summaryrefslogtreecommitdiff
path: root/release_23/lib/Transforms/Utils/InlineFunction.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'release_23/lib/Transforms/Utils/InlineFunction.cpp')
-rw-r--r--release_23/lib/Transforms/Utils/InlineFunction.cpp613
1 files changed, 0 insertions, 613 deletions
diff --git a/release_23/lib/Transforms/Utils/InlineFunction.cpp b/release_23/lib/Transforms/Utils/InlineFunction.cpp
deleted file mode 100644
index 6c96785aa10b..000000000000
--- a/release_23/lib/Transforms/Utils/InlineFunction.cpp
+++ /dev/null
@@ -1,613 +0,0 @@
-//===- InlineFunction.cpp - Code to perform function inlining -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements inlining of a function into a call site, resolving
-// parameters and the return value as appropriate.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Instructions.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/ParameterAttributes.h"
-#include "llvm/Analysis/CallGraph.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/Support/CallSite.h"
-using namespace llvm;
-
-bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
- return InlineFunction(CallSite(CI), CG, TD);
-}
-bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
- return InlineFunction(CallSite(II), CG, TD);
-}
-
-/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
-/// in the body of the inlined function into invokes and turn unwind
-/// instructions into branches to the invoke unwind dest.
-///
-/// II is the invoke instruction begin inlined. FirstNewBlock is the first
-/// block of the inlined code (the last block is the end of the function),
-/// and InlineCodeInfo is information about the code that got inlined.
-static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
- ClonedCodeInfo &InlinedCodeInfo) {
- BasicBlock *InvokeDest = II->getUnwindDest();
- std::vector<Value*> InvokeDestPHIValues;
-
- // If there are PHI nodes in the unwind destination block, we need to
- // keep track of which values came into them from this invoke, then remove
- // the entry for this block.
- BasicBlock *InvokeBlock = II->getParent();
- for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- // Save the value to use for this edge.
- InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
- }
-
- Function *Caller = FirstNewBlock->getParent();
-
- // The inlined code is currently at the end of the function, scan from the
- // start of the inlined code to its end, checking for stuff we need to
- // rewrite.
- if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
- for (Function::iterator BB = FirstNewBlock, E = Caller->end();
- BB != E; ++BB) {
- if (InlinedCodeInfo.ContainsCalls) {
- for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
- Instruction *I = BBI++;
-
- // We only need to check for function calls: inlined invoke
- // instructions require no special handling.
- if (!isa<CallInst>(I)) continue;
- CallInst *CI = cast<CallInst>(I);
-
- // If this call cannot unwind, don't convert it to an invoke.
- if (CI->doesNotThrow())
- continue;
-
- // Convert this function call into an invoke instruction.
- // First, split the basic block.
- BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
-
- // Next, create the new invoke instruction, inserting it at the end
- // of the old basic block.
- SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
- InvokeInst *II =
- InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
- InvokeArgs.begin(), InvokeArgs.end(),
- CI->getName(), BB->getTerminator());
- II->setCallingConv(CI->getCallingConv());
- II->setParamAttrs(CI->getParamAttrs());
-
- // Make sure that anything using the call now uses the invoke!
- CI->replaceAllUsesWith(II);
-
- // Delete the unconditional branch inserted by splitBasicBlock
- BB->getInstList().pop_back();
- Split->getInstList().pop_front(); // Delete the original call
-
- // Update any PHI nodes in the exceptional block to indicate that
- // there is now a new entry in them.
- unsigned i = 0;
- for (BasicBlock::iterator I = InvokeDest->begin();
- isa<PHINode>(I); ++I, ++i) {
- PHINode *PN = cast<PHINode>(I);
- PN->addIncoming(InvokeDestPHIValues[i], BB);
- }
-
- // This basic block is now complete, start scanning the next one.
- break;
- }
- }
-
- if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
- // An UnwindInst requires special handling when it gets inlined into an
- // invoke site. Once this happens, we know that the unwind would cause
- // a control transfer to the invoke exception destination, so we can
- // transform it into a direct branch to the exception destination.
- BranchInst::Create(InvokeDest, UI);
-
- // Delete the unwind instruction!
- UI->getParent()->getInstList().pop_back();
-
- // Update any PHI nodes in the exceptional block to indicate that
- // there is now a new entry in them.
- unsigned i = 0;
- for (BasicBlock::iterator I = InvokeDest->begin();
- isa<PHINode>(I); ++I, ++i) {
- PHINode *PN = cast<PHINode>(I);
- PN->addIncoming(InvokeDestPHIValues[i], BB);
- }
- }
- }
- }
-
- // Now that everything is happy, we have one final detail. The PHI nodes in
- // the exception destination block still have entries due to the original
- // invoke instruction. Eliminate these entries (which might even delete the
- // PHI node) now.
- InvokeDest->removePredecessor(II->getParent());
-}
-
-/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
-/// into the caller, update the specified callgraph to reflect the changes we
-/// made. Note that it's possible that not all code was copied over, so only
-/// some edges of the callgraph will be remain.
-static void UpdateCallGraphAfterInlining(const Function *Caller,
- const Function *Callee,
- Function::iterator FirstNewBlock,
- DenseMap<const Value*, Value*> &ValueMap,
- CallGraph &CG) {
- // Update the call graph by deleting the edge from Callee to Caller
- CallGraphNode *CalleeNode = CG[Callee];
- CallGraphNode *CallerNode = CG[Caller];
- CallerNode->removeCallEdgeTo(CalleeNode);
-
- // Since we inlined some uninlined call sites in the callee into the caller,
- // add edges from the caller to all of the callees of the callee.
- for (CallGraphNode::iterator I = CalleeNode->begin(),
- E = CalleeNode->end(); I != E; ++I) {
- const Instruction *OrigCall = I->first.getInstruction();
-
- DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
- // Only copy the edge if the call was inlined!
- if (VMI != ValueMap.end() && VMI->second) {
- // If the call was inlined, but then constant folded, there is no edge to
- // add. Check for this case.
- if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
- CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
- }
- }
-}
-
-
-// InlineFunction - This function inlines the called function into the basic
-// block of the caller. This returns false if it is not possible to inline this
-// call. The program is still in a well defined state if this occurs though.
-//
-// Note that this only does one level of inlining. For example, if the
-// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
-// exists in the instruction stream. Similiarly this will inline a recursive
-// function by one level.
-//
-bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
- Instruction *TheCall = CS.getInstruction();
- assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
- "Instruction not in function!");
-
- const Function *CalledFunc = CS.getCalledFunction();
- if (CalledFunc == 0 || // Can't inline external function or indirect
- CalledFunc->isDeclaration() || // call, or call to a vararg function!
- CalledFunc->getFunctionType()->isVarArg()) return false;
-
-
- // If the call to the callee is a non-tail call, we must clear the 'tail'
- // flags on any calls that we inline.
- bool MustClearTailCallFlags =
- isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
-
- // If the call to the callee cannot throw, set the 'nounwind' flag on any
- // calls that we inline.
- bool MarkNoUnwind = CS.doesNotThrow();
-
- BasicBlock *OrigBB = TheCall->getParent();
- Function *Caller = OrigBB->getParent();
-
- // GC poses two hazards to inlining, which only occur when the callee has GC:
- // 1. If the caller has no GC, then the callee's GC must be propagated to the
- // caller.
- // 2. If the caller has a differing GC, it is invalid to inline.
- if (CalledFunc->hasCollector()) {
- if (!Caller->hasCollector())
- Caller->setCollector(CalledFunc->getCollector());
- else if (CalledFunc->getCollector() != Caller->getCollector())
- return false;
- }
-
- // Get an iterator to the last basic block in the function, which will have
- // the new function inlined after it.
- //
- Function::iterator LastBlock = &Caller->back();
-
- // Make sure to capture all of the return instructions from the cloned
- // function.
- std::vector<ReturnInst*> Returns;
- ClonedCodeInfo InlinedFunctionInfo;
- Function::iterator FirstNewBlock;
-
- { // Scope to destroy ValueMap after cloning.
- DenseMap<const Value*, Value*> ValueMap;
-
- assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
- std::distance(CS.arg_begin(), CS.arg_end()) &&
- "No varargs calls can be inlined!");
-
- // Calculate the vector of arguments to pass into the function cloner, which
- // matches up the formal to the actual argument values.
- CallSite::arg_iterator AI = CS.arg_begin();
- unsigned ArgNo = 0;
- for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
- E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
- Value *ActualArg = *AI;
-
- // When byval arguments actually inlined, we need to make the copy implied
- // by them explicit. However, we don't do this if the callee is readonly
- // or readnone, because the copy would be unneeded: the callee doesn't
- // modify the struct.
- if (CalledFunc->paramHasAttr(ArgNo+1, ParamAttr::ByVal) &&
- !CalledFunc->onlyReadsMemory()) {
- const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
- const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
-
- // Create the alloca. If we have TargetData, use nice alignment.
- unsigned Align = 1;
- if (TD) Align = TD->getPrefTypeAlignment(AggTy);
- Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(),
- Caller->begin()->begin());
- // Emit a memcpy.
- Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
- Intrinsic::memcpy_i64);
- Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
- Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
-
- Value *Size;
- if (TD == 0)
- Size = ConstantExpr::getSizeOf(AggTy);
- else
- Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy));
-
- // Always generate a memcpy of alignment 1 here because we don't know
- // the alignment of the src pointer. Other optimizations can infer
- // better alignment.
- Value *CallArgs[] = {
- DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
- };
- CallInst *TheMemCpy =
- CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
-
- // If we have a call graph, update it.
- if (CG) {
- CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
- CallGraphNode *CallerNode = (*CG)[Caller];
- CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
- }
-
- // Uses of the argument in the function should use our new alloca
- // instead.
- ActualArg = NewAlloca;
- }
-
- ValueMap[I] = ActualArg;
- }
-
- // We want the inliner to prune the code as it copies. We would LOVE to
- // have no dead or constant instructions leftover after inlining occurs
- // (which can happen, e.g., because an argument was constant), but we'll be
- // happy with whatever the cloner can do.
- CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
- &InlinedFunctionInfo, TD);
-
- // Remember the first block that is newly cloned over.
- FirstNewBlock = LastBlock; ++FirstNewBlock;
-
- // Update the callgraph if requested.
- if (CG)
- UpdateCallGraphAfterInlining(Caller, CalledFunc, FirstNewBlock, ValueMap,
- *CG);
- }
-
- // If there are any alloca instructions in the block that used to be the entry
- // block for the callee, move them to the entry block of the caller. First
- // calculate which instruction they should be inserted before. We insert the
- // instructions at the end of the current alloca list.
- //
- {
- BasicBlock::iterator InsertPoint = Caller->begin()->begin();
- for (BasicBlock::iterator I = FirstNewBlock->begin(),
- E = FirstNewBlock->end(); I != E; )
- if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
- // If the alloca is now dead, remove it. This often occurs due to code
- // specialization.
- if (AI->use_empty()) {
- AI->eraseFromParent();
- continue;
- }
-
- if (isa<Constant>(AI->getArraySize())) {
- // Scan for the block of allocas that we can move over, and move them
- // all at once.
- while (isa<AllocaInst>(I) &&
- isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
- ++I;
-
- // Transfer all of the allocas over in a block. Using splice means
- // that the instructions aren't removed from the symbol table, then
- // reinserted.
- Caller->getEntryBlock().getInstList().splice(
- InsertPoint,
- FirstNewBlock->getInstList(),
- AI, I);
- }
- }
- }
-
- // If the inlined code contained dynamic alloca instructions, wrap the inlined
- // code with llvm.stacksave/llvm.stackrestore intrinsics.
- if (InlinedFunctionInfo.ContainsDynamicAllocas) {
- Module *M = Caller->getParent();
- // Get the two intrinsics we care about.
- Constant *StackSave, *StackRestore;
- StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
- StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);
-
- // If we are preserving the callgraph, add edges to the stacksave/restore
- // functions for the calls we insert.
- CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
- if (CG) {
- // We know that StackSave/StackRestore are Function*'s, because they are
- // intrinsics which must have the right types.
- StackSaveCGN = CG->getOrInsertFunction(cast<Function>(StackSave));
- StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
- CallerNode = (*CG)[Caller];
- }
-
- // Insert the llvm.stacksave.
- CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
- FirstNewBlock->begin());
- if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
-
- // Insert a call to llvm.stackrestore before any return instructions in the
- // inlined function.
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
- if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
- }
-
- // Count the number of StackRestore calls we insert.
- unsigned NumStackRestores = Returns.size();
-
- // If we are inlining an invoke instruction, insert restores before each
- // unwind. These unwinds will be rewritten into branches later.
- if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
- for (Function::iterator BB = FirstNewBlock, E = Caller->end();
- BB != E; ++BB)
- if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
- CallInst::Create(StackRestore, SavedPtr, "", UI);
- ++NumStackRestores;
- }
- }
- }
-
- // If we are inlining tail call instruction through a call site that isn't
- // marked 'tail', we must remove the tail marker for any calls in the inlined
- // code. Also, calls inlined through a 'nounwind' call site should be marked
- // 'nounwind'.
- if (InlinedFunctionInfo.ContainsCalls &&
- (MustClearTailCallFlags || MarkNoUnwind)) {
- for (Function::iterator BB = FirstNewBlock, E = Caller->end();
- BB != E; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (CallInst *CI = dyn_cast<CallInst>(I)) {
- if (MustClearTailCallFlags)
- CI->setTailCall(false);
- if (MarkNoUnwind)
- CI->setDoesNotThrow();
- }
- }
-
- // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
- // instructions are unreachable.
- if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
- for (Function::iterator BB = FirstNewBlock, E = Caller->end();
- BB != E; ++BB) {
- TerminatorInst *Term = BB->getTerminator();
- if (isa<UnwindInst>(Term)) {
- new UnreachableInst(Term);
- BB->getInstList().erase(Term);
- }
- }
-
- // If we are inlining for an invoke instruction, we must make sure to rewrite
- // any inlined 'unwind' instructions into branches to the invoke exception
- // destination, and call instructions into invoke instructions.
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
- HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
-
- // If we cloned in _exactly one_ basic block, and if that block ends in a
- // return instruction, we splice the body of the inlined callee directly into
- // the calling basic block.
- if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
- // Move all of the instructions right before the call.
- OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
- FirstNewBlock->begin(), FirstNewBlock->end());
- // Remove the cloned basic block.
- Caller->getBasicBlockList().pop_back();
-
- // If the call site was an invoke instruction, add a branch to the normal
- // destination.
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
- BranchInst::Create(II->getNormalDest(), TheCall);
-
- // If the return instruction returned a value, replace uses of the call with
- // uses of the returned value.
- if (!TheCall->use_empty()) {
- ReturnInst *R = Returns[0];
- if (isa<StructType>(TheCall->getType())) {
- // Multiple return values.
- while (!TheCall->use_empty()) {
- GetResultInst *GR = cast<GetResultInst>(TheCall->use_back());
- Value *RV = R->getOperand(GR->getIndex());
- GR->replaceAllUsesWith(RV);
- GR->eraseFromParent();
- }
- } else
- TheCall->replaceAllUsesWith(R->getReturnValue());
- }
- // Since we are now done with the Call/Invoke, we can delete it.
- TheCall->getParent()->getInstList().erase(TheCall);
-
- // Since we are now done with the return instruction, delete it also.
- Returns[0]->getParent()->getInstList().erase(Returns[0]);
-
- // We are now done with the inlining.
- return true;
- }
-
- // Otherwise, we have the normal case, of more than one block to inline or
- // multiple return sites.
-
- // We want to clone the entire callee function into the hole between the
- // "starter" and "ender" blocks. How we accomplish this depends on whether
- // this is an invoke instruction or a call instruction.
- BasicBlock *AfterCallBB;
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
-
- // Add an unconditional branch to make this look like the CallInst case...
- BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
-
- // Split the basic block. This guarantees that no PHI nodes will have to be
- // updated due to new incoming edges, and make the invoke case more
- // symmetric to the call case.
- AfterCallBB = OrigBB->splitBasicBlock(NewBr,
- CalledFunc->getName()+".exit");
-
- } else { // It's a call
- // If this is a call instruction, we need to split the basic block that
- // the call lives in.
- //
- AfterCallBB = OrigBB->splitBasicBlock(TheCall,
- CalledFunc->getName()+".exit");
- }
-
- // Change the branch that used to go to AfterCallBB to branch to the first
- // basic block of the inlined function.
- //
- TerminatorInst *Br = OrigBB->getTerminator();
- assert(Br && Br->getOpcode() == Instruction::Br &&
- "splitBasicBlock broken!");
- Br->setOperand(0, FirstNewBlock);
-
-
- // Now that the function is correct, make it a little bit nicer. In
- // particular, move the basic blocks inserted from the end of the function
- // into the space made by splitting the source basic block.
- Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
- FirstNewBlock, Caller->end());
-
- // Handle all of the return instructions that we just cloned in, and eliminate
- // any users of the original call/invoke instruction.
- const Type *RTy = CalledFunc->getReturnType();
- const StructType *STy = dyn_cast<StructType>(RTy);
- if (Returns.size() > 1 || STy) {
- // The PHI node should go at the front of the new basic block to merge all
- // possible incoming values.
- SmallVector<PHINode *, 4> PHIs;
- if (!TheCall->use_empty()) {
- if (STy) {
- unsigned NumRetVals = STy->getNumElements();
- // Create new phi nodes such that phi node number in the PHIs vector
- // match corresponding return value operand number.
- Instruction *InsertPt = AfterCallBB->begin();
- for (unsigned i = 0; i < NumRetVals; ++i) {
- PHINode *PHI = PHINode::Create(STy->getElementType(i),
- TheCall->getName() + "." + utostr(i),
- InsertPt);
- PHIs.push_back(PHI);
- }
- // TheCall results are used by GetResult instructions.
- while (!TheCall->use_empty()) {
- GetResultInst *GR = cast<GetResultInst>(TheCall->use_back());
- GR->replaceAllUsesWith(PHIs[GR->getIndex()]);
- GR->eraseFromParent();
- }
- } else {
- PHINode *PHI = PHINode::Create(RTy, TheCall->getName(), AfterCallBB->begin());
- PHIs.push_back(PHI);
- // Anything that used the result of the function call should now use the
- // PHI node as their operand.
- TheCall->replaceAllUsesWith(PHI);
- }
- }
-
- // Loop over all of the return instructions adding entries to the PHI node as
- // appropriate.
- if (!PHIs.empty()) {
- // There is atleast one return value.
- unsigned NumRetVals = 1;
- if (STy)
- NumRetVals = STy->getNumElements();
- for (unsigned j = 0; j < NumRetVals; ++j) {
- PHINode *PHI = PHIs[j];
- // Each PHI node will receive one value from each return instruction.
- for(unsigned i = 0, e = Returns.size(); i != e; ++i) {
- ReturnInst *RI = Returns[i];
- assert(RI->getReturnValue(j)->getType() == PHI->getType() &&
- "Ret value not consistent in function!");
- PHI->addIncoming(RI->getReturnValue(j /*PHI number matches operand number*/),
- RI->getParent());
- }
- }
- }
-
- // Add a branch to the merge points and remove retrun instructions.
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- ReturnInst *RI = Returns[i];
- BranchInst::Create(AfterCallBB, RI);
- RI->eraseFromParent();
- }
- } else if (!Returns.empty()) {
- // Otherwise, if there is exactly one return value, just replace anything
- // using the return value of the call with the computed value.
- if (!TheCall->use_empty())
- TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
-
- // Splice the code from the return block into the block that it will return
- // to, which contains the code that was after the call.
- BasicBlock *ReturnBB = Returns[0]->getParent();
- AfterCallBB->getInstList().splice(AfterCallBB->begin(),
- ReturnBB->getInstList());
-
- // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
- ReturnBB->replaceAllUsesWith(AfterCallBB);
-
- // Delete the return instruction now and empty ReturnBB now.
- Returns[0]->eraseFromParent();
- ReturnBB->eraseFromParent();
- } else if (!TheCall->use_empty()) {
- // No returns, but something is using the return value of the call. Just
- // nuke the result.
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- }
-
- // Since we are now done with the Call/Invoke, we can delete it.
- TheCall->eraseFromParent();
-
- // We should always be able to fold the entry block of the function into the
- // single predecessor of the block...
- assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
- BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
-
- // Splice the code entry block into calling block, right before the
- // unconditional branch.
- OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
- CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
-
- // Remove the unconditional branch.
- OrigBB->getInstList().erase(Br);
-
- // Now we can remove the CalleeEntry block, which is now empty.
- Caller->getBasicBlockList().erase(CalleeEntry);
-
- return true;
-}