//===-- runtime/derived.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "derived.h" #include "stat.h" #include "terminator.h" #include "type-info.h" #include "flang/Runtime/descriptor.h" namespace Fortran::runtime { int Initialize(const Descriptor &instance, const typeInfo::DerivedType &derived, Terminator &terminator, bool hasStat, const Descriptor *errMsg) { const Descriptor &componentDesc{derived.component()}; std::size_t elements{instance.Elements()}; std::size_t byteStride{instance.ElementBytes()}; int stat{StatOk}; // Initialize data components in each element; the per-element iterations // constitute the inner loops, not the outer ones std::size_t myComponents{componentDesc.Elements()}; for (std::size_t k{0}; k < myComponents; ++k) { const auto &comp{ *componentDesc.ZeroBasedIndexedElement(k)}; if (comp.genre() == typeInfo::Component::Genre::Allocatable || comp.genre() == typeInfo::Component::Genre::Automatic) { for (std::size_t j{0}; j < elements; ++j) { Descriptor &allocDesc{*instance.OffsetElement( j * byteStride + comp.offset())}; comp.EstablishDescriptor(allocDesc, instance, terminator); allocDesc.raw().attribute = CFI_attribute_allocatable; if (comp.genre() == typeInfo::Component::Genre::Automatic) { stat = ReturnError(terminator, allocDesc.Allocate(), errMsg, hasStat); if (stat == StatOk) { if (const DescriptorAddendum * addendum{allocDesc.Addendum()}) { if (const auto *derived{addendum->derivedType()}) { if (!derived->noInitializationNeeded()) { stat = Initialize( allocDesc, *derived, terminator, hasStat, errMsg); } } } } if (stat != StatOk) { break; } } } } else if (const void *init{comp.initialization()}) { // Explicit initialization of data pointers and // non-allocatable non-automatic components std::size_t bytes{comp.SizeInBytes(instance)}; for (std::size_t j{0}; j < elements; ++j) { char *ptr{instance.ZeroBasedIndexedElement(j) + comp.offset()}; std::memcpy(ptr, init, bytes); } } else if (comp.genre() == typeInfo::Component::Genre::Pointer) { // Data pointers without explicit initialization are established // so that they are valid right-hand side targets of pointer // assignment statements. for (std::size_t j{0}; j < elements; ++j) { Descriptor &ptrDesc{*instance.OffsetElement( j * byteStride + comp.offset())}; comp.EstablishDescriptor(ptrDesc, instance, terminator); ptrDesc.raw().attribute = CFI_attribute_pointer; } } else if (comp.genre() == typeInfo::Component::Genre::Data && comp.derivedType() && !comp.derivedType()->noInitializationNeeded()) { // Default initialization of non-pointer non-allocatable/automatic // data component. Handles parent component's elements. Recursive. SubscriptValue extent[maxRank]; const typeInfo::Value *bounds{comp.bounds()}; for (int dim{0}; dim < comp.rank(); ++dim) { typeInfo::TypeParameterValue lb{ bounds[2 * dim].GetValue(&instance).value_or(0)}; typeInfo::TypeParameterValue ub{ bounds[2 * dim + 1].GetValue(&instance).value_or(0)}; extent[dim] = ub >= lb ? ub - lb + 1 : 0; } StaticDescriptor staticDescriptor; Descriptor &compDesc{staticDescriptor.descriptor()}; const typeInfo::DerivedType &compType{*comp.derivedType()}; for (std::size_t j{0}; j < elements; ++j) { compDesc.Establish(compType, instance.OffsetElement(j * byteStride + comp.offset()), comp.rank(), extent); stat = Initialize(compDesc, compType, terminator, hasStat, errMsg); if (stat != StatOk) { break; } } } } // Initialize procedure pointer components in each element const Descriptor &procPtrDesc{derived.procPtr()}; std::size_t myProcPtrs{procPtrDesc.Elements()}; for (std::size_t k{0}; k < myProcPtrs; ++k) { const auto &comp{ *procPtrDesc.ZeroBasedIndexedElement(k)}; for (std::size_t j{0}; j < elements; ++j) { auto &pptr{*instance.OffsetElement( j * byteStride + comp.offset)}; pptr = comp.procInitialization; } } return stat; } static const typeInfo::SpecialBinding *FindFinal( const typeInfo::DerivedType &derived, int rank) { if (const auto *ranked{derived.FindSpecialBinding( typeInfo::SpecialBinding::RankFinal(rank))}) { return ranked; } else if (const auto *assumed{derived.FindSpecialBinding( typeInfo::SpecialBinding::Which::AssumedRankFinal)}) { return assumed; } else { return derived.FindSpecialBinding( typeInfo::SpecialBinding::Which::ElementalFinal); } } static void CallFinalSubroutine( const Descriptor &descriptor, const typeInfo::DerivedType &derived) { if (const auto *special{FindFinal(derived, descriptor.rank())}) { // The following code relies on the fact that finalizable objects // must be contiguous. if (special->which() == typeInfo::SpecialBinding::Which::ElementalFinal) { std::size_t byteStride{descriptor.ElementBytes()}; std::size_t elements{descriptor.Elements()}; if (special->IsArgDescriptor(0)) { StaticDescriptor statDesc; Descriptor &elemDesc{statDesc.descriptor()}; elemDesc = descriptor; elemDesc.raw().attribute = CFI_attribute_pointer; elemDesc.raw().rank = 0; auto *p{special->GetProc()}; for (std::size_t j{0}; j < elements; ++j) { elemDesc.set_base_addr( descriptor.OffsetElement(j * byteStride)); p(elemDesc); } } else { auto *p{special->GetProc()}; for (std::size_t j{0}; j < elements; ++j) { p(descriptor.OffsetElement(j * byteStride)); } } } else if (special->IsArgDescriptor(0)) { StaticDescriptor statDesc; Descriptor &tmpDesc{statDesc.descriptor()}; tmpDesc = descriptor; tmpDesc.raw().attribute = CFI_attribute_pointer; tmpDesc.Addendum()->set_derivedType(&derived); auto *p{special->GetProc()}; p(tmpDesc); } else { auto *p{special->GetProc()}; p(descriptor.OffsetElement()); } } } // Fortran 2018 subclause 7.5.6.2 void Finalize( const Descriptor &descriptor, const typeInfo::DerivedType &derived) { if (derived.noFinalizationNeeded() || !descriptor.IsAllocated()) { return; } CallFinalSubroutine(descriptor, derived); const auto *parentType{derived.GetParentType()}; bool recurse{parentType && !parentType->noFinalizationNeeded()}; // If there's a finalizable parent component, handle it last, as required // by the Fortran standard (7.5.6.2), and do so recursively with the same // descriptor so that the rank is preserved. const Descriptor &componentDesc{derived.component()}; std::size_t myComponents{componentDesc.Elements()}; std::size_t elements{descriptor.Elements()}; std::size_t byteStride{descriptor.ElementBytes()}; for (auto k{recurse ? std::size_t{1} /* skip first component, it's the parent */ : 0}; k < myComponents; ++k) { const auto &comp{ *componentDesc.ZeroBasedIndexedElement(k)}; if (comp.genre() == typeInfo::Component::Genre::Allocatable || comp.genre() == typeInfo::Component::Genre::Automatic) { if (const typeInfo::DerivedType * compType{comp.derivedType()}) { if (!compType->noFinalizationNeeded()) { for (std::size_t j{0}; j < elements; ++j) { const Descriptor &compDesc{*descriptor.OffsetElement( j * byteStride + comp.offset())}; if (compDesc.IsAllocated()) { Finalize(compDesc, *compType); } } } } } else if (comp.genre() == typeInfo::Component::Genre::Data && comp.derivedType() && !comp.derivedType()->noFinalizationNeeded()) { SubscriptValue extent[maxRank]; const typeInfo::Value *bounds{comp.bounds()}; for (int dim{0}; dim < comp.rank(); ++dim) { SubscriptValue lb{bounds[2 * dim].GetValue(&descriptor).value_or(0)}; SubscriptValue ub{ bounds[2 * dim + 1].GetValue(&descriptor).value_or(0)}; extent[dim] = ub >= lb ? ub - lb + 1 : 0; } StaticDescriptor staticDescriptor; Descriptor &compDesc{staticDescriptor.descriptor()}; const typeInfo::DerivedType &compType{*comp.derivedType()}; for (std::size_t j{0}; j < elements; ++j) { compDesc.Establish(compType, descriptor.OffsetElement(j * byteStride + comp.offset()), comp.rank(), extent); Finalize(compDesc, compType); } } } if (recurse) { Finalize(descriptor, *parentType); } } // The order of finalization follows Fortran 2018 7.5.6.2, with // elementwise finalization of non-parent components taking place // before parent component finalization, and with all finalization // preceding any deallocation. void Destroy(const Descriptor &descriptor, bool finalize, const typeInfo::DerivedType &derived) { if (derived.noDestructionNeeded() || !descriptor.IsAllocated()) { return; } if (finalize && !derived.noFinalizationNeeded()) { Finalize(descriptor, derived); } const Descriptor &componentDesc{derived.component()}; std::size_t myComponents{componentDesc.Elements()}; std::size_t elements{descriptor.Elements()}; SubscriptValue at[maxRank]; descriptor.GetLowerBounds(at); for (std::size_t k{0}; k < myComponents; ++k) { const auto &comp{ *componentDesc.ZeroBasedIndexedElement(k)}; if (comp.genre() == typeInfo::Component::Genre::Allocatable || comp.genre() == typeInfo::Component::Genre::Automatic) { for (std::size_t j{0}; j < elements; ++j) { Descriptor *d{reinterpret_cast( descriptor.Element(at) + comp.offset())}; d->Deallocate(); descriptor.IncrementSubscripts(at); } } } } } // namespace Fortran::runtime