// DEFINE: %{option} = enable-runtime-library=true // DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option} // DEFINE: %{run} = TENSOR0="%mlir_src_dir/test/Integration/data/test.mtx" \ // DEFINE: mlir-cpu-runner \ // DEFINE: -e entry -entry-point-result=void \ // DEFINE: -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils | \ // DEFINE: FileCheck %s // // RUN: %{compile} | %{run} // // Do the same run, but now with direct IR generation. // REDEFINE: %{option} = enable-runtime-library=false // RUN: %{compile} | %{run} // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true" // RUN: %{compile} | %{run} // Do the same run, but now with direct IR generation and, if available, VLA // vectorization. // REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA" // REDEFINE: %{run} = TENSOR0="%mlir_src_dir/test/Integration/data/test.mtx" \ // REDEFINE: %lli_host_or_aarch64_cmd \ // REDEFINE: --entry-function=entry_lli \ // REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \ // REDEFINE: %VLA_ARCH_ATTR_OPTIONS \ // REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext --dlopen=%mlir_runner_utils | \ // REDEFINE: FileCheck %s // RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run} !Filename = !llvm.ptr #DenseMatrix = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense" ], dimOrdering = affine_map<(i,j) -> (i,j)> }> #SparseMatrix = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(i,j) -> (i,j)> }> #trait_assign = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A affine_map<(i,j) -> (i,j)> // X (out) ], iterator_types = ["parallel", "parallel"], doc = "X(i,j) = A(i,j) * 2" } // // Integration test that demonstrates assigning a sparse tensor // to an all-dense annotated "sparse" tensor, which effectively // result in inserting the nonzero elements into a linearized array. // // Note that there is a subtle difference between a non-annotated // tensor and an all-dense annotated tensor. Both tensors are assumed // dense, but the former remains an n-dimensional memref whereas the // latter is linearized into a one-dimensional memref that is further // lowered into a storage scheme that is backed by the runtime support // library. module { // // A kernel that assigns multiplied elements from A to X. // func.func @dense_output(%arga: tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c2 = arith.constant 2.0 : f64 %d0 = tensor.dim %arga, %c0 : tensor %d1 = tensor.dim %arga, %c1 : tensor %init = bufferization.alloc_tensor(%d0, %d1) : tensor %0 = linalg.generic #trait_assign ins(%arga: tensor) outs(%init: tensor) { ^bb(%a: f64, %x: f64): %0 = arith.mulf %a, %c2 : f64 linalg.yield %0 : f64 } -> tensor return %0 : tensor } func.func private @getTensorFilename(index) -> (!Filename) func.func private @printMemref1dF64(%ptr : memref) attributes { llvm.emit_c_interface } // // Main driver that reads matrix from file and calls the kernel. // func.func @entry() { %d0 = arith.constant 0.0 : f64 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index // Read the sparse matrix from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) %a = sparse_tensor.new %fileName : !Filename to tensor // Call the kernel. %0 = call @dense_output(%a) : (tensor) -> tensor // // Print the linearized 5x5 result for verification. // CHECK: 25 // CHECK: [2, 0, 0, 2.8, 0, 0, 4, 0, 0, 5, 0, 0, 6, 0, 0, 8.2, 0, 0, 8, 0, 0, 10.4, 0, 0, 10 // %n = sparse_tensor.number_of_entries %0 : tensor vector.print %n : index %m = sparse_tensor.values %0 : tensor to memref call @printMemref1dF64(%m) : (memref) -> () // Release the resources. bufferization.dealloc_tensor %a : tensor bufferization.dealloc_tensor %0 : tensor return } }