//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Tiling pass. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Linalg/Passes.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Affine/LoopUtils.h" #include "mlir/Dialect/Arith/Utils/Utils.h" #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/Transforms/Transforms.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Utils/IndexingUtils.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/ValueRange.h" #include "mlir/Transforms/FoldUtils.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/CommandLine.h" #include namespace mlir { #define GEN_PASS_DEF_LINALGTILINGPASS #include "mlir/Dialect/Linalg/Passes.h.inc" } // namespace mlir using namespace mlir; using namespace mlir::linalg; using namespace mlir::scf; #define DEBUG_TYPE "linalg-tiling" static bool isZero(OpFoldResult v) { if (!v) return false; if (auto attr = v.dyn_cast()) { IntegerAttr intAttr = attr.dyn_cast(); return intAttr && intAttr.getValue().isZero(); } if (auto cst = v.get().getDefiningOp()) return cst.value() == 0; return false; } std::tuple, LoopIndexToRangeIndexMap> mlir::linalg::makeTiledLoopRanges(RewriterBase &b, Location loc, AffineMap map, ArrayRef allShapeSizes, ArrayRef allTileSizes) { assert(allTileSizes.size() == map.getNumResults()); // Apply `map` to get shape sizes in loop order. SmallVector shapeSizes = makeComposedFoldedMultiResultAffineApply(b, loc, map, allShapeSizes); SmallVector tileSizes(allTileSizes.begin(), allTileSizes.end()); // Traverse the tile sizes, which are in loop order, erase zeros everywhere. LoopIndexToRangeIndexMap loopIndexToRangeIndex; for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) { if (isZero(tileSizes[idx - zerosCount])) { shapeSizes.erase(shapeSizes.begin() + idx - zerosCount); tileSizes.erase(tileSizes.begin() + idx - zerosCount); ++zerosCount; continue; } loopIndexToRangeIndex[idx] = idx - zerosCount; } // Create a new range with the applied tile sizes. SmallVector res; for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) res.push_back(Range{b.getIndexAttr(0), shapeSizes[idx], tileSizes[idx]}); return std::make_tuple(res, loopIndexToRangeIndex); } void mlir::linalg::transformIndexOps( RewriterBase &b, LinalgOp op, SmallVectorImpl &ivs, const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) { SmallVector allIvs(op.getNumLoops(), nullptr); for (auto &en : enumerate(allIvs)) { auto rangeIndex = loopIndexToRangeIndex.find(en.index()); if (rangeIndex == loopIndexToRangeIndex.end()) continue; en.value() = ivs[rangeIndex->second]; } offsetIndices(b, op, getAsOpFoldResult(allIvs)); } /// Asserts that the given index-typed value is strictly positive. If the value /// is an attribute, asserts at compile time, otherwise emits an assertion /// checked at runtime. static void emitIsPositiveIndexAssertion(ImplicitLocOpBuilder &b, OpFoldResult value) { if (auto attr = value.dyn_cast()) { assert(attr.cast().getValue().isStrictlyPositive() && "expected strictly positive tile size and divisor"); return; } Value zero = b.create(0); Value condition = b.create(arith::CmpIPredicate::sgt, value.get(), zero); b.create( condition, b.getStringAttr("expected strictly positive tile size and divisor")); } FailureOr mlir::linalg::computeMultiTileSizes(OpBuilder &builder, LinalgOp op, unsigned dimension, OpFoldResult targetSize, OpFoldResult divisor, bool emitAssertions) { // Bail out on dimension overflow. if (dimension >= op.getNumLoops()) return failure(); // The code below works only on values. Location loc = op.getLoc(); ImplicitLocOpBuilder b(loc, builder); if (emitAssertions) { emitIsPositiveIndexAssertion(b, targetSize); emitIsPositiveIndexAssertion(b, divisor); } Value targetSizeValue = getValueOrCreateConstantIndexOp(builder, loc, targetSize); Value divisorValue = getValueOrCreateConstantIndexOp(builder, loc, divisor); // Find the trip count of the iteration space dimension for which the tile // sizes are computed. SmallVector allShapes = op.createFlatListOfOperandDims(b, b.getLoc()); AffineMap shapesToLoops = op.getShapesToLoopsMap(); SmallVector loopRanges = makeComposedFoldedMultiResultAffineApply(b, op.getLoc(), shapesToLoops, allShapes); Value tripCount = getValueOrCreateConstantIndexOp(b, op.getLoc(), loopRanges[dimension]); // Compute the tile sizes and the respective numbers of tiles. AffineExpr s0 = b.getAffineSymbolExpr(0); AffineExpr s1 = b.getAffineSymbolExpr(1); AffineExpr s2 = b.getAffineSymbolExpr(2); auto apply = [&](AffineExpr expr, ValueRange values) -> Value { return makeComposedAffineApply(b, b.getLoc(), expr, values); }; Value a = apply(s0.floorDiv(s1), {tripCount, divisorValue}); Value t = apply((s0 + s1 - 1).floorDiv(s1), {targetSizeValue, divisorValue}); Value d = apply((s0 + s1 - 1).floorDiv(s1), {a, t}); Value s = apply(s0.floorDiv(s1) * s2, {a, d, divisorValue}); Value v = apply(s0 % s1, {a, d}); Value u = apply(s0 - s1, {d, v}); MultiSizeSpecification spec; spec.lowTileSize = s; spec.highTileSize = apply(s0 + s1, {s, divisorValue}); spec.lowTripCount = u; spec.highTripCount = v; // If requested, emit the check that the tile sizes are computed correctly. // For example, for iteration dimension size of 15 and the target size 8 it is // impossible to find two tile sizes both divisible by 8 that fully cover the // original space dimension. if (emitAssertions) { AffineExpr s3 = builder.getAffineSymbolExpr(3); Value coveredSize = apply(s0 * s1 + s2 * s3, {spec.lowTileSize, spec.lowTripCount, spec.highTileSize, spec.highTripCount}); Value equals = b.create(arith::CmpIPredicate::eq, coveredSize, tripCount); b.create( equals, builder.getStringAttr( "could not compute dynamic multi-size tile shapes")); } return spec; } /// Returns true if the maximum tile offset `tileSize * numThreads-1` is less /// than `iterationSize`. static bool canOmitTileOffsetInBoundsCheck(OpFoldResult tileSize, OpFoldResult numThreads, OpFoldResult iterationSize) { Optional tileSizeConst = getConstantIntValue(tileSize); Optional numThreadsConst = getConstantIntValue(numThreads); Optional iterSizeConst = getConstantIntValue(iterationSize); if (!tileSizeConst || !numThreadsConst || !iterSizeConst) return false; return *tileSizeConst * (*numThreadsConst - 1) < *iterSizeConst; } /// Build an `affine_max` of all the `vals`. static OpFoldResult buildMax(OpBuilder &b, Location loc, ArrayRef vals) { return makeComposedFoldedAffineMax( b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()), vals); } /// Build an `affine_min` of all the `vals`. static OpFoldResult buildMin(OpBuilder &b, Location loc, ArrayRef vals) { return makeComposedFoldedAffineMin( b, loc, AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()), vals); } /// Fill out the `tiledOffsets` and `tiledSizes` to be used to tile to a given /// number of threads. static void calculateTileOffsetsAndSizes( RewriterBase &b, Location loc, scf::ForeachThreadOp foreachThreadOp, ArrayRef numThreads, SmallVector loopRanges, bool omitTileOffsetBoundsCheck, Optional> nominalTileSizes, SmallVector &tiledOffsets, SmallVector &tiledSizes) { OpBuilder::InsertionGuard g(b); b.setInsertionPointToStart(foreachThreadOp.getBody(0)); ValueRange threadIds = foreachThreadOp.getThreadIndices(); SmallVector nonZeroNumThreads = llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) { return !isConstantIntValue(ofr, 0); })); int64_t nLoops = loopRanges.size(); tiledOffsets.reserve(nLoops); tiledSizes.reserve(nLoops); for (unsigned loopIdx = 0, threadIdIdx = 0; loopIdx < nLoops; ++loopIdx) { bool overflow = loopIdx >= numThreads.size(); bool isZero = !overflow && isConstantIntValue(numThreads[loopIdx], 0); // Degenerate case: take the whole domain. if (overflow || isZero) { tiledOffsets.push_back(loopRanges[loopIdx].offset); tiledSizes.push_back(loopRanges[loopIdx].size); continue; } // Tiled case: compute the offset and size. AffineExpr i, j, m, n, o; bindDims(b.getContext(), i, j); bindSymbols(b.getContext(), m, n, o); OpFoldResult size = loopRanges[loopIdx].size; OpFoldResult offset = loopRanges[loopIdx].offset; OpFoldResult threadId = threadIds[threadIdIdx]; // Symbolic fixed max size per thread. // TODO: floor + 0/1 depending on case for better load-balancing. OpFoldResult tileSizePerThread = nominalTileSizes.has_value() ? (*nominalTileSizes)[loopIdx] : makeComposedFoldedAffineApply( b, loc, m.ceilDiv(n), ArrayRef{size, nonZeroNumThreads[threadIdIdx]}); // Dynamic offset shifted by threadId * maxSizePerThread. OpFoldResult offsetPerThread = makeComposedFoldedAffineApply( b, loc, i + j * m, {offset, threadId, tileSizePerThread}); // Dynamic upper-bound depending on the threadId. OpFoldResult residualTileSize = makeComposedFoldedAffineApply( b, loc, i + j * m - n, {offset, nonZeroNumThreads[threadIdIdx], tileSizePerThread, size}); if (!isConstantIntValue(residualTileSize, 0)) { OpFoldResult sizeMinusOffsetPerThread = makeComposedFoldedAffineApply( b, loc, -i + m, {offsetPerThread, size}); tileSizePerThread = buildMin(b, loc, {sizeMinusOffsetPerThread, tileSizePerThread}); } tiledOffsets.push_back(offsetPerThread); // TODO: if tileSizePerThread <= 0 early exit. if (!omitTileOffsetBoundsCheck && !canOmitTileOffsetInBoundsCheck(tileSizePerThread, nonZeroNumThreads[threadIdIdx], size)) tileSizePerThread = buildMax(b, loc, {b.getIndexAttr(0), tileSizePerThread}); tiledSizes.push_back(tileSizePerThread); ++threadIdIdx; } } /// Rewrite a TilingInterface `op` to a tiled `scf.foreach_thread`. The /// tiling is specified by the number of tiles/threads `numThreads` and the /// optional nominal tile size `nominalTileSizes`. If `nominalTilSizes` is /// not specified, then it is derived from `numThreads` as `ceilDiv(dimSize[i], /// numThreads[i])`. If non-empty, the `mapping` is added as an /// attribute to the resulting `scf.foreach_thread`. A zero tile sizes indicate /// that the dimension is not tiled, and can be thought of as tiling by the full /// size of data. /// It is the user's responsibility to ensure that `numThreads` is a valid /// tiling specification (i.e. that only tiles parallel dimensions, e.g. in the /// Linalg case). If `omitTileOffsetBoundsCheck` is true, then the function will /// assume that `tileSize[i] * (numThread[i] -1) <= dimSize[i]` holds. static FailureOr tileToForeachThreadOpImpl( RewriterBase &b, TilingInterface op, ArrayRef numThreads, Optional> nominalTileSizes, Optional mapping, bool omitTileOffsetBoundsCheck) { Location loc = op->getLoc(); OpBuilder::InsertionGuard g(b); SmallVector loopRanges = op.getIterationDomain(b); if (loopRanges.empty()) return op->emitOpError("expected non-empty loop ranges"); auto hasStrideOne = [](Range r) { return !isConstantIntValue(r.stride, 1); }; if (llvm::any_of(loopRanges, hasStrideOne)) return op->emitOpError("only stride-1 supported atm"); // Gather destination tensors. SmallVector dest; if (failed(tensor::getOrCreateDestinations(b, loc, op, dest))) return op->emitOpError("failed to get destination tensors"); SmallVector nonZeroNumThreads = llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) { return !isConstantIntValue(ofr, 0); })); SmallVector materializedNonZeroNumThreads = llvm::to_vector(llvm::map_range(nonZeroNumThreads, [&](OpFoldResult ofr) { return getValueOrCreateConstantIndexOp(b, loc, ofr); })); Operation *tiledOp = nullptr; // 1. Create the ForeachThreadOp. We don't use the lambda body-builder // version because we require the use of RewriterBase in the body, so we // manually move the insertion point to the body below. scf::ForeachThreadOp foreachThreadOp = b.create( loc, dest, ValueRange(materializedNonZeroNumThreads), mapping); // 2. Fill out the ForeachThreadOp body. SmallVector tiledOffsets, tiledSizes; calculateTileOffsetsAndSizes(b, loc, foreachThreadOp, numThreads, loopRanges, omitTileOffsetBoundsCheck, nominalTileSizes, tiledOffsets, tiledSizes); // 3. Clone the tileable op and update its destination operands to use the // output bbArgs of the ForeachThreadOp. ArrayRef destBbArgs = foreachThreadOp.getOutputBlockArguments(); { // 3.a. RAII guard, inserting within foreachThreadOp, before terminator. OpBuilder::InsertionGuard g(b); b.setInsertionPoint(foreachThreadOp.getTerminator()); Operation *clonedOp = b.clone(*op.getOperation()); auto destinationStyleOp = dyn_cast(clonedOp); if (destinationStyleOp) { for (OpOperand *outOperand : destinationStyleOp.getDpsInitOperands()) { auto *it = llvm::find(dest, outOperand->get()); assert(it != dest.end() && "dest operand not found in dest"); unsigned destNum = std::distance(dest.begin(), it); outOperand->set(destBbArgs[destNum]); } } // 4. Tile the cloned op and delete the clone. SmallVector tiledOps = cast(clonedOp).getTiledImplementation(b, tiledOffsets, tiledSizes); b.eraseOp(clonedOp); assert(tiledOps.size() == 1 && "expected a single produced tiled op"); tiledOp = tiledOps.front(); } // 5. Parallel insert back into the result tensor. auto tilingInterfaceOp = dyn_cast(tiledOp); assert(tilingInterfaceOp && "Tiled op does not implement TilingInterface"); for (auto it : llvm::zip(llvm::seq(unsigned(0), unsigned(dest.size())), tilingInterfaceOp->getResults(), destBbArgs)) { // 5.a. Partial subset information is inserted just before the terminator. OpBuilder::InsertionGuard g(b); b.setInsertionPoint(foreachThreadOp.getTerminator()); SmallVector resultOffsets, resultSizes; if (failed(op.getResultTilePosition(b, std::get<0>(it), tiledOffsets, tiledSizes, resultOffsets, resultSizes))) return op->emitOpError("output offsets couldn't be calculated"); SmallVector strides(resultSizes.size(), b.getIndexAttr(1)); // 5.b. Parallel insertions are inserted at the end of the combining // terminator. b.setInsertionPointToEnd(foreachThreadOp.getTerminator().getBody()); b.create(loc, std::get<1>(it), std::get<2>(it), resultOffsets, resultSizes, strides); } return ForeachThreadTilingResult{foreachThreadOp, tiledOp}; } FailureOr linalg::tileToForeachThreadOp(RewriterBase &b, TilingInterface op, ArrayRef numThreads, Optional mapping) { return tileToForeachThreadOpImpl(b, op, numThreads, /*nominalTileSizes=*/std::nullopt, mapping, /*omitTileOffsetBoundsCheck=*/false); } FailureOr linalg::tileToForeachThreadOpUsingTileSizes(RewriterBase &b, TilingInterface op, ArrayRef tileSizes, Optional mapping) { SmallVector loopRanges = op.getIterationDomain(b); unsigned nLoops = loopRanges.size(); SmallVector numThreads; numThreads.reserve(nLoops); AffineExpr s0, s1; bindSymbols(b.getContext(), s0, s1); AffineExpr divExpr = s0.ceilDiv(s1); for (const auto &it : llvm::zip(tileSizes, loopRanges)) { OpFoldResult numTiles = std::get<0>(it); if (!isConstantIntValue(numTiles, 0)) numTiles = makeComposedFoldedAffineApply( b, op.getLoc(), divExpr, {std::get<1>(it).size, std::get<0>(it)}); numThreads.push_back(numTiles); } return tileToForeachThreadOpImpl(b, op, numThreads, /*nominalTileSizes=*/tileSizes, mapping, /*omitTileOffsetBoundsCheck=*/true); } template static FailureOr tileLinalgOpImpl(RewriterBase &b, LinalgOp op, ArrayRef tileSizes, const LinalgTilingOptions &options) { OpBuilder::InsertionGuard g(b); auto nLoops = op.getNumLoops(); // Initial tile sizes may be too big, only take the first nLoops. tileSizes = tileSizes.take_front(nLoops); if (llvm::all_of(tileSizes, isZero)) { TiledLinalgOp tiledOp; tiledOp.op = cast(b.clone(*op.getOperation())); tiledOp.tensorResults.assign(tiledOp.op->result_begin(), tiledOp.op->result_end()); return tiledOp; } // 1. Build the tiled loop ranges. SmallVector allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc()); AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap(); if (!shapeSizesToLoopsMap) return failure(); auto [loopRanges, loopIndexToRangeIndex] = makeTiledLoopRanges( b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes); SmallVector iteratorTypes; for (const auto &attr : enumerate(op.getIteratorTypesArray())) { if (loopIndexToRangeIndex.count(attr.index())) iteratorTypes.push_back(attr.value()); } // If interchangeVector is empty, use the identity. Build the permutation map // otherwise. auto invPermutationMap = AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext()); if (!options.interchangeVector.empty()) { // Based on the pruned iterations (due to zero tile size), recompute the // interchange vector. SmallVector interchangeVector; interchangeVector.reserve(options.interchangeVector.size()); for (auto pos : options.interchangeVector) { auto it = loopIndexToRangeIndex.find(pos); if (it == loopIndexToRangeIndex.end()) continue; interchangeVector.push_back(it->second); } // Interchange vector is guaranteed to be a permutation, // `inversePermutation` must succeed. invPermutationMap = inversePermutation( AffineMap::getPermutationMap(interchangeVector, b.getContext())); assert(invPermutationMap); SmallVector permutation(interchangeVector.begin(), interchangeVector.end()); applyPermutationToVector(loopRanges, permutation); applyPermutationToVector(iteratorTypes, permutation); } // Handle distribution. Create a vector of the same size of loops that are to // be tiled. SmallVector procInfo; if (options.distribution) { procInfo.resize( iteratorTypes.size(), linalg::ProcInfo{nullptr, nullptr, linalg::DistributionMethod::None}); // Collect loop ranges of tiled loopss, loops that are parallel. SmallVector parallelLoopRanges; for (const auto &iteratorType : llvm::enumerate(iteratorTypes)) { if (!isParallelIterator(iteratorType.value())) break; parallelLoopRanges.push_back(loopRanges[iteratorType.index()]); } auto returnedProcInfo = options.distribution->procInfo(b, op.getLoc(), parallelLoopRanges); unsigned procIdIdx = 0; // Update the distribution information for the loops. for (const auto &iteratorType : llvm::enumerate(iteratorTypes)) { if (!isParallelIterator(iteratorType.value())) break; procInfo[iteratorType.index()] = returnedProcInfo[procIdIdx++]; } } // 2. Create the tiled loops. LinalgOp res = op; SmallVector ivs, tensorResults; auto tiledLoopBodyBuilder = [&](OpBuilder &builder, Location loc, ValueRange localIvs, ValueRange operandValuesToUse) -> scf::ValueVector { ivs.assign(localIvs.begin(), localIvs.end()); // When an `interchangeVector` is present, it has been applied to the // loop ranges and the iterator types. Apply its inverse to the // resulting loop `ivs` to match the op definition. SmallVector interchangedIvs; if (!options.interchangeVector.empty()) interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs); else interchangedIvs.assign(ivs.begin(), ivs.end()); // Tile the `operandValuesToUse` that either match the `op` operands // themselves or the tile loop arguments forwarding them. assert(operandValuesToUse.size() == static_cast(op->getNumOperands()) && "expect the number of operands and inputs and outputs to match"); SmallVector valuesToTile = operandValuesToUse; SmallVector sizeBounds = makeComposedFoldedMultiResultAffineApply(b, loc, shapeSizesToLoopsMap, allShapeSizes); SmallVector tiledOperands = makeTiledShapes( b, loc, op, valuesToTile, getAsOpFoldResult(interchangedIvs), tileSizes, sizeBounds, /*omitPartialTileCheck=*/false); SmallVector resultTensorTypes = getTensorOutputTypes(op, tiledOperands); res = clone(b, op, resultTensorTypes, tiledOperands); tensorResults = insertSlicesBack(builder, loc, op, tiledOperands, res->getResults()); return scf::ValueVector(tensorResults.begin(), tensorResults.end()); }; GenerateLoopNest::doit(b, op.getLoc(), loopRanges, op, iteratorTypes, tiledLoopBodyBuilder, procInfo); // 3. Transform IndexOp results w.r.t. the tiling. transformIndexOps(b, res, ivs, loopIndexToRangeIndex); // 4. Gather the newly created loops and return them with the new op. SmallVector loops; loops.reserve(ivs.size()); for (auto iv : ivs) { if (iv.isa()) { loops.push_back(iv.cast().getOwner()->getParentOp()); assert(loops.back() && "no owner found for induction variable!"); } else { // TODO: Instead of doing this, try to recover the ops used instead of the // loop. loops.push_back(nullptr); } } // 5. Get the tensor results from the outermost loop if available. Otherwise // use the previously captured `tensorResults`. Operation *outermostLoop = nullptr; for (Operation *loop : loops) if ((outermostLoop = loop)) break; return TiledLinalgOp{ res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults}; } FailureOr linalg::tileReductionUsingForeachThread(RewriterBase &b, PartialReductionOpInterface op, ArrayRef numThreads, ArrayRef tileSizes, Optional mapping) { Location loc = op.getLoc(); OpBuilder::InsertionGuard g(b); // Ops implementing PartialReductionOpInterface are expected to implement // TilingInterface. // TODO: proper core mechanism to tie interfaces together. auto tilingInterfaceOp = cast(op.getOperation()); // Ops implementing PartialReductionOpInterface are not necessarily expected // to implement TilingInterface.. This cast is unsafe atm. // TODO: proper core mechanism to tie interfaces together. // TODO: this function requires a pair of interfaces .. auto destinationStyleOp = dyn_cast(op.getOperation()); if (!destinationStyleOp) return b.notifyMatchFailure(op, "not a destination style op"); // Actually this only work for Linalg ops atm. auto linalgOp = dyn_cast(op.getOperation()); if (!linalgOp) return b.notifyMatchFailure(op, "not a linalg op"); SmallVector iterationDomain = tilingInterfaceOp.getIterationDomain(b); if (op->getNumResults() != 1) return b.notifyMatchFailure( op, "don't support ops with multiple results for now"); SmallVector iterators = tilingInterfaceOp.getLoopIteratorTypes(); SmallVector redDims; linalgOp.getReductionDims(redDims); if (redDims.size() != 1) return b.notifyMatchFailure( op, "only support ops with one reduction dimension."); if (!tileSizes.empty() && tileSizes.size() != numThreads.size()) return b.notifyMatchFailure(op, "if tile sizes are present it must have as " "many elements as number of threads"); int reductionDim = static_cast(redDims.front()); // 1. Create the inital tensor value. FailureOr identityTensor = op.generateInitialTensorForPartialReduction(b, loc, numThreads, reductionDim); if (failed(identityTensor)) return b.notifyMatchFailure(op, "cannot create a tensor of identity value."); // Gather destination tensors. SmallVector dest; if (failed(tensor::getOrCreateDestinations(b, loc, op, dest))) return b.notifyMatchFailure(op, "failed to get destination tensors"); Operation *tiledOp = nullptr; SmallVector nonZeroNumThreads = llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) { return !isConstantIntValue(ofr, 0); })); SmallVector materializedNonZeroNumThreads = getAsValues(b, loc, nonZeroNumThreads); // 2. Create the ForeachThreadOp with an empty region. scf::ForeachThreadOp foreachThreadOp = b.create( loc, identityTensor.value()->getResults(), ValueRange(materializedNonZeroNumThreads), mapping); // 3. Calculate the tile offsets and sizes for the subsequent loop that will // be nested under `foreachThreadOp`. SmallVector tiledOffsets, tiledSizes; calculateTileOffsetsAndSizes( b, loc, foreachThreadOp, numThreads, iterationDomain, /*omitTileOffsetBoundsCheck =*/false, /*nominalTileSizes=*/std::nullopt, tiledOffsets, tiledSizes); // 4. Clone the tileable op and update its destination operands to use the // output bbArgs of the ForeachThreadOp. ValueRange tilingResults; ArrayRef destBbArgs = foreachThreadOp.getOutputBlockArguments(); { // 4.a. RAII guard, inserting within foreachThreadOp, before terminator. OpBuilder::InsertionGuard g(b); b.setInsertionPoint(foreachThreadOp.getTerminator()); SmallVector tiledDpsInitOperands; for (OpOperand *initOperand : destinationStyleOp.getDpsInitOperands()) { auto *it = llvm::find(dest, initOperand->get()); assert(it != dest.end() && "dest operand not found in dest"); unsigned destNum = std::distance(dest.begin(), it); SmallVector strides(numThreads.size(), b.getIndexAttr(1)); SmallVector outOffsets(numThreads.size(), b.getIndexAttr(0)); SmallVector sizes = tiledSizes; sizes[reductionDim] = b.getIndexAttr(1); outOffsets[reductionDim] = foreachThreadOp.getThreadIndices().front(); // TODO: use SubsetExtractOpInterface once it is available. tiledDpsInitOperands.push_back(b.create( loc, initOperand->get().getType().cast(), destBbArgs[destNum], outOffsets, sizes, strides)); } // 4.b. Clone the op and update init operands. // We cannot use a BlockAndValueMapping here because it can replace // different OpOperands with the same value. Operation *clonedOp = b.clone(*op.getOperation()); b.updateRootInPlace(clonedOp, [&]() { for (auto [initOperandPtr, tiledInitValue] : llvm::zip_equal( cast(clonedOp).getDpsInitOperands(), tiledDpsInitOperands)) { initOperandPtr->set(tiledInitValue); } }); // 5. Tile the cloned op and delete the clone. if (tileSizes.empty()) { SmallVector tiledOps = cast(clonedOp).getTiledImplementation( b, tiledOffsets, tiledSizes); assert(tiledOps.size() == 1 && "expected a single produced tiled op"); tiledOp = tiledOps.front(); tilingResults = tiledOp->getResults(); } else { LinalgTilingOptions options; FailureOr maybeTiled = tileLinalgOpImpl( b, cast(clonedOp), tileSizes, options); if (failed(maybeTiled)) return b.notifyMatchFailure(op, "failed tileLinalgOpImpl"); SmallVector ids = foreachThreadOp.getThreadIndices(); mapLoopToProcessorIds(cast(maybeTiled->loops.back()), ids, materializedNonZeroNumThreads); assert(maybeTiled->loops.size() == 1 && "expected a single produced loop"); tiledOp = maybeTiled->op; tilingResults = maybeTiled->loops.front()->getResults(); } b.eraseOp(clonedOp); } // 6. Insert the partial reductions back into a new tensor. for (auto [index, result, bbArg] : llvm::zip( llvm::seq(0, dest.size()), tilingResults, destBbArgs)) { // 6.a. Partial subset information is inserted just before the terminator. OpBuilder::InsertionGuard g(b); b.setInsertionPoint(foreachThreadOp.getTerminator()); SmallVector resultOffsets, resultSizes; if (failed(tilingInterfaceOp.getResultTilePosition( b, index, tiledOffsets, tiledSizes, resultOffsets, resultSizes))) return op->emitOpError("output offsets couldn't be calculated"); SmallVector resultOffsetsRank, resultSizesRank; int64_t offIdx = 0; int64_t sizeIdx = 0; for (int64_t i = 0, e = numThreads.size(); i < e; ++i) { if (i == reductionDim) { resultOffsetsRank.push_back(foreachThreadOp.getThreadIndices().front()); resultSizesRank.push_back(b.getIndexAttr(1)); continue; } resultOffsetsRank.push_back(resultOffsets[offIdx++]); resultSizesRank.push_back(resultSizes[sizeIdx++]); } SmallVector strides(resultSizesRank.size(), b.getIndexAttr(1)); // 6.b. Parallel insertions are inserted at the end of the combining // terminator. b.setInsertionPointToEnd(foreachThreadOp.getTerminator().getBody()); b.create( loc, result, bbArg, resultOffsetsRank, resultSizesRank, strides); } // 7. Merge the partial reductions. b.setInsertionPointAfter(foreachThreadOp); Operation *mergeOp = op.mergeReductions(b, loc, foreachThreadOp->getResults(), reductionDim); b.replaceOp(op, mergeOp->getResults()); // 8. Return. ForeachThreadReductionTilingResult results; results.initialOp = identityTensor.value(); results.loops = foreachThreadOp; results.parallelTiledOp = tiledOp; results.mergeOp = mergeOp; return results; } // Insert a tile `source` into the destination tensor `dest`. The position at // which the tile is inserted (as well as size of tile) is taken from a given // ExtractSliceOp `sliceOp`. static Value insertSliceIntoTensor(OpBuilder &b, Location loc, tensor::ExtractSliceOp sliceOp, Value source, Value dest) { return b.create( loc, sliceOp.getSource().getType(), source, dest, sliceOp.getOffsets(), sliceOp.getSizes(), sliceOp.getStrides(), sliceOp.getStaticOffsets(), sliceOp.getStaticSizes(), sliceOp.getStaticStrides()); } template FailureOr static tileLinalgOpImpl( RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options) { OpBuilder::InsertionGuard g(b); b.setInsertionPoint(op); if (!options.tileSizeComputationFunction) return failure(); // Enforce the convention that "tiling by zero" skips tiling a particular // dimension. This convention is significantly simpler to handle instead of // adjusting affine maps to account for missing dimensions. auto nLoops = op.getNumLoops(); SmallVector tileSizeVector = getAsOpFoldResult(options.tileSizeComputationFunction(b, op)); if (tileSizeVector.size() < nLoops) { tileSizeVector.append(nLoops - tileSizeVector.size(), b.getIndexAttr(0)); } return tileLinalgOpImpl(b, op, tileSizeVector, options); } FailureOr mlir::linalg::tileLinalgOp(RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options) { switch (options.loopType) { case LinalgTilingLoopType::Loops: return tileLinalgOpImpl(b, op, options); case LinalgTilingLoopType::ParallelLoops: return tileLinalgOpImpl(b, op, options); default:; } return failure(); } /// Generate a loop nest around a given tensor::PadOp (for tiling). `newPadOp` /// and `loopNest` are output parameters that return the new (tiled) /// tensor::PadOp and the loop nest. static LogicalResult tilePadOp(RewriterBase &builder, tensor::PadOp op, tensor::PadOp &newPadOp, LoopNest &loopNest, const LinalgTilingOptions &options) { Location loc = op.getLoc(); OpBuilder::InsertionGuard g(builder); builder.setInsertionPoint(op); // Clone tensor::PadOp so that the existing op can be replaced more easily. newPadOp = cast(builder.clone(*op.getOperation())); // Get rank and tile sizes. int64_t rank = op.getResultType().getRank(); SmallVector tileSizes = getAsOpFoldResult(options.tileSizeComputationFunction(builder, op)); // Normalize untiled padding dimensions to 0. tileSizes.append(rank - tileSizes.size(), builder.getIndexAttr(0)); // Compute lower and upper bounds of the loop nest. TilingInterface tilingInterface = dyn_cast(op.getOperation()); SmallVector ranges = tilingInterface.getIterationDomain(builder); SmallVector lbs, dims, steps; SmallVector allDims; for (int64_t i = 0; i < rank; ++i) { allDims.push_back(ranges[i].size); if (!isZero(tileSizes[i])) { lbs.push_back( getValueOrCreateConstantIndexOp(builder, loc, ranges[i].offset)); dims.push_back( getValueOrCreateConstantIndexOp(builder, loc, ranges[i].size)); steps.push_back( getValueOrCreateConstantIndexOp(builder, loc, tileSizes[i])); } } SmallVector destinationTensors; if (failed(tensor::getOrCreateDestinations(builder, loc, tilingInterface, destinationTensors))) return failure(); loopNest = mlir::scf::buildLoopNest( builder, loc, lbs, /*ubs=*/dims, steps, ValueRange(destinationTensors), [&](OpBuilder &b, Location loc, ValueRange localIvs, ValueRange iterArgs) -> scf::ValueVector { // Compute offsets and sizes of ExtractSliceOp. SmallVector localIVVector = llvm::to_vector(localIvs); SmallVector offsets = computeTileOffsets( b, loc, getAsOpFoldResult(localIVVector), tileSizes); SmallVector sizes = computeTileSizes(b, loc, tileSizes, allDims); // Create ExtractSliceOp: Extract a tile from the tensor::PadOp. // Note: The tensor::PadOp is located outside of the loop nest. It is // later moved inside by ExtractSliceOfPadTensorSwapPattern. auto map = AffineMap::getMultiDimIdentityMap(rank, b.getContext()); Value tiledOutput = makeTiledShape( b, loc, newPadOp->getResult(0), tileSizes, map, offsets, allDims, sizes, /*omitPartialTileCheck=*/false); auto sliceOp = tiledOutput.getDefiningOp(); assert(sliceOp && "expected ExtractSliceOp"); // Insert the tile into the output tensor. Value yieldValue = insertSliceIntoTensor(b, loc, sliceOp, sliceOp, iterArgs[0]); return scf::ValueVector({yieldValue}); }); return success(); } namespace { struct PadOpTilingPattern : public OpRewritePattern { PadOpTilingPattern(MLIRContext *ctx, LinalgTilingOptions opt) : OpRewritePattern(ctx), options(std::move(opt)) {} LogicalResult matchAndRewrite(tensor::PadOp op, PatternRewriter &rewriter) const override { tensor::PadOp newPadOp; LoopNest loopNest; if (failed(tilePadOp(rewriter, op, newPadOp, loopNest, options))) return failure(); // Replace all uses of the original tensor::PadOp. rewriter.replaceOp(op, loopNest.results.front()); return success(); } LinalgTilingOptions options; }; } // namespace namespace { /// Helper classes for type list expansion. template class CanonicalizationPatternList; template <> class CanonicalizationPatternList<> { public: static void insert(RewritePatternSet &patterns) {} }; template class CanonicalizationPatternList { public: static void insert(RewritePatternSet &patterns) { OpTy::getCanonicalizationPatterns(patterns, patterns.getContext()); CanonicalizationPatternList::insert(patterns); } }; } // namespace RewritePatternSet mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) { RewritePatternSet patterns(ctx); populateLinalgTilingCanonicalizationPatterns(patterns); return patterns; } void mlir::linalg::populateLinalgTilingCanonicalizationPatterns( RewritePatternSet &patterns) { auto *ctx = patterns.getContext(); AffineApplyOp::getCanonicalizationPatterns(patterns, ctx); AffineForOp::getCanonicalizationPatterns(patterns, ctx); AffineMinOp::getCanonicalizationPatterns(patterns, ctx); AffineMaxOp::getCanonicalizationPatterns(patterns, ctx); arith::ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx); memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx); memref::ViewOp::getCanonicalizationPatterns(patterns, ctx); scf::ForOp::getCanonicalizationPatterns(patterns, ctx); scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx); tensor::CastOp::getCanonicalizationPatterns(patterns, ctx); tensor::EmptyOp::getCanonicalizationPatterns(patterns, ctx); tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx); tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx); tensor::PadOp::getCanonicalizationPatterns(patterns, ctx); ctx->getLoadedDialect()->getCanonicalizationPatterns(patterns); CanonicalizationPatternList< #define GET_OP_LIST #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc" >::insert(patterns); } void mlir::linalg::populatePadTensorTilingPatterns( RewritePatternSet &patterns, const LinalgTilingOptions &options) { auto *ctx = patterns.getContext(); patterns.add(ctx, options); }