- }
-}
-
-/// PrintOps - Print out the expression identified in the Ops list.
-///
-static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
- Module *M = I->getParent()->getParent()->getParent();
- cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
- << *Ops[0].Op->getType();
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M)
- << "," << Ops[i].Rank;
-}
-
-namespace {
- class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
- std::map<BasicBlock*, unsigned> RankMap;
- std::map<Value*, unsigned> ValueRankMap;
- bool MadeChange;
- public:
- static char ID; // Pass identification, replacement for typeid
- Reassociate() : FunctionPass((intptr_t)&ID) {}
-
- bool runOnFunction(Function &F);
-
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- }
- private:
- void BuildRankMap(Function &F);
- unsigned getRank(Value *V);
- void ReassociateExpression(BinaryOperator *I);
- void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
- unsigned Idx = 0);
- Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
- void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
- void LinearizeExpr(BinaryOperator *I);
- Value *RemoveFactorFromExpression(Value *V, Value *Factor);
- void ReassociateBB(BasicBlock *BB);
-
- void RemoveDeadBinaryOp(Value *V);
- };
-
- char Reassociate::ID = 0;
- RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
-}
-
-// Public interface to the Reassociate pass
-FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
-
-void Reassociate::RemoveDeadBinaryOp(Value *V) {
- Instruction *Op = dyn_cast<Instruction>(V);
- if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
- return;
-
- Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
- RemoveDeadBinaryOp(LHS);
- RemoveDeadBinaryOp(RHS);
-}
-
-
-static bool isUnmovableInstruction(Instruction *I) {
- if (I->getOpcode() == Instruction::PHI ||
- I->getOpcode() == Instruction::Alloca ||
- I->getOpcode() == Instruction::Load ||
- I->getOpcode() == Instruction::Malloc ||
- I->getOpcode() == Instruction::Invoke ||
- I->getOpcode() == Instruction::Call ||
- I->getOpcode() == Instruction::UDiv ||
- I->getOpcode() == Instruction::SDiv ||
- I->getOpcode() == Instruction::FDiv ||
- I->getOpcode() == Instruction::URem ||
- I->getOpcode() == Instruction::SRem ||
- I->getOpcode() == Instruction::FRem)
- return true;
- return false;
-}
-
-void Reassociate::BuildRankMap(Function &F) {
- unsigned i = 2;
-
- // Assign distinct ranks to function arguments
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
- ValueRankMap[I] = ++i;
-
- ReversePostOrderTraversal<Function*> RPOT(&F);
- for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
- E = RPOT.end(); I != E; ++I) {
- BasicBlock *BB = *I;
- unsigned BBRank = RankMap[BB] = ++i << 16;
-
- // Walk the basic block, adding precomputed ranks for any instructions that
- // we cannot move. This ensures that the ranks for these instructions are
- // all different in the block.
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (isUnmovableInstruction(I))
- ValueRankMap[I] = ++BBRank;
- }
-}
-
-unsigned Reassociate::getRank(Value *V) {
- if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
-
- Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
-
- unsigned &CachedRank = ValueRankMap[I];
- if (CachedRank) return CachedRank; // Rank already known?
-
- // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
- // we can reassociate expressions for code motion! Since we do not recurse
- // for PHI nodes, we cannot have infinite recursion here, because there
- // cannot be loops in the value graph that do not go through PHI nodes.
- unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
- for (unsigned i = 0, e = I->getNumOperands();
- i != e && Rank != MaxRank; ++i)
- Rank = std::max(Rank, getRank(I->getOperand(i)));
-
- // If this is a not or neg instruction, do not count it for rank. This
- // assures us that X and ~X will have the same rank.
- if (!I->getType()->isInteger() ||
- (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
- ++Rank;
-
- //DOUT << "Calculated Rank[" << V->getName() << "] = "
- // << Rank << "\n";
-
- return CachedRank = Rank;
-}
-
-/// isReassociableOp - Return true if V is an instruction of the specified
-/// opcode and if it only has one use.
-static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
- if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
- cast<Instruction>(V)->getOpcode() == Opcode)
- return cast<BinaryOperator>(V);
- return 0;
-}
-
-/// LowerNegateToMultiply - Replace 0-X with X*-1.
-///
-static Instruction *LowerNegateToMultiply(Instruction *Neg) {
- Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
-
- Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, "",Neg);
- Res->takeName(Neg);
- Neg->replaceAllUsesWith(Res);
- Neg->eraseFromParent();
- return Res;
-}
-
-// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
-// Note that if D is also part of the expression tree that we recurse to
-// linearize it as well. Besides that case, this does not recurse into A,B, or
-// C.
-void Reassociate::LinearizeExpr(BinaryOperator *I) {
- BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
- BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
- assert(isReassociableOp(LHS, I->getOpcode()) &&
- isReassociableOp(RHS, I->getOpcode()) &&
- "Not an expression that needs linearization?");
-
- DOUT << "Linear" << *LHS << *RHS << *I;
-
- // Move the RHS instruction to live immediately before I, avoiding breaking
- // dominator properties.
- RHS->moveBefore(I);
-
- // Move operands around to do the linearization.
- I->setOperand(1, RHS->getOperand(0));
- RHS->setOperand(0, LHS);
- I->setOperand(0, RHS);
-
- ++NumLinear;
- MadeChange = true;
- DOUT << "Linearized: " << *I;
-
- // If D is part of this expression tree, tail recurse.
- if (isReassociableOp(I->getOperand(1), I->getOpcode()))
- LinearizeExpr(I);
-}
-
-
-/// LinearizeExprTree - Given an associative binary expression tree, traverse
-/// all of the uses putting it into canonical form. This forces a left-linear
-/// form of the the expression (((a+b)+c)+d), and collects information about the
-/// rank of the non-tree operands.
-///
-/// NOTE: These intentionally destroys the expression tree operands (turning
-/// them into undef values) to reduce #uses of the values. This means that the
-/// caller MUST use something like RewriteExprTree to put the values back in.
-///
-void Reassociate::LinearizeExprTree(BinaryOperator *I,
- std::vector<ValueEntry> &Ops) {
- Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
- unsigned Opcode = I->getOpcode();
-
- // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
- BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
- BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
-
- // If this is a multiply expression tree and it contains internal negations,
- // transform them into multiplies by -1 so they can be reassociated.
- if (I->getOpcode() == Instruction::Mul) {
- if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
- LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
- LHSBO = isReassociableOp(LHS, Opcode);
- }
- if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
- RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
- RHSBO = isReassociableOp(RHS, Opcode);
- }
- }
-
- if (!LHSBO) {
- if (!RHSBO) {
- // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
- // such, just remember these operands and their rank.
- Ops.push_back(ValueEntry(getRank(LHS), LHS));
- Ops.push_back(ValueEntry(getRank(RHS), RHS));
-
- // Clear the leaves out.
- I->setOperand(0, UndefValue::get(I->getType()));
- I->setOperand(1, UndefValue::get(I->getType()));
- return;
- } else {
- // Turn X+(Y+Z) -> (Y+Z)+X
- std::swap(LHSBO, RHSBO);
- std::swap(LHS, RHS);
- bool Success = !I->swapOperands();
- assert(Success && "swapOperands failed");
- MadeChange = true;
- }
- } else if (RHSBO) {
- // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
- // part of the expression tree.
- LinearizeExpr(I);
- LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
- RHS = I->getOperand(1);
- RHSBO = 0;
- }
-
- // Okay, now we know that the LHS is a nested expression and that the RHS is
- // not. Perform reassociation.
- assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
-
- // Move LHS right before I to make sure that the tree expression dominates all
- // values.
- LHSBO->moveBefore(I);
-
- // Linearize the expression tree on the LHS.
- LinearizeExprTree(LHSBO, Ops);
-
- // Remember the RHS operand and its rank.
- Ops.push_back(ValueEntry(getRank(RHS), RHS));
-
- // Clear the RHS leaf out.
- I->setOperand(1, UndefValue::get(I->getType()));
-}
-
-// RewriteExprTree - Now that the operands for this expression tree are
-// linearized and optimized, emit them in-order. This function is written to be
-// tail recursive.
-void Reassociate::RewriteExprTree(BinaryOperator *I,
- std::vector<ValueEntry> &Ops,
- unsigned i) {
- if (i+2 == Ops.size()) {
- if (I->getOperand(0) != Ops[i].Op ||
- I->getOperand(1) != Ops[i+1].Op) {
- Value *OldLHS = I->getOperand(0);
- DOUT << "RA: " << *I;
- I->setOperand(0, Ops[i].Op);
- I->setOperand(1, Ops[i+1].Op);
- DOUT << "TO: " << *I;
- MadeChange = true;
- ++NumChanged;
-
- // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
- // delete the extra, now dead, nodes.
- RemoveDeadBinaryOp(OldLHS);
- }
- return;
- }
- assert(i+2 < Ops.size() && "Ops index out of range!");
-
- if (I->getOperand(1) != Ops[i].Op) {
- DOUT << "RA: " << *I;
- I->setOperand(1, Ops[i].Op);
- DOUT << "TO: " << *I;
- MadeChange = true;
- ++NumChanged;
- }
-
- BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
- assert(LHS->getOpcode() == I->getOpcode() &&
- "Improper expression tree!");
-
- // Compactify the tree instructions together with each other to guarantee
- // that the expression tree is dominated by all of Ops.
- LHS->moveBefore(I);
- RewriteExprTree(LHS, Ops, i+1);
-}
-
-
-
-// NegateValue - Insert instructions before the instruction pointed to by BI,
-// that computes the negative version of the value specified. The negative
-// version of the value is returned, and BI is left pointing at the instruction
-// that should be processed next by the reassociation pass.
-//
-static Value *NegateValue(Value *V, Instruction *BI) {
- // We are trying to expose opportunity for reassociation. One of the things
- // that we want to do to achieve this is to push a negation as deep into an
- // expression chain as possible, to expose the add instructions. In practice,
- // this means that we turn this:
- // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
- // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
- // the constants. We assume that instcombine will clean up the mess later if
- // we introduce tons of unnecessary negation instructions...
- //
- if (Instruction *I = dyn_cast<Instruction>(V))
- if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
- // Push the negates through the add.
- I->setOperand(0, NegateValue(I->getOperand(0), BI));
- I->setOperand(1, NegateValue(I->getOperand(1), BI));
-
- // We must move the add instruction here, because the neg instructions do
- // not dominate the old add instruction in general. By moving it, we are
- // assured that the neg instructions we just inserted dominate the
- // instruction we are about to insert after them.
- //
- I->moveBefore(BI);
- I->setName(I->getName()+".neg");
- return I;
- }
-
- // Insert a 'neg' instruction that subtracts the value from zero to get the
- // negation.
- //
- return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
-}
-
-/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
-/// X-Y into (X + -Y).
-static bool ShouldBreakUpSubtract(Instruction *Sub) {
- // If this is a negation, we can't split it up!
- if (BinaryOperator::isNeg(Sub))
- return false;
-
- // Don't bother to break this up unless either the LHS is an associable add or
- // subtract or if this is only used by one.
- if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
- isReassociableOp(Sub->getOperand(0), Instruction::Sub))
- return true;
- if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
- isReassociableOp(Sub->getOperand(1), Instruction::Sub))
- return true;
- if (Sub->hasOneUse() &&
- (isReassociableOp(Sub->use_back(), Instruction::Add) ||
- isReassociableOp(Sub->use_back(), Instruction::Sub)))
- return true;
-
- return false;
-}
-
-/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
-/// only used by an add, transform this into (X+(0-Y)) to promote better
-/// reassociation.
-static Instruction *BreakUpSubtract(Instruction *Sub) {
- // Convert a subtract into an add and a neg instruction... so that sub
- // instructions can be commuted with other add instructions...
- //
- // Calculate the negative value of Operand 1 of the sub instruction...
- // and set it as the RHS of the add instruction we just made...
- //
- Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
- Instruction *New =
- BinaryOperator::createAdd(Sub->getOperand(0), NegVal, "", Sub);
- New->takeName(Sub);
-
- // Everyone now refers to the add instruction.
- Sub->replaceAllUsesWith(New);
- Sub->eraseFromParent();
-
- DOUT << "Negated: " << *New;
- return New;
-}
-
-/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
-/// by one, change this into a multiply by a constant to assist with further
-/// reassociation.
-static Instruction *ConvertShiftToMul(Instruction *Shl) {
- // If an operand of this shift is a reassociable multiply, or if the shift
- // is used by a reassociable multiply or add, turn into a multiply.
- if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
- (Shl->hasOneUse() &&
- (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
- isReassociableOp(Shl->use_back(), Instruction::Add)))) {
- Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
- MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
-
- Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
- "", Shl);
- Mul->takeName(Shl);
- Shl->replaceAllUsesWith(Mul);
- Shl->eraseFromParent();
- return Mul;
- }
- return 0;
-}
-
-// Scan backwards and forwards among values with the same rank as element i to
-// see if X exists. If X does not exist, return i.
-static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
- Value *X) {
- unsigned XRank = Ops[i].Rank;
- unsigned e = Ops.size();
- for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
- if (Ops[j].Op == X)
- return j;
- // Scan backwards
- for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
- if (Ops[j].Op == X)
- return j;
- return i;
-}
-
-/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
-/// and returning the result. Insert the tree before I.
-static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
- if (Ops.size() == 1) return Ops.back();
-
- Value *V1 = Ops.back();
- Ops.pop_back();
- Value *V2 = EmitAddTreeOfValues(I, Ops);
- return BinaryOperator::createAdd(V2, V1, "tmp", I);
-}
-
-/// RemoveFactorFromExpression - If V is an expression tree that is a
-/// multiplication sequence, and if this sequence contains a multiply by Factor,
-/// remove Factor from the tree and return the new tree.
-Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
- BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
- if (!BO) return 0;
-
- std::vector<ValueEntry> Factors;
- LinearizeExprTree(BO, Factors);
-
- bool FoundFactor = false;
- for (unsigned i = 0, e = Factors.size(); i != e; ++i)
- if (Factors[i].Op == Factor) {
- FoundFactor = true;
- Factors.erase(Factors.begin()+i);
- break;
- }
- if (!FoundFactor) {
- // Make sure to restore the operands to the expression tree.
- RewriteExprTree(BO, Factors);
- return 0;
- }
-
- if (Factors.size() == 1) return Factors[0].Op;
-
- RewriteExprTree(BO, Factors);
- return BO;
-}
-
-/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
-/// add its operands as factors, otherwise add V to the list of factors.
-static void FindSingleUseMultiplyFactors(Value *V,
- std::vector<Value*> &Factors) {
- BinaryOperator *BO;
- if ((!V->hasOneUse() && !V->use_empty()) ||
- !(BO = dyn_cast<BinaryOperator>(V)) ||
- BO->getOpcode() != Instruction::Mul) {
- Factors.push_back(V);
- return;
- }
-
- // Otherwise, add the LHS and RHS to the list of factors.
- FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
- FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
-}
-
-
-
-Value *Reassociate::OptimizeExpression(BinaryOperator *I,
- std::vector<ValueEntry> &Ops) {
- // Now that we have the linearized expression tree, try to optimize it.
- // Start by folding any constants that we found.
- bool IterateOptimization = false;
- if (Ops.size() == 1) return Ops[0].Op;
-
- unsigned Opcode = I->getOpcode();
-
- if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
- if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
- Ops.pop_back();
- Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
- return OptimizeExpression(I, Ops);
- }
-
- // Check for destructive annihilation due to a constant being used.
- if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
- switch (Opcode) {
- default: break;
- case Instruction::And:
- if (CstVal->isZero()) { // ... & 0 -> 0
- ++NumAnnihil;
- return CstVal;
- } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
- Ops.pop_back();
- }
- break;
- case Instruction::Mul:
- if (CstVal->isZero()) { // ... * 0 -> 0
- ++NumAnnihil;
- return CstVal;
- } else if (cast<ConstantInt>(CstVal)->isOne()) {
- Ops.pop_back(); // ... * 1 -> ...
- }
- break;
- case Instruction::Or:
- if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
- ++NumAnnihil;
- return CstVal;
- }
- // FALLTHROUGH!
- case Instruction::Add:
- case Instruction::Xor:
- if (CstVal->isZero()) // ... [|^+] 0 -> ...
- Ops.pop_back();
- break;
- }
- if (Ops.size() == 1) return Ops[0].Op;
-
- // Handle destructive annihilation do to identities between elements in the
- // argument list here.
- switch (Opcode) {
- default: break;
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
- // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- // First, check for X and ~X in the operand list.
- assert(i < Ops.size());
- if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
- Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
- unsigned FoundX = FindInOperandList(Ops, i, X);
- if (FoundX != i) {
- if (Opcode == Instruction::And) { // ...&X&~X = 0
- ++NumAnnihil;
- return Constant::getNullValue(X->getType());
- } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
- ++NumAnnihil;
- return ConstantInt::getAllOnesValue(X->getType());
- }
- }
- }
-
- // Next, check for duplicate pairs of values, which we assume are next to
- // each other, due to our sorting criteria.
- assert(i < Ops.size());
- if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
- if (Opcode == Instruction::And || Opcode == Instruction::Or) {
- // Drop duplicate values.
- Ops.erase(Ops.begin()+i);
- --i; --e;
- IterateOptimization = true;
- ++NumAnnihil;
- } else {
- assert(Opcode == Instruction::Xor);
- if (e == 2) {
- ++NumAnnihil;
- return Constant::getNullValue(Ops[0].Op->getType());
- }
- // ... X^X -> ...
- Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
- i -= 1; e -= 2;
- IterateOptimization = true;
- ++NumAnnihil;
- }
- }
- }
- break;
-
- case Instruction::Add:
- // Scan the operand lists looking for X and -X pairs. If we find any, we
- // can simplify the expression. X+-X == 0.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- assert(i < Ops.size());
- // Check for X and -X in the operand list.
- if (BinaryOperator::isNeg(Ops[i].Op)) {
- Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
- unsigned FoundX = FindInOperandList(Ops, i, X);
- if (FoundX != i) {
- // Remove X and -X from the operand list.
- if (Ops.size() == 2) {
- ++NumAnnihil;
- return Constant::getNullValue(X->getType());
- } else {
- Ops.erase(Ops.begin()+i);
- if (i < FoundX)
- --FoundX;
- else
- --i; // Need to back up an extra one.
- Ops.erase(Ops.begin()+FoundX);
- IterateOptimization = true;
- ++NumAnnihil;
- --i; // Revisit element.
- e -= 2; // Removed two elements.
- }
- }
- }
- }
-
-
- // Scan the operand list, checking to see if there are any common factors
- // between operands. Consider something like A*A+A*B*C+D. We would like to
- // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
- // To efficiently find this, we count the number of times a factor occurs
- // for any ADD operands that are MULs.
- std::map<Value*, unsigned> FactorOccurrences;
- unsigned MaxOcc = 0;
- Value *MaxOccVal = 0;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
- if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
- // Compute all of the factors of this added value.
- std::vector<Value*> Factors;
- FindSingleUseMultiplyFactors(BOp, Factors);
- assert(Factors.size() > 1 && "Bad linearize!");
-
- // Add one to FactorOccurrences for each unique factor in this op.
- if (Factors.size() == 2) {
- unsigned Occ = ++FactorOccurrences[Factors[0]];
- if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
- if (Factors[0] != Factors[1]) { // Don't double count A*A.
- Occ = ++FactorOccurrences[Factors[1]];
- if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
- }
- } else {
- std::set<Value*> Duplicates;
- for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
- if (Duplicates.insert(Factors[i]).second) {
- unsigned Occ = ++FactorOccurrences[Factors[i]];
- if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
- }
- }
- }
- }
- }
- }
-
- // If any factor occurred more than one time, we can pull it out.
- if (MaxOcc > 1) {
- DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
-
- // Create a new instruction that uses the MaxOccVal twice. If we don't do
- // this, we could otherwise run into situations where removing a factor
- // from an expression will drop a use of maxocc, and this can cause
- // RemoveFactorFromExpression on successive values to behave differently.
- Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
- std::vector<Value*> NewMulOps;
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
- NewMulOps.push_back(V);
- Ops.erase(Ops.begin()+i);
- --i; --e;
- }
- }
-
- // No need for extra uses anymore.
- delete DummyInst;
-
- unsigned NumAddedValues = NewMulOps.size();
- Value *V = EmitAddTreeOfValues(I, NewMulOps);
- Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
-
- // Now that we have inserted V and its sole use, optimize it. This allows
- // us to handle cases that require multiple factoring steps, such as this:
- // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
- if (NumAddedValues > 1)
- ReassociateExpression(cast<BinaryOperator>(V));
-
- ++NumFactor;
-
- if (Ops.empty())
- return V2;
-
- // Add the new value to the list of things being added.
- Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
-
- // Rewrite the tree so that there is now a use of V.
- RewriteExprTree(I, Ops);
- return OptimizeExpression(I, Ops);
- }
- break;
- //case Instruction::Mul:
- }
-
- if (IterateOptimization)
- return OptimizeExpression(I, Ops);
- return 0;
-}
-
-
-/// ReassociateBB - Inspect all of the instructions in this basic block,
-/// reassociating them as we go.
-void Reassociate::ReassociateBB(BasicBlock *BB) {
- for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
- Instruction *BI = BBI++;
- if (BI->getOpcode() == Instruction::Shl &&
- isa<ConstantInt>(BI->getOperand(1)))
- if (Instruction *NI = ConvertShiftToMul(BI)) {
- MadeChange = true;
- BI = NI;
- }
-
- // Reject cases where it is pointless to do this.
- if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
- isa<VectorType>(BI->getType()))
- continue; // Floating point ops are not associative.
-
- // If this is a subtract instruction which is not already in negate form,
- // see if we can convert it to X+-Y.
- if (BI->getOpcode() == Instruction::Sub) {
- if (ShouldBreakUpSubtract(BI)) {
- BI = BreakUpSubtract(BI);
- MadeChange = true;
- } else if (BinaryOperator::isNeg(BI)) {
- // Otherwise, this is a negation. See if the operand is a multiply tree
- // and if this is not an inner node of a multiply tree.
- if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
- (!BI->hasOneUse() ||
- !isReassociableOp(BI->use_back(), Instruction::Mul))) {
- BI = LowerNegateToMultiply(BI);
- MadeChange = true;
- }
- }
- }
-
- // If this instruction is a commutative binary operator, process it.
- if (!BI->isAssociative()) continue;
- BinaryOperator *I = cast<BinaryOperator>(BI);
-
- // If this is an interior node of a reassociable tree, ignore it until we
- // get to the root of the tree, to avoid N^2 analysis.
- if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
- continue;
-
- // If this is an add tree that is used by a sub instruction, ignore it
- // until we process the subtract.
- if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
- cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
- continue;
-
- ReassociateExpression(I);
- }
-}
-
-void Reassociate::ReassociateExpression(BinaryOperator *I) {
-
- // First, walk the expression tree, linearizing the tree, collecting
- std::vector<ValueEntry> Ops;
- LinearizeExprTree(I, Ops);
-
- DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
-
- // Now that we have linearized the tree to a list and have gathered all of
- // the operands and their ranks, sort the operands by their rank. Use a
- // stable_sort so that values with equal ranks will have their relative
- // positions maintained (and so the compiler is deterministic). Note that
- // this sorts so that the highest ranking values end up at the beginning of
- // the vector.
- std::stable_sort(Ops.begin(), Ops.end());
-
- // OptimizeExpression - Now that we have the expression tree in a convenient
- // sorted form, optimize it globally if possible.
- if (Value *V = OptimizeExpression(I, Ops)) {
- // This expression tree simplified to something that isn't a tree,
- // eliminate it.
- DOUT << "Reassoc to scalar: " << *V << "\n";
- I->replaceAllUsesWith(V);
- RemoveDeadBinaryOp(I);
- return;
- }
-
- // We want to sink immediates as deeply as possible except in the case where
- // this is a multiply tree used only by an add, and the immediate is a -1.
- // In this case we reassociate to put the negation on the outside so that we
- // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
- if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
- cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
- isa<ConstantInt>(Ops.back().Op) &&
- cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
- Ops.insert(Ops.begin(), Ops.back());
- Ops.pop_back();
- }
-
- DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
-
- if (Ops.size() == 1) {
- // This expression tree simplified to something that isn't a tree,
- // eliminate it.
- I->replaceAllUsesWith(Ops[0].Op);
- RemoveDeadBinaryOp(I);
- } else {
- // Now that we ordered and optimized the expressions, splat them back into
- // the expression tree, removing any unneeded nodes.
- RewriteExprTree(I, Ops);
- }
-}
-
-
-bool Reassociate::runOnFunction(Function &F) {
- // Recalculate the rank map for F
- BuildRankMap(F);
-
- MadeChange = false;
- for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
- ReassociateBB(FI);
-
- // We are done with the rank map...
- RankMap.clear();
- ValueRankMap.clear();
- return MadeChange;
-}
-