//===- DialectSparseTensor.cpp - 'sparse_tensor' dialect submodule --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir-c/Dialect/SparseTensor.h" #include "mlir-c/IR.h" #include "mlir/Bindings/Python/PybindAdaptors.h" #include namespace py = pybind11; using namespace llvm; using namespace mlir; using namespace mlir::python::adaptors; static void populateDialectSparseTensorSubmodule(const py::module &m) { py::enum_(m, "DimLevelType", py::module_local()) .value("dense", MLIR_SPARSE_TENSOR_DIM_LEVEL_DENSE) .value("compressed", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED) .value("compressed-nu", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NU) .value("compressed-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NO) .value("compressed-nu-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NU_NO) .value("singleton", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON) .value("singleton-nu", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NU) .value("singleton-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NO) .value("singleton-nu-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NU_NO); mlir_attribute_subclass(m, "EncodingAttr", mlirAttributeIsASparseTensorEncodingAttr) .def_classmethod( "get", [](py::object cls, std::vector dimLevelTypes, std::optional dimOrdering, std::optional higherOrdering, int posWidth, int crdWidth, MlirContext context) { return cls(mlirSparseTensorEncodingAttrGet( context, dimLevelTypes.size(), dimLevelTypes.data(), dimOrdering ? *dimOrdering : MlirAffineMap{nullptr}, higherOrdering ? *higherOrdering : MlirAffineMap{nullptr}, posWidth, crdWidth)); }, py::arg("cls"), py::arg("dim_level_types"), py::arg("dim_ordering"), py::arg("higher_ordering"), py::arg("pos_width"), py::arg("crd_width"), py::arg("context") = py::none(), "Gets a sparse_tensor.encoding from parameters.") .def_property_readonly( "dim_level_types", [](MlirAttribute self) { const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self); std::vector ret; ret.reserve(lvlRank); for (int l = 0; l < lvlRank; ++l) ret.push_back( mlirSparseTensorEncodingAttrGetDimLevelType(self, l)); return ret; }) .def_property_readonly( "dim_ordering", [](MlirAttribute self) -> std::optional { MlirAffineMap ret = mlirSparseTensorEncodingAttrGetDimOrdering(self); if (mlirAffineMapIsNull(ret)) return {}; return ret; }) .def_property_readonly( "higher_ordering", [](MlirAttribute self) -> std::optional { MlirAffineMap ret = mlirSparseTensorEncodingAttrGetHigherOrdering(self); if (mlirAffineMapIsNull(ret)) return {}; return ret; }) .def_property_readonly("pos_width", mlirSparseTensorEncodingAttrGetPosWidth) .def_property_readonly("crd_width", mlirSparseTensorEncodingAttrGetCrdWidth); } PYBIND11_MODULE(_mlirDialectsSparseTensor, m) { m.doc() = "MLIR SparseTensor dialect."; populateDialectSparseTensorSubmodule(m); }