//===- llvm/Support/SuffixTree.cpp - Implement Suffix Tree ------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Suffix Tree class. // //===----------------------------------------------------------------------===// #include "llvm/Support/SuffixTree.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Casting.h" #include "llvm/Support/SuffixTreeNode.h" using namespace llvm; /// \returns the number of elements in the substring associated with \p N. static size_t numElementsInSubstring(const SuffixTreeNode *N) { assert(N && "Got a null node?"); if (auto *Internal = dyn_cast(N)) if (Internal->isRoot()) return 0; return N->getEndIdx() - N->getStartIdx() + 1; } SuffixTree::SuffixTree(const ArrayRef &Str) : Str(Str) { Root = insertRoot(); Active.Node = Root; // Keep track of the number of suffixes we have to add of the current // prefix. unsigned SuffixesToAdd = 0; // Construct the suffix tree iteratively on each prefix of the string. // PfxEndIdx is the end index of the current prefix. // End is one past the last element in the string. for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) { SuffixesToAdd++; LeafEndIdx = PfxEndIdx; // Extend each of the leaves. SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); } // Set the suffix indices of each leaf. assert(Root && "Root node can't be nullptr!"); setSuffixIndices(); } SuffixTreeNode *SuffixTree::insertLeaf(SuffixTreeInternalNode &Parent, unsigned StartIdx, unsigned Edge) { assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); auto *N = new (LeafNodeAllocator.Allocate()) SuffixTreeLeafNode(StartIdx, &LeafEndIdx); Parent.Children[Edge] = N; return N; } SuffixTreeInternalNode * SuffixTree::insertInternalNode(SuffixTreeInternalNode *Parent, unsigned StartIdx, unsigned EndIdx, unsigned Edge) { assert(StartIdx <= EndIdx && "String can't start after it ends!"); assert(!(!Parent && StartIdx != SuffixTreeNode::EmptyIdx) && "Non-root internal nodes must have parents!"); auto *N = new (InternalNodeAllocator.Allocate()) SuffixTreeInternalNode(StartIdx, EndIdx, Root); if (Parent) Parent->Children[Edge] = N; return N; } SuffixTreeInternalNode *SuffixTree::insertRoot() { return insertInternalNode(/*Parent = */ nullptr, SuffixTreeNode::EmptyIdx, SuffixTreeNode::EmptyIdx, /*Edge = */ 0); } void SuffixTree::setSuffixIndices() { // List of nodes we need to visit along with the current length of the // string. SmallVector> ToVisit; // Current node being visited. SuffixTreeNode *CurrNode = Root; // Sum of the lengths of the nodes down the path to the current one. unsigned CurrNodeLen = 0; ToVisit.push_back({CurrNode, CurrNodeLen}); while (!ToVisit.empty()) { std::tie(CurrNode, CurrNodeLen) = ToVisit.back(); ToVisit.pop_back(); // Length of the current node from the root down to here. CurrNode->setConcatLen(CurrNodeLen); if (auto *InternalNode = dyn_cast(CurrNode)) for (auto &ChildPair : InternalNode->Children) { assert(ChildPair.second && "Node had a null child!"); ToVisit.push_back( {ChildPair.second, CurrNodeLen + numElementsInSubstring(ChildPair.second)}); } // No children, so we are at the end of the string. if (auto *LeafNode = dyn_cast(CurrNode)) LeafNode->setSuffixIdx(Str.size() - CurrNodeLen); } } unsigned SuffixTree::extend(unsigned EndIdx, unsigned SuffixesToAdd) { SuffixTreeInternalNode *NeedsLink = nullptr; while (SuffixesToAdd > 0) { // Are we waiting to add anything other than just the last character? if (Active.Len == 0) { // If not, then say the active index is the end index. Active.Idx = EndIdx; } assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); // The first character in the current substring we're looking at. unsigned FirstChar = Str[Active.Idx]; // Have we inserted anything starting with FirstChar at the current node? if (Active.Node->Children.count(FirstChar) == 0) { // If not, then we can just insert a leaf and move to the next step. insertLeaf(*Active.Node, EndIdx, FirstChar); // The active node is an internal node, and we visited it, so it must // need a link if it doesn't have one. if (NeedsLink) { NeedsLink->setLink(Active.Node); NeedsLink = nullptr; } } else { // There's a match with FirstChar, so look for the point in the tree to // insert a new node. SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; unsigned SubstringLen = numElementsInSubstring(NextNode); // Is the current suffix we're trying to insert longer than the size of // the child we want to move to? if (Active.Len >= SubstringLen) { // If yes, then consume the characters we've seen and move to the next // node. assert(isa(NextNode) && "Expected an internal node?"); Active.Idx += SubstringLen; Active.Len -= SubstringLen; Active.Node = cast(NextNode); continue; } // Otherwise, the suffix we're trying to insert must be contained in the // next node we want to move to. unsigned LastChar = Str[EndIdx]; // Is the string we're trying to insert a substring of the next node? if (Str[NextNode->getStartIdx() + Active.Len] == LastChar) { // If yes, then we're done for this step. Remember our insertion point // and move to the next end index. At this point, we have an implicit // suffix tree. if (NeedsLink && !Active.Node->isRoot()) { NeedsLink->setLink(Active.Node); NeedsLink = nullptr; } Active.Len++; break; } // The string we're trying to insert isn't a substring of the next node, // but matches up to a point. Split the node. // // For example, say we ended our search at a node n and we're trying to // insert ABD. Then we'll create a new node s for AB, reduce n to just // representing C, and insert a new leaf node l to represent d. This // allows us to ensure that if n was a leaf, it remains a leaf. // // | ABC ---split---> | AB // n s // C / \ D // n l // The node s from the diagram SuffixTreeInternalNode *SplitNode = insertInternalNode( Active.Node, NextNode->getStartIdx(), NextNode->getStartIdx() + Active.Len - 1, FirstChar); // Insert the new node representing the new substring into the tree as // a child of the split node. This is the node l from the diagram. insertLeaf(*SplitNode, EndIdx, LastChar); // Make the old node a child of the split node and update its start // index. This is the node n from the diagram. NextNode->incrementStartIdx(Active.Len); SplitNode->Children[Str[NextNode->getStartIdx()]] = NextNode; // SplitNode is an internal node, update the suffix link. if (NeedsLink) NeedsLink->setLink(SplitNode); NeedsLink = SplitNode; } // We've added something new to the tree, so there's one less suffix to // add. SuffixesToAdd--; if (Active.Node->isRoot()) { if (Active.Len > 0) { Active.Len--; Active.Idx = EndIdx - SuffixesToAdd + 1; } } else { // Start the next phase at the next smallest suffix. Active.Node = Active.Node->getLink(); } } return SuffixesToAdd; } void SuffixTree::RepeatedSubstringIterator::advance() { // Clear the current state. If we're at the end of the range, then this // is the state we want to be in. RS = RepeatedSubstring(); N = nullptr; // Each leaf node represents a repeat of a string. SmallVector RepeatedSubstringStarts; // Continue visiting nodes until we find one which repeats more than once. while (!InternalNodesToVisit.empty()) { RepeatedSubstringStarts.clear(); auto *Curr = InternalNodesToVisit.back(); InternalNodesToVisit.pop_back(); // Keep track of the length of the string associated with the node. If // it's too short, we'll quit. unsigned Length = Curr->getConcatLen(); // Iterate over each child, saving internal nodes for visiting, and // leaf nodes in LeafChildren. Internal nodes represent individual // strings, which may repeat. for (auto &ChildPair : Curr->Children) { // Save all of this node's children for processing. if (auto *InternalChild = dyn_cast(ChildPair.second)) { InternalNodesToVisit.push_back(InternalChild); continue; } if (Length < MinLength) continue; // Have an occurrence of a potentially repeated string. Save it. auto *Leaf = cast(ChildPair.second); RepeatedSubstringStarts.push_back(Leaf->getSuffixIdx()); } // The root never represents a repeated substring. If we're looking at // that, then skip it. if (Curr->isRoot()) continue; // Do we have any repeated substrings? if (RepeatedSubstringStarts.size() < 2) continue; // Yes. Update the state to reflect this, and then bail out. N = Curr; RS.Length = Length; for (unsigned StartIdx : RepeatedSubstringStarts) RS.StartIndices.push_back(StartIdx); break; } // At this point, either NewRS is an empty RepeatedSubstring, or it was // set in the above loop. Similarly, N is either nullptr, or the node // associated with NewRS. }