//===- SyntheticSections.h -------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLD_MACHO_SYNTHETIC_SECTIONS_H #define LLD_MACHO_SYNTHETIC_SECTIONS_H #include "Config.h" #include "ExportTrie.h" #include "InputSection.h" #include "OutputSection.h" #include "OutputSegment.h" #include "Target.h" #include "Writer.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/SetVector.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include namespace llvm { class DWARFUnit; } // namespace llvm namespace lld::macho { class Defined; class DylibSymbol; class LoadCommand; class ObjFile; class UnwindInfoSection; class SyntheticSection : public OutputSection { public: SyntheticSection(const char *segname, const char *name); virtual ~SyntheticSection() = default; static bool classof(const OutputSection *sec) { return sec->kind() == SyntheticKind; } StringRef segname; // This fake InputSection makes it easier for us to write code that applies // generically to both user inputs and synthetics. InputSection *isec; }; // All sections in __LINKEDIT should inherit from this. class LinkEditSection : public SyntheticSection { public: LinkEditSection(const char *segname, const char *name) : SyntheticSection(segname, name) { align = target->wordSize; } // Implementations of this method can assume that the regular (non-__LINKEDIT) // sections already have their addresses assigned. virtual void finalizeContents() {} // Sections in __LINKEDIT are special: their offsets are recorded in the // load commands like LC_DYLD_INFO_ONLY and LC_SYMTAB, instead of in section // headers. bool isHidden() const final { return true; } virtual uint64_t getRawSize() const = 0; // codesign (or more specifically libstuff) checks that each section in // __LINKEDIT ends where the next one starts -- no gaps are permitted. We // therefore align every section's start and end points to WordSize. // // NOTE: This assumes that the extra bytes required for alignment can be // zero-valued bytes. uint64_t getSize() const final { return llvm::alignTo(getRawSize(), align); } }; // The header of the Mach-O file, which must have a file offset of zero. class MachHeaderSection final : public SyntheticSection { public: MachHeaderSection(); bool isHidden() const override { return true; } uint64_t getSize() const override; void writeTo(uint8_t *buf) const override; void addLoadCommand(LoadCommand *); protected: std::vector loadCommands; uint32_t sizeOfCmds = 0; }; // A hidden section that exists solely for the purpose of creating the // __PAGEZERO segment, which is used to catch null pointer dereferences. class PageZeroSection final : public SyntheticSection { public: PageZeroSection(); bool isHidden() const override { return true; } bool isNeeded() const override { return target->pageZeroSize != 0; } uint64_t getSize() const override { return target->pageZeroSize; } uint64_t getFileSize() const override { return 0; } void writeTo(uint8_t *buf) const override {} }; // This is the base class for the GOT and TLVPointer sections, which are nearly // functionally identical -- they will both be populated by dyld with addresses // to non-lazily-loaded dylib symbols. The main difference is that the // TLVPointerSection stores references to thread-local variables. class NonLazyPointerSectionBase : public SyntheticSection { public: NonLazyPointerSectionBase(const char *segname, const char *name); const llvm::SetVector &getEntries() const { return entries; } bool isNeeded() const override { return !entries.empty(); } uint64_t getSize() const override { return entries.size() * target->wordSize; } void writeTo(uint8_t *buf) const override; void addEntry(Symbol *sym); uint64_t getVA(uint32_t gotIndex) const { return addr + gotIndex * target->wordSize; } private: llvm::SetVector entries; }; class GotSection final : public NonLazyPointerSectionBase { public: GotSection(); }; class TlvPointerSection final : public NonLazyPointerSectionBase { public: TlvPointerSection(); }; struct Location { const InputSection *isec; uint64_t offset; Location(const InputSection *isec, uint64_t offset) : isec(isec), offset(offset) {} uint64_t getVA() const { return isec->getVA(offset); } }; // Stores rebase opcodes, which tell dyld where absolute addresses have been // encoded in the binary. If the binary is not loaded at its preferred address, // dyld has to rebase these addresses by adding an offset to them. class RebaseSection final : public LinkEditSection { public: RebaseSection(); void finalizeContents() override; uint64_t getRawSize() const override { return contents.size(); } bool isNeeded() const override { return !locations.empty(); } void writeTo(uint8_t *buf) const override; void addEntry(const InputSection *isec, uint64_t offset) { if (config->isPic) locations.emplace_back(isec, offset); } private: std::vector locations; SmallVector contents; }; struct BindingEntry { int64_t addend; Location target; BindingEntry(int64_t addend, Location target) : addend(addend), target(target) {} }; template using BindingsMap = llvm::DenseMap>; // Stores bind opcodes for telling dyld which symbols to load non-lazily. class BindingSection final : public LinkEditSection { public: BindingSection(); void finalizeContents() override; uint64_t getRawSize() const override { return contents.size(); } bool isNeeded() const override { return !bindingsMap.empty(); } void writeTo(uint8_t *buf) const override; void addEntry(const Symbol *dysym, const InputSection *isec, uint64_t offset, int64_t addend = 0) { bindingsMap[dysym].emplace_back(addend, Location(isec, offset)); } private: BindingsMap bindingsMap; SmallVector contents; }; // Stores bind opcodes for telling dyld which weak symbols need coalescing. // There are two types of entries in this section: // // 1) Non-weak definitions: This is a symbol definition that weak symbols in // other dylibs should coalesce to. // // 2) Weak bindings: These tell dyld that a given symbol reference should // coalesce to a non-weak definition if one is found. Note that unlike the // entries in the BindingSection, the bindings here only refer to these // symbols by name, but do not specify which dylib to load them from. class WeakBindingSection final : public LinkEditSection { public: WeakBindingSection(); void finalizeContents() override; uint64_t getRawSize() const override { return contents.size(); } bool isNeeded() const override { return !bindingsMap.empty() || !definitions.empty(); } void writeTo(uint8_t *buf) const override; void addEntry(const Symbol *symbol, const InputSection *isec, uint64_t offset, int64_t addend = 0) { bindingsMap[symbol].emplace_back(addend, Location(isec, offset)); } bool hasEntry() const { return !bindingsMap.empty(); } void addNonWeakDefinition(const Defined *defined) { definitions.emplace_back(defined); } bool hasNonWeakDefinition() const { return !definitions.empty(); } private: BindingsMap bindingsMap; std::vector definitions; SmallVector contents; }; // The following sections implement lazy symbol binding -- very similar to the // PLT mechanism in ELF. // // ELF's .plt section is broken up into two sections in Mach-O: StubsSection // and StubHelperSection. Calls to functions in dylibs will end up calling into // StubsSection, which contains indirect jumps to addresses stored in the // LazyPointerSection (the counterpart to ELF's .plt.got). // // We will first describe how non-weak symbols are handled. // // At program start, the LazyPointerSection contains addresses that point into // one of the entry points in the middle of the StubHelperSection. The code in // StubHelperSection will push on the stack an offset into the // LazyBindingSection. The push is followed by a jump to the beginning of the // StubHelperSection (similar to PLT0), which then calls into dyld_stub_binder. // dyld_stub_binder is a non-lazily-bound symbol, so this call looks it up in // the GOT. // // The stub binder will look up the bind opcodes in the LazyBindingSection at // the given offset. The bind opcodes will tell the binder to update the // address in the LazyPointerSection to point to the symbol, so that subsequent // calls don't have to redo the symbol resolution. The binder will then jump to // the resolved symbol. // // With weak symbols, the situation is slightly different. Since there is no // "weak lazy" lookup, function calls to weak symbols are always non-lazily // bound. We emit both regular non-lazy bindings as well as weak bindings, in // order that the weak bindings may overwrite the non-lazy bindings if an // appropriate symbol is found at runtime. However, the bound addresses will // still be written (non-lazily) into the LazyPointerSection. // // Symbols are always bound eagerly when chained fixups are used. In that case, // StubsSection contains indirect jumps to addresses stored in the GotSection. // The GOT directly contains the fixup entries, which will be replaced by the // address of the target symbols on load. LazyPointerSection and // StubHelperSection are not used. class StubsSection final : public SyntheticSection { public: StubsSection(); uint64_t getSize() const override; bool isNeeded() const override { return !entries.empty(); } void finalize() override; void writeTo(uint8_t *buf) const override; const llvm::SetVector &getEntries() const { return entries; } // Creates a stub for the symbol and the corresponding entry in the // LazyPointerSection. void addEntry(Symbol *); uint64_t getVA(uint32_t stubsIndex) const { assert(isFinal || target->usesThunks()); // ConcatOutputSection::finalize() can seek the address of a // stub before its address is assigned. Before __stubs is // finalized, return a contrived out-of-range address. return isFinal ? addr + stubsIndex * target->stubSize : TargetInfo::outOfRangeVA; } bool isFinal = false; // is address assigned? private: llvm::SetVector entries; }; class StubHelperSection final : public SyntheticSection { public: StubHelperSection(); uint64_t getSize() const override; bool isNeeded() const override; void writeTo(uint8_t *buf) const override; void setUp(); DylibSymbol *stubBinder = nullptr; Defined *dyldPrivate = nullptr; }; // Objective-C stubs are hoisted objc_msgSend calls per selector called in the // program. Apple Clang produces undefined symbols to each stub, such as // '_objc_msgSend$foo', which are then synthesized by the linker. The stubs // load the particular selector 'foo' from __objc_selrefs, setting it to the // first argument of the objc_msgSend call, and then jumps to objc_msgSend. The // actual stub contents are mirrored from ld64. class ObjCStubsSection final : public SyntheticSection { public: ObjCStubsSection(); void addEntry(Symbol *sym); uint64_t getSize() const override; bool isNeeded() const override { return !symbols.empty(); } void finalize() override { isec->isFinal = true; } void writeTo(uint8_t *buf) const override; void setUp(); static constexpr llvm::StringLiteral symbolPrefix = "_objc_msgSend$"; private: std::vector symbols; std::vector offsets; int objcMsgSendGotIndex = 0; }; // Note that this section may also be targeted by non-lazy bindings. In // particular, this happens when branch relocations target weak symbols. class LazyPointerSection final : public SyntheticSection { public: LazyPointerSection(); uint64_t getSize() const override; bool isNeeded() const override; void writeTo(uint8_t *buf) const override; uint64_t getVA(uint32_t index) const { return addr + (index << target->p2WordSize); } }; class LazyBindingSection final : public LinkEditSection { public: LazyBindingSection(); void finalizeContents() override; uint64_t getRawSize() const override { return contents.size(); } bool isNeeded() const override { return !entries.empty(); } void writeTo(uint8_t *buf) const override; // Note that every entry here will by referenced by a corresponding entry in // the StubHelperSection. void addEntry(Symbol *dysym); const llvm::SetVector &getEntries() const { return entries; } private: uint32_t encode(const Symbol &); llvm::SetVector entries; SmallVector contents; llvm::raw_svector_ostream os{contents}; }; // Stores a trie that describes the set of exported symbols. class ExportSection final : public LinkEditSection { public: ExportSection(); void finalizeContents() override; uint64_t getRawSize() const override { return size; } bool isNeeded() const override { return size; } void writeTo(uint8_t *buf) const override; bool hasWeakSymbol = false; private: TrieBuilder trieBuilder; size_t size = 0; }; // Stores 'data in code' entries that describe the locations of data regions // inside code sections. This is used by llvm-objdump to distinguish jump tables // and stop them from being disassembled as instructions. class DataInCodeSection final : public LinkEditSection { public: DataInCodeSection(); void finalizeContents() override; uint64_t getRawSize() const override { return sizeof(llvm::MachO::data_in_code_entry) * entries.size(); } void writeTo(uint8_t *buf) const override; private: std::vector entries; }; // Stores ULEB128 delta encoded addresses of functions. class FunctionStartsSection final : public LinkEditSection { public: FunctionStartsSection(); void finalizeContents() override; uint64_t getRawSize() const override { return contents.size(); } void writeTo(uint8_t *buf) const override; private: SmallVector contents; }; // Stores the strings referenced by the symbol table. class StringTableSection final : public LinkEditSection { public: StringTableSection(); // Returns the start offset of the added string. uint32_t addString(StringRef); uint64_t getRawSize() const override { return size; } void writeTo(uint8_t *buf) const override; static constexpr size_t emptyStringIndex = 1; private: // ld64 emits string tables which start with a space and a zero byte. We // match its behavior here since some tools depend on it. // Consequently, the empty string will be at index 1, not zero. std::vector strings{" "}; size_t size = 2; }; struct SymtabEntry { Symbol *sym; size_t strx; }; struct StabsEntry { uint8_t type = 0; uint32_t strx = StringTableSection::emptyStringIndex; uint8_t sect = 0; uint16_t desc = 0; uint64_t value = 0; StabsEntry() = default; explicit StabsEntry(uint8_t type) : type(type) {} }; // Symbols of the same type must be laid out contiguously: we choose to emit // all local symbols first, then external symbols, and finally undefined // symbols. For each symbol type, the LC_DYSYMTAB load command will record the // range (start index and total number) of those symbols in the symbol table. class SymtabSection : public LinkEditSection { public: void finalizeContents() override; uint32_t getNumSymbols() const; uint32_t getNumLocalSymbols() const { return stabs.size() + localSymbols.size(); } uint32_t getNumExternalSymbols() const { return externalSymbols.size(); } uint32_t getNumUndefinedSymbols() const { return undefinedSymbols.size(); } private: void emitBeginSourceStab(StringRef); void emitEndSourceStab(); void emitObjectFileStab(ObjFile *); void emitEndFunStab(Defined *); void emitStabs(); protected: SymtabSection(StringTableSection &); StringTableSection &stringTableSection; // STABS symbols are always local symbols, but we represent them with special // entries because they may use fields like n_sect and n_desc differently. std::vector stabs; std::vector localSymbols; std::vector externalSymbols; std::vector undefinedSymbols; }; template SymtabSection *makeSymtabSection(StringTableSection &); // The indirect symbol table is a list of 32-bit integers that serve as indices // into the (actual) symbol table. The indirect symbol table is a // concatenation of several sub-arrays of indices, each sub-array belonging to // a separate section. The starting offset of each sub-array is stored in the // reserved1 header field of the respective section. // // These sub-arrays provide symbol information for sections that store // contiguous sequences of symbol references. These references can be pointers // (e.g. those in the GOT and TLVP sections) or assembly sequences (e.g. // function stubs). class IndirectSymtabSection final : public LinkEditSection { public: IndirectSymtabSection(); void finalizeContents() override; uint32_t getNumSymbols() const; uint64_t getRawSize() const override { return getNumSymbols() * sizeof(uint32_t); } bool isNeeded() const override; void writeTo(uint8_t *buf) const override; }; // The code signature comes at the very end of the linked output file. class CodeSignatureSection final : public LinkEditSection { public: // NOTE: These values are duplicated in llvm-objcopy's MachO/Object.h file // and any changes here, should be repeated there. static constexpr uint8_t blockSizeShift = 12; static constexpr size_t blockSize = (1 << blockSizeShift); // 4 KiB static constexpr size_t hashSize = 256 / 8; static constexpr size_t blobHeadersSize = llvm::alignTo<8>( sizeof(llvm::MachO::CS_SuperBlob) + sizeof(llvm::MachO::CS_BlobIndex)); static constexpr uint32_t fixedHeadersSize = blobHeadersSize + sizeof(llvm::MachO::CS_CodeDirectory); uint32_t fileNamePad = 0; uint32_t allHeadersSize = 0; StringRef fileName; CodeSignatureSection(); uint64_t getRawSize() const override; bool isNeeded() const override { return true; } void writeTo(uint8_t *buf) const override; uint32_t getBlockCount() const; void writeHashes(uint8_t *buf) const; }; class BitcodeBundleSection final : public SyntheticSection { public: BitcodeBundleSection(); uint64_t getSize() const override { return xarSize; } void finalize() override; void writeTo(uint8_t *buf) const override; private: llvm::SmallString<261> xarPath; uint64_t xarSize; }; class CStringSection : public SyntheticSection { public: CStringSection(const char *name); void addInput(CStringInputSection *); uint64_t getSize() const override { return size; } virtual void finalizeContents(); bool isNeeded() const override { return !inputs.empty(); } void writeTo(uint8_t *buf) const override; std::vector inputs; private: uint64_t size; }; class DeduplicatedCStringSection final : public CStringSection { public: DeduplicatedCStringSection(const char *name) : CStringSection(name){}; uint64_t getSize() const override { return size; } void finalizeContents() override; void writeTo(uint8_t *buf) const override; struct StringOffset { uint8_t trailingZeros; uint64_t outSecOff = UINT64_MAX; explicit StringOffset(uint8_t zeros) : trailingZeros(zeros) {} }; StringOffset getStringOffset(StringRef str) const; private: llvm::DenseMap stringOffsetMap; size_t size = 0; }; /* * This section contains deduplicated literal values. The 16-byte values are * laid out first, followed by the 8- and then the 4-byte ones. */ class WordLiteralSection final : public SyntheticSection { public: using UInt128 = std::pair; // I don't think the standard guarantees the size of a pair, so let's make // sure it's exact -- that way we can construct it via `mmap`. static_assert(sizeof(UInt128) == 16); WordLiteralSection(); void addInput(WordLiteralInputSection *); void finalizeContents(); void writeTo(uint8_t *buf) const override; uint64_t getSize() const override { return literal16Map.size() * 16 + literal8Map.size() * 8 + literal4Map.size() * 4; } bool isNeeded() const override { return !literal16Map.empty() || !literal4Map.empty() || !literal8Map.empty(); } uint64_t getLiteral16Offset(uintptr_t buf) const { return literal16Map.at(*reinterpret_cast(buf)) * 16; } uint64_t getLiteral8Offset(uintptr_t buf) const { return literal16Map.size() * 16 + literal8Map.at(*reinterpret_cast(buf)) * 8; } uint64_t getLiteral4Offset(uintptr_t buf) const { return literal16Map.size() * 16 + literal8Map.size() * 8 + literal4Map.at(*reinterpret_cast(buf)) * 4; } private: std::vector inputs; template struct Hasher { llvm::hash_code operator()(T v) const { return llvm::hash_value(v); } }; // We're using unordered_map instead of DenseMap here because we need to // support all possible integer values -- there are no suitable tombstone // values for DenseMap. std::unordered_map> literal16Map; std::unordered_map literal8Map; std::unordered_map literal4Map; }; class ObjCImageInfoSection final : public SyntheticSection { public: ObjCImageInfoSection(); bool isNeeded() const override { return !files.empty(); } uint64_t getSize() const override { return 8; } void addFile(const InputFile *file) { assert(!file->objCImageInfo.empty()); files.push_back(file); } void finalizeContents(); void writeTo(uint8_t *buf) const override; private: struct ImageInfo { uint8_t swiftVersion = 0; bool hasCategoryClassProperties = false; } info; static ImageInfo parseImageInfo(const InputFile *); std::vector files; // files with image info }; // This section stores 32-bit __TEXT segment offsets of initializer functions. // // The compiler stores pointers to initializers in __mod_init_func. These need // to be fixed up at load time, which takes time and dirties memory. By // synthesizing InitOffsetsSection from them, this data can live in the // read-only __TEXT segment instead. This section is used by default when // chained fixups are enabled. // // There is no similar counterpart to __mod_term_func, as that section is // deprecated, and static destructors are instead handled by registering them // via __cxa_atexit from an autogenerated initializer function (see D121736). class InitOffsetsSection final : public SyntheticSection { public: InitOffsetsSection(); bool isNeeded() const override { return !sections.empty(); } uint64_t getSize() const override; void writeTo(uint8_t *buf) const override; void setUp(); void addInput(ConcatInputSection *isec) { sections.push_back(isec); } const std::vector &inputs() const { return sections; } private: std::vector sections; }; // Chained fixups are a replacement for classic dyld opcodes. In this format, // most of the metadata necessary for binding symbols and rebasing addresses is // stored directly in the memory location that will have the fixup applied. // // The fixups form singly linked lists; each one covering a single page in // memory. The __LINKEDIT,__chainfixups section stores the page offset of the // first fixup of each page; the rest can be found by walking the chain using // the offset that is embedded in each entry. // // This setup allows pages to be relocated lazily at page-in time and without // being dirtied. The kernel can discard and load them again as needed. This // technique, called page-in linking, was introduced in macOS 13. // // The benefits of this format are: // - smaller __LINKEDIT segment, as most of the fixup information is stored in // the data segment // - faster startup, since not all relocations need to be done upfront // - slightly lower memory usage, as fewer pages are dirtied // // Userspace x86_64 and arm64 binaries have two types of fixup entries: // - Rebase entries contain an absolute address, to which the object's load // address will be added to get the final value. This is used for loading // the address of a symbol defined in the same binary. // - Binding entries are mostly used for symbols imported from other dylibs, // but for weakly bound and interposable symbols as well. They are looked up // by a (symbol name, library) pair stored in __chainfixups. This import // entry also encodes whether the import is weak (i.e. if the symbol is // missing, it should be set to null instead of producing a load error). // The fixup encodes an ordinal associated with the import, and an optional // addend. // // The entries are tightly packed 64-bit bitfields. One of the bits specifies // which kind of fixup to interpret them as. // // LLD generates the fixup data in 5 stages: // 1. While scanning relocations, we make a note of each location that needs // a fixup by calling addRebase() or addBinding(). During this, we assign // a unique ordinal for each (symbol name, library, addend) import tuple. // 2. After addresses have been assigned to all sections, and thus the memory // layout of the linked image is final; finalizeContents() is called. Here, // the page offsets of the chain start entries are calculated. // 3. ChainedFixupsSection::writeTo() writes the page start offsets and the // imports table to the output file. // 4. Each section's fixup entries are encoded and written to disk in // ConcatInputSection::writeTo(), but without writing the offsets that form // the chain. // 5. Finally, each page's (which might correspond to multiple sections) // fixups are linked together in Writer::buildFixupChains(). class ChainedFixupsSection final : public LinkEditSection { public: ChainedFixupsSection(); void finalizeContents() override; uint64_t getRawSize() const override { return size; } bool isNeeded() const override; void writeTo(uint8_t *buf) const override; void addRebase(const InputSection *isec, uint64_t offset) { locations.emplace_back(isec, offset); } void addBinding(const Symbol *dysym, const InputSection *isec, uint64_t offset, int64_t addend = 0); void setHasNonWeakDefinition() { hasNonWeakDef = true; } // Returns an (ordinal, inline addend) tuple used by dyld_chained_ptr_64_bind. std::pair getBinding(const Symbol *sym, int64_t addend) const; const std::vector &getLocations() const { return locations; } bool hasWeakBinding() const { return hasWeakBind; } bool hasNonWeakDefinition() const { return hasNonWeakDef; } private: // Location::offset initially stores the offset within an InputSection, but // contains output segment offsets after finalizeContents(). std::vector locations; // (target symbol, addend) => import ordinal llvm::MapVector, uint32_t> bindings; struct SegmentInfo { SegmentInfo(const OutputSegment *oseg) : oseg(oseg) {} const OutputSegment *oseg; // (page index, fixup starts offset) llvm::SmallVector> pageStarts; size_t getSize() const; size_t writeTo(uint8_t *buf) const; }; llvm::SmallVector fixupSegments; size_t symtabSize = 0; size_t size = 0; bool needsAddend = false; bool needsLargeAddend = false; bool hasWeakBind = false; bool hasNonWeakDef = false; llvm::MachO::ChainedImportFormat importFormat; }; void writeChainedRebase(uint8_t *buf, uint64_t targetVA); void writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend); struct InStruct { const uint8_t *bufferStart = nullptr; MachHeaderSection *header = nullptr; CStringSection *cStringSection = nullptr; DeduplicatedCStringSection *objcMethnameSection = nullptr; WordLiteralSection *wordLiteralSection = nullptr; RebaseSection *rebase = nullptr; BindingSection *binding = nullptr; WeakBindingSection *weakBinding = nullptr; LazyBindingSection *lazyBinding = nullptr; ExportSection *exports = nullptr; GotSection *got = nullptr; TlvPointerSection *tlvPointers = nullptr; LazyPointerSection *lazyPointers = nullptr; StubsSection *stubs = nullptr; StubHelperSection *stubHelper = nullptr; ObjCStubsSection *objcStubs = nullptr; ConcatInputSection *objcSelrefs = nullptr; UnwindInfoSection *unwindInfo = nullptr; ObjCImageInfoSection *objCImageInfo = nullptr; ConcatInputSection *imageLoaderCache = nullptr; InitOffsetsSection *initOffsets = nullptr; ChainedFixupsSection *chainedFixups = nullptr; }; extern InStruct in; extern std::vector syntheticSections; void createSyntheticSymbols(); } // namespace lld::macho #endif