//===-- MipsSubtarget.h - Define Subtarget for the Mips ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the Mips specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_MIPS_MIPSSUBTARGET_H #define LLVM_LIB_TARGET_MIPS_MIPSSUBTARGET_H #include "MCTargetDesc/MipsABIInfo.h" #include "MipsFrameLowering.h" #include "MipsISelLowering.h" #include "MipsInstrInfo.h" #include "llvm/CodeGen/SelectionDAGTargetInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetSubtargetInfo.h" #include #define GET_SUBTARGETINFO_HEADER #include "MipsGenSubtargetInfo.inc" namespace llvm { class StringRef; class MipsTargetMachine; class MipsSubtarget : public MipsGenSubtargetInfo { virtual void anchor(); enum MipsArchEnum { MipsDefault, Mips1, Mips2, Mips32, Mips32r2, Mips32r3, Mips32r5, Mips32r6, Mips32Max, Mips3, Mips4, Mips5, Mips64, Mips64r2, Mips64r3, Mips64r5, Mips64r6 }; enum class CPU { P5600 }; // Mips architecture version MipsArchEnum MipsArchVersion; // Processor implementation (unused but required to exist by // tablegen-erated code). CPU ProcImpl; // IsLittle - The target is Little Endian bool IsLittle; // IsSoftFloat - The target does not support any floating point instructions. bool IsSoftFloat; // IsSingleFloat - The target only supports single precision float // point operations. This enable the target to use all 32 32-bit // floating point registers instead of only using even ones. bool IsSingleFloat; // IsFPXX - MIPS O32 modeless ABI. bool IsFPXX; // NoABICalls - Disable SVR4-style position-independent code. bool NoABICalls; // IsFP64bit - The target processor has 64-bit floating point registers. bool IsFP64bit; /// Are odd single-precision registers permitted? /// This corresponds to -modd-spreg and -mno-odd-spreg bool UseOddSPReg; // IsNan2008 - IEEE 754-2008 NaN encoding. bool IsNaN2008bit; // IsGP64bit - General-purpose registers are 64 bits wide bool IsGP64bit; // IsPTR64bit - Pointers are 64 bit wide bool IsPTR64bit; // HasVFPU - Processor has a vector floating point unit. bool HasVFPU; // CPU supports cnMIPS (Cavium Networks Octeon CPU). bool HasCnMips; // isLinux - Target system is Linux. Is false we consider ELFOS for now. bool IsLinux; // UseSmallSection - Small section is used. bool UseSmallSection; /// Features related to the presence of specific instructions. // HasMips3_32 - The subset of MIPS-III instructions added to MIPS32 bool HasMips3_32; // HasMips3_32r2 - The subset of MIPS-III instructions added to MIPS32r2 bool HasMips3_32r2; // HasMips4_32 - Has the subset of MIPS-IV present in MIPS32 bool HasMips4_32; // HasMips4_32r2 - Has the subset of MIPS-IV present in MIPS32r2 bool HasMips4_32r2; // HasMips5_32r2 - Has the subset of MIPS-V present in MIPS32r2 bool HasMips5_32r2; // InMips16 -- can process Mips16 instructions bool InMips16Mode; // Mips16 hard float bool InMips16HardFloat; // InMicroMips -- can process MicroMips instructions bool InMicroMipsMode; // HasDSP, HasDSPR2, HasDSPR3 -- supports DSP ASE. bool HasDSP, HasDSPR2, HasDSPR3; // Allow mixed Mips16 and Mips32 in one source file bool AllowMixed16_32; // Optimize for space by compiling all functions as Mips 16 unless // it needs floating point. Functions needing floating point are // compiled as Mips32 bool Os16; // HasMSA -- supports MSA ASE. bool HasMSA; // UseTCCInDIV -- Enables the use of trapping in the assembler. bool UseTCCInDIV; // Sym32 -- On Mips64 symbols are 32 bits. bool HasSym32; // HasEVA -- supports EVA ASE. bool HasEVA; // nomadd4 - disables generation of 4-operand madd.s, madd.d and // related instructions. bool DisableMadd4; // HasMT -- support MT ASE. bool HasMT; // Disable use of the `jal` instruction. bool UseLongCalls = false; /// The minimum alignment known to hold of the stack frame on /// entry to the function and which must be maintained by every function. unsigned stackAlignment; /// The overridden stack alignment. unsigned StackAlignOverride; InstrItineraryData InstrItins; // We can override the determination of whether we are in mips16 mode // as from the command line enum {NoOverride, Mips16Override, NoMips16Override} OverrideMode; const MipsTargetMachine &TM; Triple TargetTriple; const SelectionDAGTargetInfo TSInfo; std::unique_ptr InstrInfo; std::unique_ptr FrameLowering; std::unique_ptr TLInfo; public: bool isPositionIndependent() const; /// This overrides the PostRAScheduler bit in the SchedModel for each CPU. bool enablePostRAScheduler() const override; void getCriticalPathRCs(RegClassVector &CriticalPathRCs) const override; CodeGenOpt::Level getOptLevelToEnablePostRAScheduler() const override; bool isABI_N64() const; bool isABI_N32() const; bool isABI_O32() const; const MipsABIInfo &getABI() const; bool isABI_FPXX() const { return isABI_O32() && IsFPXX; } /// This constructor initializes the data members to match that /// of the specified triple. MipsSubtarget(const Triple &TT, StringRef CPU, StringRef FS, bool little, const MipsTargetMachine &TM, unsigned StackAlignOverride); /// ParseSubtargetFeatures - Parses features string setting specified /// subtarget options. Definition of function is auto generated by tblgen. void ParseSubtargetFeatures(StringRef CPU, StringRef FS); bool hasMips1() const { return MipsArchVersion >= Mips1; } bool hasMips2() const { return MipsArchVersion >= Mips2; } bool hasMips3() const { return MipsArchVersion >= Mips3; } bool hasMips4() const { return MipsArchVersion >= Mips4; } bool hasMips5() const { return MipsArchVersion >= Mips5; } bool hasMips4_32() const { return HasMips4_32; } bool hasMips4_32r2() const { return HasMips4_32r2; } bool hasMips32() const { return (MipsArchVersion >= Mips32 && MipsArchVersion < Mips32Max) || hasMips64(); } bool hasMips32r2() const { return (MipsArchVersion >= Mips32r2 && MipsArchVersion < Mips32Max) || hasMips64r2(); } bool hasMips32r3() const { return (MipsArchVersion >= Mips32r3 && MipsArchVersion < Mips32Max) || hasMips64r2(); } bool hasMips32r5() const { return (MipsArchVersion >= Mips32r5 && MipsArchVersion < Mips32Max) || hasMips64r5(); } bool hasMips32r6() const { return (MipsArchVersion >= Mips32r6 && MipsArchVersion < Mips32Max) || hasMips64r6(); } bool hasMips64() const { return MipsArchVersion >= Mips64; } bool hasMips64r2() const { return MipsArchVersion >= Mips64r2; } bool hasMips64r3() const { return MipsArchVersion >= Mips64r3; } bool hasMips64r5() const { return MipsArchVersion >= Mips64r5; } bool hasMips64r6() const { return MipsArchVersion >= Mips64r6; } bool hasCnMips() const { return HasCnMips; } bool isLittle() const { return IsLittle; } bool isABICalls() const { return !NoABICalls; } bool isFPXX() const { return IsFPXX; } bool isFP64bit() const { return IsFP64bit; } bool useOddSPReg() const { return UseOddSPReg; } bool noOddSPReg() const { return !UseOddSPReg; } bool isNaN2008() const { return IsNaN2008bit; } bool isGP64bit() const { return IsGP64bit; } bool isGP32bit() const { return !IsGP64bit; } unsigned getGPRSizeInBytes() const { return isGP64bit() ? 8 : 4; } bool isPTR64bit() const { return IsPTR64bit; } bool isPTR32bit() const { return !IsPTR64bit; } bool hasSym32() const { return (HasSym32 && isABI_N64()) || isABI_N32() || isABI_O32(); } bool isSingleFloat() const { return IsSingleFloat; } bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); } bool hasVFPU() const { return HasVFPU; } bool inMips16Mode() const { return InMips16Mode; } bool inMips16ModeDefault() const { return InMips16Mode; } // Hard float for mips16 means essentially to compile as soft float // but to use a runtime library for soft float that is written with // native mips32 floating point instructions (those runtime routines // run in mips32 hard float mode). bool inMips16HardFloat() const { return inMips16Mode() && InMips16HardFloat; } bool inMicroMipsMode() const { return InMicroMipsMode; } bool inMicroMips32r6Mode() const { return InMicroMipsMode && hasMips32r6(); } bool inMicroMips64r6Mode() const { return InMicroMipsMode && hasMips64r6(); } bool hasDSP() const { return HasDSP; } bool hasDSPR2() const { return HasDSPR2; } bool hasDSPR3() const { return HasDSPR3; } bool hasMSA() const { return HasMSA; } bool disableMadd4() const { return DisableMadd4; } bool hasEVA() const { return HasEVA; } bool hasMT() const { return HasMT; } bool useSmallSection() const { return UseSmallSection; } bool hasStandardEncoding() const { return !inMips16Mode(); } bool useSoftFloat() const { return IsSoftFloat; } bool useLongCalls() const { return UseLongCalls; } bool enableLongBranchPass() const { return hasStandardEncoding() || allowMixed16_32(); } /// Features related to the presence of specific instructions. bool hasExtractInsert() const { return !inMips16Mode() && hasMips32r2(); } bool hasMTHC1() const { return hasMips32r2(); } bool allowMixed16_32() const { return inMips16ModeDefault() | AllowMixed16_32; } bool os16() const { return Os16; } bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); } bool isXRaySupported() const override { return true; } // for now constant islands are on for the whole compilation unit but we only // really use them if in addition we are in mips16 mode static bool useConstantIslands(); unsigned getStackAlignment() const { return stackAlignment; } // Grab relocation model Reloc::Model getRelocationModel() const; MipsSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS, const TargetMachine &TM); /// Does the system support unaligned memory access. /// /// MIPS32r6/MIPS64r6 require full unaligned access support but does not /// specify which component of the system provides it. Hardware, software, and /// hybrid implementations are all valid. bool systemSupportsUnalignedAccess() const { return hasMips32r6(); } // Set helper classes void setHelperClassesMips16(); void setHelperClassesMipsSE(); const SelectionDAGTargetInfo *getSelectionDAGInfo() const override { return &TSInfo; } const MipsInstrInfo *getInstrInfo() const override { return InstrInfo.get(); } const TargetFrameLowering *getFrameLowering() const override { return FrameLowering.get(); } const MipsRegisterInfo *getRegisterInfo() const override { return &InstrInfo->getRegisterInfo(); } const MipsTargetLowering *getTargetLowering() const override { return TLInfo.get(); } const InstrItineraryData *getInstrItineraryData() const override { return &InstrItins; } }; } // End llvm namespace #endif