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A B S T R A C T

Sustained growth in high performance computing and the availability of advanced mo-
bile devices increase the use of computation intensive applications. To ensure fast execu-
tion and consequently low power usage modern hardware provides multi-level caches,
multiple cores, SIMD instructions or even dedicated vector accelerators. Taking advan-
tage of those manually is difficult and often not possible in a portable way. Fortunately,
advanced techniques that increase data-locality and parallelism with the help of poly-
hedral abstractions are known to be effective in exploiting hardware capabilities. Yet,
their automatic use is currently limited. They are mostly implemented in language spe-
cific source-to-source compilers which can only optimize manually annotated code that
matches a certain canonical structure. Furthermore, polyhedral optimizers often target
C or CUDA code, which limits efficient communication with compiler internals and can
lead to missed optimization opportunities.

In this thesis we present Polly, a project to enable polyhedral optimizations in LLVM.
LLVM is an infrastructure project used in compilers for a large set of different program-
ming languages. It is built around a low-level intermediate representation (LLVM-IR)
that allows language independent optimizations. We present how Polly can apply poly-
hedral transformations on this representation. This includes the detection of static con-
trol parts, their translation into a Z-polyhedra based representation, optimizations on
this representation and finally, the generation of optimized LLVM-IR. We also define an
interface to connect external optimizers and show a novel approach to detect parallelism
which is used to generate SIMD and OpenMP code. Finally, we show in some experi-
ments how Polly can be used to automatically apply optimizations for data locality and
parallelism.

iii





A C K N O W L E D G M E N T S

I would like to thank the people who contributed to the development of Polly and
continue to develop Polly with me. Hongbin Zheng worked on larger parts of the front
end, the general infrastructure and the test cases, Raghesh A worked on OpenMP code
generation, and Andreas Simbürger helped with the connection to CLooG.

For my academic background I want to thank Albert Cohen, Martin Griebl, Armin
Größlinger, Sebastian Pop, Louis-Noël Pouchet, and Sven Verdoolaege, who largely af-
fected this work. Those people raised my interest for polyhedral techniques, helped me
with my first steps and guided me during the last years. Today they are an invaluable
source of knowledge. Thank you for all the helpful discussions.

I would especially like to thank P. Sadayappan, who generously supported my work
on Polly with a research scholarship at Ohio State (NSF 0811781 and 0926688), Dirk
Beyer, who supported the development of the RegionInfo analysis with several univer-
sity projects and Christian Lengauer, who allowed me to work on Polly for my thesis.

v





C O N T E N T S

1 introduction 1

i background 5

2 llvm 7

2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Intermediate Representation (LLVM-IR) . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Analysis Passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Dominator Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Loop Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Region Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Scalar Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.5 Alias Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Canonicalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Loop Canonicalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 integer polyhedra 23

3.1 Integer Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Integer Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Properties and Operations on Sets and Maps . . . . . . . . . . . . . . . . . . . 25

ii polly 27

4 architecture 29

4.1 How to Use Polly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Polly’s LLVM-IR Passes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 pollycc - A Convenient Polyhedral Compiler . . . . . . . . . . . . . . . . . . 30

5 llvm-ir to polyhedral description 35

5.1 What can be Translated? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 How is a SCoP Defined on LLVM-IR? . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 The Polyhedral Representation of a SCoP . . . . . . . . . . . . . . . . . . . . . 39

5.4 How to Create the Polyhedral Representation from LLVM-IR . . . . . . . . . . 41

5.5 How to Detect Maximal SCoPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 Preparing Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6.1 LLVM canonicalization passes . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6.2 Create Independent Basic Blocks . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 polyhedral optimizations 49

6.1 Transformations on the Polyhedral Representation . . . . . . . . . . . . . . . 49

6.2 External Optimizers - JSCoP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Dependency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vii



viii

7 polyhedral description to llvm-ir 59

7.1 Generation of a Generic AST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Analyses on the Generic AST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2.1 Detection of Parallel Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2.2 The Stride of a Memory Access Relation . . . . . . . . . . . . . . . . . . . . . 61

7.3 Generation of LLVM-IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.3.1 Sequential Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3.2 OpenMP Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3.3 Vector Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 experiments 71

8.1 Matrix Multiplication - Vectorized . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Automatic Optimization of the PolyBench benchmarks . . . . . . . . . . . . . 74

8.2.1 The Identity Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2.2 Creating Optimized Sequential Code with Pluto . . . . . . . . . . . . . . . . 76

8.2.3 Creating Optimized Parallel Code with Pluto . . . . . . . . . . . . . . . . . 76

9 conclusion 79

iii appendix 81

List of Figures 83

List of Listings 85

List of Acronyms 86

references 87



1
I N T R O D U C T I O N

motivation

Computation intensive applications are prevalent on high performance clusters and
work stations, but gain also importance on mobile devices and web clients. There, the
increased use of features like object and gesture recognition [45, 53], computational
photography [32, 55] and augmented reality [52] yields to a steadily growing number of
computation intensive applications. Further increases can be expected due to the integra-
tion of high quality cameras and other advanced input devices. Hence, efficient program
execution is not only relevant on high performance clusters, but also on mobile devices.
Efficiency is here crucial for instant user feedback and long battery life.

Modern hardware provides many possibilities to execute a program efficiently. Mul-
tiple levels of caches help to exploit data-locality and there are various ways to take
advantage of parallelism. Short vector instruction sets such as Intel SSE and AVX, IBM
AltiVec as well as ARM NEON can be used for fine grained parallelism. Dedicated vector
accelerators or GPUs supporting general purpose computing may be used for massively
parallel tasks. On platforms like IBM Cell, Intel SandyBridge and AMD Fusion simi-
lar accelerators are available tightly integrated with general purpose CPUs. Finally, an
increasing number of computation cores exists even on ultra mobile platforms. The ef-
fective use of all available resources is important for high efficiency. Consequently, well
optimized programs are necessary.

Traditionally, such optimizations are performed by translating performance critical
parts of a software system into a low-level language like C or C++ and by optimizing
them manually. This is a difficult task as most compilers support basic loop transforma-
tions as well as inner and outer loop vectorization, but as soon as complex transforma-
tions are necessary to ensure the required data-locality or to expose the various kinds
of parallelism, little compiler support is available. The problem is further complicated
if hints are needed by the compiler, OpenMP parallel loops need to be annotated or
accelerators should be used. As a result, only domain experts are able to perform such
optimizations effectively.

Even if they succeed, there remain other problems. First of all, such optimizations are
extremely platform dependent and often not even portable between different microar-
chitectures. Consequently, programs need to be optimized for every target architecture
separately. This becomes increasingly problematic, as today an application may target at
the same time ARM based iPhones, Atom and AMD Fusion based netbooks as well as a
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large number of desktop processors, all equipped with a variety of different graphic and
vector accelerators. Furthermore, manual optimizations are often even impossible. High
level language features like the C++ standard template library block many optimizations.
Languages such as Java, Python and JavaScript provide no support for portable low level
optimizations. Even programs compiled for Google Native Client [56], a framework for
portable, calculation intensive web applications, will face portability issues, if advanced
hardware features are used. In brief, manual optimizations are complex, non-portable
and often even impossible.

Fortunately, powerful algorithms are available to optimize computation intensive pro-
grams automatically. Wilson et al. [54] implemented automatic parallelization and data-
locality optimizations based on unimodular transformations in the SUIF compiler, Feautrier
[21] developed an algorithm to calculate a parallel execution order from scratch and
Griebl and Lengauer [24] developed LooPo, a complete infrastructure to compare dif-
ferent polyhedral algorithms and concepts. Furthermore, Bondhugula et al. [13] created
Pluto, an advanced data-locality optimizer that simultaneously exposes thread and SIMD

level parallelism. There are also methods to offload calculations to accelerators [10, 9]
and even techniques to synthesize high-performance hardware [43]. All these techniques
are part of a large set of advanced optimization algorithms built on polyhedral concepts.

However, the use of these advanced algorithms is currently limited. Most of them are
implemented in source to source compilers, which use language specific front ends to
extract relevant code regions. This often requires the source code of these regions to
be in a canonical form and to not contain any pointer arithmetic or higher level lan-
guage constructs such as C++ iterators. Furthermore, the manual annotation of code
that is safe to optimize is often necessary, as even tools limited to a restricted subset
of C commonly ignore effects of implicit type casts, integer wrapping or aliasing. An-
other problem is that most implementations target C code and subsequently pass it to
a compiler. The limited integration blocks effective communication between polyhedral
tools and compiler internal optimizations. As a result, influencing performance related
decisions of the compiler is difficult and the resulting programs often suffers from poor
register allocation, missed vectorization opportunities or similar problems.

We can conclude that a large number of computation intensive programs exist, that
need to be optimized automatically to be executed efficiently on current hardware. Ex-
isting compilers have difficulties with the required complex transformations, but there
is a set of advanced polyhedral techniques that are proven to be effective. Yet, they miss
integration in a production compiler to have significant impact.

contributions

With Polly1 we present a polyhedral infrastructure for LLVM that supports fully auto-
matic transformation of existing programs. Polly detects and extracts relevant code
regions without any human interaction. Since Polly optimizes the LLVM intermediate
representation (LLVM-IR), it is programming language independent and transparently
supports constructs like C++ iterators, pointer arithmetic or goto based loops. It is built

1 The word Polly is a combination of Polyhedral and LLVM. It is pronounced like Polly, the parrot.
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around an advanced polyhedral library [50] that supports existentially quantified vari-
ables and provides a state-of-the-art dependency analysis. Due to a simple file interface
it is easily possible to apply transformations manually or to use an external optimizer.
We use this interface to integrate Pluto [13], a modern data locality optimizer and par-
allelizer. Thanks to integrated SIMD and OpenMP code generation, Polly automatically
takes advantage of existing and newly exposed parallelism.

This thesis is organized as follows. In Chapter 2 and 3 we give some background
on LLVM and Z-polyhedra. Then we describe the concepts and techniques developed
within Polly. We start in Chapter 4 with presenting the architecture of Polly and the
tools developed to use it. Next, we explain in Chapter 5 the detection of relevant code
regions in LLVM-IR and their translation into a polyhedral description. We also define
the description itself. In Chapter 6 we present an advanced dependency analysis on this
representation and we show how optimizations on it are performed. In this chapter we
also define an exchange format to connect external optimizers. In Chapter 7 we describe
how we regenerate LLVM-IR and how to automatically create OpenMP and SIMD parallel
code. After the concepts developed within Polly are explained, we show some experi-
ments in Chapter 8, that help to understand the impact of our current implementation.
Finally, we conclude in Chapter 9.





Part I

B A C K G R O U N D





2
L LV M

The Low Level Virtual Machine (LLVM) is a compiler framework described in Lattner
and Adve [31]. It is built around the LLVM Intermediate Representation (LLVM-IR) and
comes with a large variety of analysis and transformation passes. The whole framework
was especially designed to optimize a program throughout its lifetime, which means
at compile time, link time and even run time. Furthermore, LLVM includes back ends
for static and just-in-time code generation for architectures like x86-32, x86-64, ARM or
PowerPC.

LLVM based compilers exist for a variety of programming languages. There are static
compilers like LLVM clang or the GCC based compilers dragonegg [1] and llvm-gcc.
clang compiles C, C++ and Objective-C whereas dragonegg and llvm-gcc additionally
support FORTRAN, Ada and Go. Furthermore, there are compilers for dynamic lan-
guages like Python [5], Ruby [4] and Lua [3] and for bytecode based virtual machines
like Java [2] and .NET [47]. With the Glasgow Haskell Compiler (GHC) even a compiler
for an all functional language includes LLVM based code generation [46]. LLVM is also
used in areas like graphics shader optimization, GPGPU computing or for the AMD [33],
Apple and Nvidia OpenCL compilers [34]. There exist even a notable number of projects
to use LLVM for High Level Synthesis (HLS) [51, 14, 57, 40]

2.1 architecture

LLVM has been developed as set of libraries which implement various parts of a compiler.
They can either be embedded into existing compilers to incorporate LLVM functionality
or a set of LLVM command line tools can be used to access library features directly. All
libraries provided by LLVM work on a common intermediate representation called LLVM-

IR. It is possible to export the LLVM-IR at different stages of the compilation, to move it
between tools or to modify it manually.

A good way to get an idea of existing LLVM features is to examine a classical static
compilation process that uses the LLVM tools. Figure 1 shows a small program consisting
of three source files that is compiled into a single executable. The source files contain
code written in three different programming languages. Each source file is lowered by
a language specific front end to LLVM-IR. Common frontends are clang or llvm-gcc for
C/C++ code as well as llvm-gfortran for FORTRAN code. Subsequently, the llvm-opt

tool is run on each LLVM-IR file to optimize the individual translation units and to gener-
ate an optimized LLVM-IR file. All optimizations are performed on the same intermediate
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main.opt.ll
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Target Code
  Generator

ld

System
Linker

Figure 1: Static compilation using the llvm toolchain

representation such that a common set of optimization passes can be used for transla-
tion units created from different programming languages. The optimizers can be run as
set of standard optimizations passes or as individually selected passes. This is especially
helpful if e.g. only dead code elimination should be performed or the LLVM-IR should be
canonicalized in a certain way.

After the individual parts have been optimized llvm-link combines them to a single
module, which can be optimized again by llvm-opt. At this point specific link time
optimizations are scheduled that for instance mark all functions as internal. In addition
a set of standard optimizations is run, as they may apply again after the link time
specific optimizations. As modules created from different programming languages are
linked together, optimizations can cross language borders without difficulty. Therefore,
it is possible to inline a function written in FORTRAN into some code written in C++.

Up to this point all transformations can be performed target agnostic. The first trans-
formation that cannot is the lowering from LLVM-IR to target specific machine code. How-
ever, even at this stage LLVM uses a target independent code generation infrastructure
that provides generic support for instruction selection or register allocation. The target
code generators for the different supported architectures are based on this generic in-
frastructure and can be specialized by target specific optimizers. Instruction selection is
in charge of selecting the best machine code instructions to implement a set of LLVM-IR

instructions. Machine specific aligned or unaligned load instructions are e.g. selected
to implement a generic load depending on the alignment information LLVM-IR provides.
A sequence of an add and a multiply instruction can be lowered to a machine specific
fused multiply add. In addition arbitrary width vector types, as provided by LLVM-IR,
are lowered to machine instructions that work on vectors of target specific width.
llvm-llc is the tool that creates target assembler code from LLVM-IR. As LLVM code

generation uses a generic machine code infrastructure, it is also possible to directly emit
object files bypassing any assembler. The same infrastructure is used in the llvm-mc
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tool, which provides an assembler, a disassembler as well as ways to obtain information
like the encoding of machine instructions. The machine code infrastructure can also be
used by the target independent optimization passes of LLVM which obviously can take
target specific information into account. Therefore, unrolling or inlining decisions can
be taken based on the real instruction encoding instead of some rough estimates. This is
especially important for modern CISC architectures.

Another area where the machine code infrastructure is very useful is the just in time
infrastructure of LLVM. Instead of creating static object files LLVM supports just-in-time
code generation such that machine code is directly emitted to memory and executed
right ahead. As the LLVM just in time compiler uses LLVM-IR to describe the programs all
optimization passes available for static compilation can be applied during just-in-time
compilation. It is conceptually even possible to reoptimize with different parameters e.g.
to especially optimize hot functions or to take advantage of knowledge obtained during
the execution of the program.

Overall, LLVM provides a consistent infrastructure for the whole compilation process
that is used in many important compilers. As all compilers target LLVM-IR as common
intermediate representation LLVM is a great platform to write programming language
and target independent optimizations.

2.2 intermediate representation (llvm-ir)

LLVM uses a common intermediate representation called LLVM-IR throughout the whole
compilation process. All compilers that use LLVM as optimizer and code generator lower
their input language to LLVM-IR. LLVM-IR is a typed, target agnostic, assembler like lan-
guage for a register machine with an infinite amount of virtual registers. Each register
can only be written once, such that register operations are in Static Single Assignment
(SSA) form. As LLVM is a load/store architecture, values are transfered between memory
and registers via explicit load or store operations.

There exist three representations of LLVM-IR. First there is the in-memory representa-
tion used inside the library, then there is the on-disk bytecode representation (.bc files)
used e.g. for caching the output of a just-in-time compiler and finally there is the human
readable assembly language representation (.ll files). All three are equivalent in terms of
expressiveness. In this thesis the human readable representation is used.

This section describes the subset of LLVM-IR relevant for Polly and highlights impor-
tant aspects. A full definition is available from Lattner [30].

2.2.1 Types

LLVM-IR is strongly typed, which means every register, function parameter, function re-
turn value or instruction has an associated type. There exist no implicit type casts. The
operands provided to functions or instructions must always match the required types.
The only way to change the type of a value is an explicit cast. Code without explicit
casts in the LLVM-IR is always type safe. However, casts may be needed to express the
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type systems of more abstract languages. As a result types in LLVM-IR correspond not
necessarily to the ones that exist in the language from which the LLVM-IR is generated.

The types can be divided into two major groups: primitive types and derived types.
Primitive types are the basic types. Derived types are constructed by recursively com-
posing such basic types.

There are three kinds of primitive types relevant for Polly: the integer types, the float-
ing point types and the label type. LLVM-IR supports integer types of arbitrary but fixed
bit width called iX, where X is the bit width of the integer. All optimizations and anal-
yses are implemented on these arbitrary width integers. As not all targets have robust
code generation for large bit widths, the use of types beyond i128 is limited. In contrast
to C integer types in LLVM-IR do not define signedness. The interpretation of the integer
values depends on the instruction that uses them. For further information see Section
2.2.2. LLVM-IR also defines floating point types for single, double as well as quadruple
precision. All available floating point types are signed. Finally, there is the label type
that represents locations in the source code which can be used as a target for branch
and switch instructions. Common primitive types are :

i1 ; Boolean value

i8 ; C (unsigned) char

i32 ; 32 bit (unsigned) integer

i64 ; 64 bit (unsigned) integer

float ; Single precision floating point value

double ; Double precision floating point value

x86_fp80 ; X87 80bit floating point value

fp128 ; Quadruple precision floating point value

label ; The label of a basic block

There are three kinds of derived types interesting to Polly: the pointer types, the array
types and the vector types. A pointer type specifies the location of an object in memory.
An array type describes a set of elements arranged sequentially in memory. It has always
a fixed size known at compile time. There are no variable sized multi-dimensional arrays
in LLVM-IR. Variable sized arrays need to be expressed based on pointers and pointer
arithmetic. A vector type represents a vector of elements. It is defined by the number of
contained elements and their common primitive type. Vector types are used as operands
in SIMD operations. They can have arbitrary width and will be lowered by the target back
ends to the machine vector width. As this lowering is done in the target code generation,
no further LLVM-IR optimizations are applied. As a result, code generation for vectors
that are notably larger than the machine vector width is not optimal. Common derived
types are:

float * ; A pointer to a float

<4 x float> * ; A pointer to a vector of four floats

[20 x float] ; An array of 20 float elements
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[5 x [3 x double]] ; An array that consists of five arrays

; each containing three doubles

<4 x float> ; A vector of four floats

<16 x i8> ; A vector of 16 C chars

All types mentioned in this section are also first class types. First class types can be
created by LLVM-IR instructions and can be passed as function parameter or returned by
a function.

2.2.2 Instructions

LLVM-IR has on purpose a very limited set of instructions to describe a program. It only
represents common operations. Specific machine instructions are created when LLVM-IR

is lowered in the back end. The set of LLVM-IR instructions needed to understand Polly
is even smaller. In this section we will have a look at instructions for computations,
vector management, type conversion, memory management and finally control flow
instructions.

First we look at computational instructions that perform a side effect free operation
on a set of operands. Operands are in this case either virtual registers or constant val-
ues. There exist three groups of computational instructions: Binary instructions, bitwise
instructions and comparison instructions. Binary instructions as well as comparison in-
structions are defined for both floating point and integer types, whereas bitwise instruc-
tions are only defined on integer types. Furthermore, there exist corresponding vector
versions of all instructions, which take integer or floating point vector types as operands
and perform the same operation as the non-vector instruction, but elementwise on the
whole vector. The complete set of binary instructions consists of addition, subtraction,
multiplication, division and modulo operation. For integer types there exist signed and
unsigned versions of the division and the modulo operation. This is not needed for float-
ing point types, as they are always signed. Integer types are interpreted following the
two’s complement representation with defined overflow semantics for addition, subtrac-
tion and multiplication Hence, no special signed or unsigned versions are needed for
those instructions. Various bitwise instructions allow different kinds of shifts as well as
the boolean operations and, or and xor. Finally there are comparison instructions, which
support a common set of comparisons. Some computational instructions are:

%result = add i32 %firstOp, %secondOp

%resultF = fmul float %firstFOp, %secondFOp

%resultOr = or i8 %firstBitSet, %secondBitSet

%vectorDiv = fdiv <8 x double> %vectorOne, %vectorTwo

%vectorCmp = icmp eq <8 x i16> %intVectorOne, %intVectorTwo

The instructions just described only work on virtual registers. Hence it is necessary to
load values from memory into registers before the instructions are executed and to store
the results of a calculation from a register back to memory. The only instructions needed
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for this are called load and store and move a value from a register to an address in
memory or the other way around. There are two ways to obtain the address of an object
in memory. Either by allocating a new one on the stack using alloca or by using system
provided functions for memory allocation like malloc to allocate memory elsewhere.
LLVM provides a third way called getelementptr which is an instruction that takes the
start address of an array and returns the address of an element at a certain offset. This
instruction is used for type safe memory address calculations. To calculate the offset, the
type of the elements in the array needs to be provided. As LLVM does not provide types
for variable sized arrays only arrays that contain fixed size elements can be modeled this
way. Variable sized arrays need to be implemented by manually calculating the relevant
memory offsets. Another information available for these memory instructions is the
alignment of the memory accessed. If alignment information is provided, the target
code generator can use more efficient aligned machine operations. Possible memory
operations are:

%memoryAddress = alloca float, align 4

store float 3.0, float* %memoryAddress, align 4

%register = load float* %memoryAddress, align 4

%vectorPtr alloca = <4 x float>, align 32

%vectorLoad = load <4 x float> %vectorPtr, align 32

With the features so far, it is possible to do pure scalar calculations and pure vector
calculations. However it is often needed to build a vector from a set of scalars or to ex-
tract a scalar from a vector. Therefore LLVM provides the instructions insertelement and
extractelement. Furthermore, a generic shuffle instruction is provided that takes two
vectors and combines their content based on a shuffle mask. These are the only vector
specific instructions. All other operations on vectors are provided by generic instructions.
Some vector specific operations are:

%resultVec1 = insertelement <4 x float> %vec, float 5.0, i32 0

%resultVec2 = insertelement <4 x float> %resultVec1, float 3.2, i32 1

%resultVec3 = insertelement <4 x float> %resultVec2, float 8.4, i32 1

%shuffleResult = shufflevector <4 x float> %resultVec2, <4 x float> %resultVec3,

<3 x i32> <i32 0, i32 1, i32 5>

%scalar = extractelement <4 x float> %resultVec3, i32 1

; %shuffelResult is <5.0, 3.2, 8.4>

; %scalar is 8.4

To allow calculations between types of different sizes or between floating point and
integer types LLVM provides a set of cast and conversion instructions that provide type
extensions and truncation for both integer and floating point types, with special signed
and zero extension methods available for integer types. Furthermore, signed and un-
signed versions for float to integer conversion are provided. Finally, a bitcast instruction
is available to reinterpret a set of values without modifying the actual memory content.
This can for instance be used to change a pointer to a scalar into a pointer to a vector.
Common conversion instructions are:
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%smallint = trunc i32 %largeint to %i16

%hugeint = zext i32 %largeint to %i64

%float = fptrunc double 42.0 to float

%vectorPtr = bitcast i32* %scalarPtr to <2 x i32>*

%register = load <2 x i32>* %vectorPtr

So far only sequentially ordered instructions have been discussed. A set of such in-
structions that does not include any branch is called a basic block. Each basic block is
labeled with a name. To create constructs like loops or conditional control flow these
basic blocks are connected by so-called terminator instructions that direct the control
flow from one basic block to another. Terminator instructions are required as last in-
struction of a basic block and are only allowed at this place. The most common ones are
branch, switch and ret. The first describes either an unconditional branch to a single
label or a conditional branch to two labels. The switch is a generic branch instruction
to a numbered set of labels, where the target of the branch is provided by an integer
value. And finally there is the ret instruction to terminate the control flow in a function
and to return a value. As terminator instructions are required and the targets can only
be known labels, an explicit Control Flow Graph (CFG) is created. Another control flow
instruction is the phi instruction, which merges values defined in the predecessors of a
basic block into a single register value. The following code shows some examples:

start:

%condition = icmp eq i32 5, 10 ; 5 == 10 is False

br %condition, label %left, label %right ; Branch to %right

left:

%plusOne = add i32 0, i32 1 ; 0 + 1 (not executed)

br label %join ; Branch to %join (not executed)

right:

%minusOne = sub i32 0, i32 1 ; 0 - 1

br label %join ; Branch to %join

merge:

%joinedValue = phi i32 [ %plusOne, %left], ; Copy value from %minusOne

[ %minusOne, %right]

ret i32 %joinedValue ; return %joinedValue

Overall, LLVM-IR is a small language that was shown to be expressive enough to rep-
resent a wide range of programming languages and preserves enough information to
apply sophisticated analysis and transformations. The small size of the language sim-
plifies analysis and transformation on it and allows them to cover the whole language
easily. Through the consistent integration of vector types it is furthermore a solid plat-
form for machine independent vectorization.
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1:
int i ,  a, b

 i  =  0

2 :
if  ( i  != 100)

T F

3:
a  =  4
if  ( i  == a)

T F

     

7 :
r e t u r n

4:
b  =  5

5:
b  =  8

6:
i + +

    

Figure 2: CFG of the example program

2.3 analysis passes

As LLVM-IR is a relatively low-level program representation, information about higher
level structures or global program state is in general not readily available. Nevertheless
it is often possible to analyze LLVM-IR and to derive the information needed. This is
facilitated as LLVM already provides a set of sophisticated analysis passes [6]. We will
present the ones used by Polly. As an example we use the following piece of code and
its CFG representation as shown in Figure 2.

void foo() {

int i, a, b;

for (i = 0; i != 100; i++) {

a = 3;

if (i == a)

b = 5;

else

b = 8;

}

}
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Figure 3: The dominator tree for the CFG in Figure 2

2.3.1 Dominator Tree

A commonly used analysis in LLVM is the dominance information1. It describes a relation
between the different basic blocks in the CFG. Prosser [38], who developed the idea of a
dominance information, introduced it with the following words:

“We say [block] i dominates [block] j if every path (leading from input
to output through the [CFG]) which passes through [block] j must also pass
through [block] i.”

i is called the dominator of j. It is called the immediate dominator of j, if there exists
no other basic block that is dominated by i and that also dominates j. In Figure 2 basic
blocks 2 and 3 dominate basic block 4, but only block 3 is the immediate dominator
of block 4. There is no dominance relation defined between block 4 and 5. The graph
G = (V, E) where V is the set of basic blocks and E is the dominance relation defined on
V is called dominator tree. The dominator tree for the CFG in Figure 2 is shown in Figure
3. As the dominator tree is often used in LLVM, many optimizations keep it up to date.
As a result new optimizations can generally expect it to be available without any further
cost.

The dominance information is also defined on the reversed CFG, CFG’, which is iden-
tical to CFG but with the directions of the edges reversed. The corresponding constructs
on CFG’ are called post-dominator, immediate post-dominator and post-dominator tree. The
post-dominator tree of our example is shown in Figure 3. It shows that basic block 6

and 2 post-dominate block 5, however only block 6 is an immediate post-dominator of
block 5. There is one special case that distinguishes post-dominance information from
dominance information. In LLVM a sensible dominator tree is also calculated if there ex-
ist basic blocks from which there is no path to a return statement, a case occurring in the
presence of non-terminating loops. Such basic blocks are not part of the post-dominator

1 Section adapted from ’The refined program structure tree’ (Tobias Grosser), the description of a project
developed in the class ’Softwareanalyse’ 09/10 with Dirk Beyer



16

int i ,  a, b
 i  =  0

if  ( i  != 100)

T F

a  = 4
if  ( i  == a)

T F

e n t r y

r e t u r n

b  =  5 b  =  8

i + +

exi t

Figure 4: A simple Region

tree currently calculated by LLVM. Therefore, post-dominance information can currently
not be used to optimize such programs.

2.3.2 Loop Information

LLVM provides an analysis to detect natural loops as described by Aho et al. [7]. Natu-
ral loops define cyclic structures in the CFG as they are created by constructs like for,
do..while or foreach. To define a natural loop we first introduce the notion of a back
edge. A back edge in the CFG is an edge whose source dominates the target. The natural
loop of an edge a → d is a subgraph of the CFG that contains d and all basic blocks that
can reach a without passing through d. d is called the loop header. In Figure 2 edge 6→ 2
is a back edge and the corresponding natural loop consists of the nodes 2, 3, 4, 5, 6.

The natural loops of a program can be organized in a loop tree whose nodes are the
natural loops and whose edges are defined by the subgraph relation. As a result natural
loop L1 is a child of a natural loop L2 , if the basic blocks in L1 are also basic blocks in
L2.

Furthermore, LLVM detects certain special forms of natural loops. A natural loop has
a preheader if there is a single basic block from which edges enter the loop. There exists
a preheader of a loop, if there is a single basic block from which edges lead to the loop
header.
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Figure 5: Transform a refined region to a simple region

2.3.3 Region Information

LLVM contains an analysis to detect control flow regions2. It was developed by us based
on ideas from Johnson et al. [27], but enhanced to allow a more fine grained detection
of regions. This was partially inspired by Vanhatalo et al. [49].

A simple region is a subgraph of the CFG that is connected to the remaining graph by
only two edges, an entry edge and an exit edge. It does not influence the control flow
outside of the region. Hence, it can be modeled as a function call, which can easily be
replaced with a call to an optimized version of the function. A canonical simple region
is a simple region that cannot be constructed by merging two adjacent smaller simple
regions. A simple region contains another simple region if its nodes are a superset of the
nodes of the other simple region. A tree is called a region tree, if its nodes are canonical
simple regions and its edges are defined by the contains relation. Figure 4 highlights
one of simple regions of Figure 2.

A refined region, or just region, is a subgraph of the CFG that is not necessarily a simple
region, but that can be transformed into a simple region by inserting basic blocks that
merge a set of edges to create a single entry or exit edge. Figure 5a shows a region that
has two entry edges (a → c, b → c) and two exit edges (d → g, e → g). By introducing
basic blocks t_1 and t_2 these edges are merged to create a single entry edge t_1→ c and
a single exit edge t_2 → g. Figure 5b shows the newly created simple region. A region

2 Section adapted from ’The refined program structure tree’ (Tobias Grosser), the description of a project
developed in the class ’Softwareanalyse’ 09/10 with Dirk Beyer
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Figure 6: Simple (solid border) and refined (dashed border) regions in a CFG.

is canonical if it cannot be created by merging two adjacent regions. We also define a
contains relation for refined regions following the definition for simple regions. Finally
we define a refined region tree, also called refined program structure tree, as tree of refined
regions connected by the contains relation.

Figure 6 shows a larger CFG that contains a set of different regions. Simple regions are
marked with solid borders whereas refined

2.3.4 Scalar Evolution

The scalar evolution analysis calculates for every integer register a closed form expres-
sion describing its value during the execution of a program. This expression is called
the scalar evolution of the register. It is used to abstract away the individual instructions
that lead to the value of a register and to focus on the overall calculation. Scalar evolu-
tion simplifies analysis and optimizations. It is for example used to eliminate redundant
instructions by comparing the scalar evolution of two registers and by eliminating one
if their scalar evolutions are identical.

The analysis implemented in LLVM is based on the work of Bachmann et al. [8] on
chains of recurrences and the adaption of those to compilers and induction variable
analysis as described in various papers [58, 19, 37]. However, it is adapted and extended
to fit the needs of the LLVM framework. One notable extension is the modeling of integer
wrapping in the expressions of the scalar evolution.



19

• Integer constant (42)

• Unknown value

– Undefined (undef)

– Parameter (%parameter)

– SizeOf (sizeof(<type>))

– AlignOf (alignof(<type>))

– OffsetOf (offsetof(<structtype>, <fieldnumber>))

• Unary cast operations

– Truncation (trunc <expr>)

– Zero extension (zext <expr>)

– Sign extension (sext <expr>)

• Binary operations

– Unsigned division (<expr> /u <expr>)

• N-ary operations

– Addition (<expr> + <expr> + ...)

– Multiplication (<expr> * <expr> * ...)

– Signed maximum (<expr> smax <expr> smax ...)

– Unsigned maximum (<expr> umax <expr> umax ...)

• Add recurrence ({<base>, +, <step>}<loop>)

Figure 7: The elements of a scalar evolution

2.3.4.1 The elements of a scalar evolution

A scalar evolution expression is constructed recursively from the elements in Figure 7.
There are two base elements and a larger set of inductively defined elements. The base
elements are the integer constant and the unknown value. An integer constant represents
an integer known at compiler time whereas an unknown value represents an integer un-
known at compile time. There are different kind of unknown values. The first is called
undef and is used if a value is undefined in LLVM-IR and as a result will also be unde-
fined during execution. The next is called %parameter and represents an integer that is
unknown at compile time, but known at execution time. Parameters appear for exam-
ple if a register is initialized through function parameters or by a load from memory.
Finally there exist unknown values to represent target specific constants in a target inde-
pendent way. These are SizeOf, AlignOf and OffSetOf which represent the size of types,
the alignment of types and the offset of elements in a structure.

The recursively defined elements of a scalar evolution can be grouped in unary cast
operations, binary operations, n-ary operations and add recurrences. There exist three
unary cast operations to change the type and therefore the bit width of the value rep-
resented. The trunk operation reduces the bit width and zext or sext increase the bit
width by applying zero or sign extension. There is one binary operation, the unsigned
division /u and there are the n-ary operations addition +, multiplication *, signed max-
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imum smax and unsigned maximum umax. All operations mentioned follow modulo
integer arithmetics as defined for LLVM integer types.

Finally, there are add recurrences. Add recurrences represent expressions that change
during the evaluation of a loop. They have the format {<base>, +, <step>}. The base
of an add recurrence defines its value at loop iteration zero and the step of an add recur-
rence defines the values added on every subsequent loop iteration. An add recurrence
represents an affine linear expression if its step is a constant expression not containing
any further add recurrences. It represents a higher order polynomial function, if the step
is a non-constant expression. In general the maximal degree of a polynomial that can be
expressed is limited by the nesting depth of the add recurrences.

2.3.4.2 Code that can be analyzed

The scalar evolution analysis in LLVM can analyze code that uses common integer arith-
metic like addition, subtraction, multiplication, unsigned division. Furthermore, it sup-
ports truncation, sign extension and zero extension and is able to recognize common
arithmetic idioms expressed by bitwise binary instructions or the different shift instruc-
tions. Minimum and maximum constructs expressed with conditional instructions are
also commonly recovered. Loop variant expressions, which arise through the use of Φ-
nodes, are detected for loops with a single entry edge and a single back edge. Finally,
scalar evolution can analyze pointer arithmetic like it analyzes integer arithmetic.

Overall, scalar evolution is capable to derive closed form expressions for many of
the integer variables in common programs. It is used in several important LLVM passes
like redundant induction variable elimination, loop canonicalization or loop strength
reduction. Hence it is as established in LLVM as more widely known analysis like the
dominator information.

2.3.5 Alias Analysis

LLVM provides a sophisticated alias analysis infrastructure to calculate information on
the relation between different memory references. It consists of several alias analysis
passes that can be combined to increase the precision of the overall analysis. Each pass
classifies the relation between two memory accesses as either no alias, may alias, partial
alias, or must alias. No alias signifies that two accesses will not touch the same memory,
partial alias means the memory ranges accessed are known to partially overlap, and must
alias means the accessed memory is identical. In case no information about the relation
between the memory accesses can be derived may alias is returned.

The different alias analysis passes available in LLVM are basic alias analysis, scalar
evolution alias analysis and type based alias analysis. Basic alias analysis is the primary
alias analysis implementation in LLVM and provides stateless alias analysis information.
It knows for example that two different globals cannot alias. The scalar evolution alias
analysis is specialized on loop structures and derives information about possible aliasing
of memory references by comparing the scalar evolution expression of two loop variant
memory references. Finally, there is type based alias analysis. This analysis requires
additional type information from a higher level type system. As a strict high-level type
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system can enforce that two pointers of different types do not point to the same memory,
information about possible aliasing that is not available by only analyzing, LLVM-IR can
be derived.

2.4 canonicalization

There are often numerous ways to represent a calculation in a program. To be able to
apply an analysis or transformation on all of them, it needs to be written in a very
generic way. This yields to complex code as many special cases need to be taken into
account and often even the complex code is often not generic enough to handle all
representations. As a result some representations may not be optimized or may even
break the analysis.

A solution to this problem is to create a simpler implementation of analysis and trans-
formations that can only be applied on a canonical representation of the program. Code
that is not in such a form is canonicalized by a set of preparing transformations.

2.4.1 Loop Canonicalization

Loop Simplify

The loop simplify pass transforms natural loops such that their control flow structure
matches a common form. It ensures that each loop has a pre-header, which means there
is a single, non-critical entry edge from outside the loop to the loop header. In addition
each loop is transformed such that it has a single back edge. The loop simplify pass
will also ensure that all exit edges of a loop lead to basic blocks that do not have any
predecessors that are not part of the loop.

Induction Variable Canonicalization

LLVM provides a pass for induction variable canonicalization that changes every loop
with an identifiable induction variable to have a have a single induction variable that
counts from zero with steps of one. If additionally the number of loop iterations can
be calculated, the exit condition of the loop is transformed to compare the induction
variable against the number of loop iterations. If the induction variable is used outside
of the loop, its use is replaced by a closed form expression that calculates the number of
loop iterations.

Tail Call Elimination

A different way to express a loop is a recursive function. Even though recursive functions
can be used in imperative programming languages, they are especially common for
functional languages. In functional languages a special kind of recursive function, called
tail recursive function, is commonly used to express loop like structures. LLVM provides
a pass to transform tail call recursive functions into a imperative loop structure. As
a result existing loop optimizations can be applied on programs written in functional
programming languages or with functional paradigms in mind.
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I N T E G E R P O LY H E D R A

The main data structures used for storage and analysis of polyhedral information in
Polly are integer sets and maps as implemented in the integer set library (isl) [50]. They
are conceptually equivalent to Z-polyhedra as described by Rajopadhye et al. [42], but
use a different representation. In this chapter we describe the data structures and explain
the functionality they provide. An explanation of how Polly represents programs with
such data structures and how it uses them to perform optimizations will be given in
the description of Polly itself. The definitions in this Chapter follow the ones used by
Verdoolaege [50].

3.1 integer set

Definition 1 A basic integer set is a function S : Zn → 2Zd
: s 7→ S(s),

where S(s) = {x ∈ Zd|∃z ∈ Ze : Ax + Bs + Dz + c ≥ 0} with A ∈ Zm×d, B ∈ Zm×n, D ∈
Zm×e, c ∈ Zm.

In the definition d is the number of set dimensions, n is the number of parameter
dimensions and e is the number of existentially quantified dimensions. Furthermore,
m defines the number of constraints in the set. A basic integer set maps a tuple of
integer parameters to a set of integer tuples. It is called universe, if no restrictions apply
e.g. m = 0. The elements in the basic integer set can be restricted by a finite set of
affine constraints. These constraints can reference the set dimensions, the parameter
dimensions and, in addition, a set of existentially quantified dimensions. Existentially
quantified dimensions are only visible internally and do not change the dimensionality
of a basic integer set.

An integer set is a finite union of basic integer sets where all elements have the same
number of set and parameter dimensions. A named integer set is an integer set that de-
scribes a named space. Two spaces with different names reference distinct spaces, even
though they may have the same dimensionality. It is not possible to apply operations on
integer sets that belong to different named spaces.

An (integer) union set is a union of integer sets that have non-matching dimensionality
or dimension names. It can conveniently be used to work with a set of related, but
incomparable sets.

If the context is unambiguous, we use the term set to refer to an integer set, basic set to
refer to a basic integer set and union set to refer to an integer union set. A (basic/union)

23
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for (i = 1; i <= N, i++) {

for (j = 1; j <= M && j <= 2*i, j++) {

StmtOne(i,j)

if (j % 2 == 0)

StmtTwo(i,j)

}

}

[i]

[j]

StmtOne
[i]

[j]

StmtTwo

Figure 8: A loop nest and the two basic sets used to describe the valid loop iterations.

set is called non-parametric, if it has zero parameter dimensions. We also allow some
syntactic sugar in the constraints. “e mod i” (i is an integer constant) is for example
replaced by a set of constraints and an additional existentially quantified dimension,
that enforce this modulo constraint. The same is true for “ceild”, “ f loord”, “[e/i]′′ (i is
an integer constant). Equality constraints are also possible.

Figure 8 shows a loop nest with two statements. We represent the valid loop iterations
with the two basic sets S1 = [N, M] → {StmtOne[i, j]|1 ≤ i ≤ N ∧ 1 ≤ j ≤ M ∧ j ≤ 2i}
and S2 = [N, M] → {StmtTwo[i, j] : 1 ≤ i ≤ N ∧ 1 ≤ j ≤ M ∧ j ≤ 2i ∧ j mod 2 = 0}.
Both are two dimensional, parametric and named. Even if they have the same number
of dimensions, it is not possible to compare these sets directly. However, we can create
the union of those two sets and get the union set U = [N, M] → {StmtOne[i, j]|1 ≤ i ≤
N ∧ 1 ≤ j ≤ M ∧ j ≤ 2i; StmtTwo[i, j] : 1 ≤ i ≤ N ∧ 1 ≤ j ≤ M ∧ j ≤ 2i ∧ j mod 2 = 0}.
The two basic sets shown in Figure 8 are instantiated with N = 6 and M = 12.
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3.2 integer map

Definition 2 A basic integer map is defined as function M : Zn → 2Zd1×Zd2 : s 7→ M(s),
where M(s) = {x1 → x2 ∈ Zd1 ×Zd2 |∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz + c ≥ 0} with
A1 ∈ Zm×d1 , A2 ∈ Zm×d2 , B ∈ Zm×n, D ∈ Zm×e, c ∈ Zm.

In the definition d1 is number of input dimensions, d2 the number of output dimen-
sions, m the number of parameter dimensions, e is the number of existentially quantified
dimensions and m the number of constraints. A basic integer map is a function that maps
a tuple of integer parameters to a binary relation between two basic integer sets. The
first set of the relation is called domain the second is called range.

An (integer) map is a finite union of basic maps where all elements have the same
number of input, output and parameter dimensions. A named (integer) map is a map
where either domain or range (or both) is a named space.

An (integer) union map is a union of integer maps that have non matching dimension-
ality or dimension names. It can conveniently be used to work with a map of related,
but incomparable maps.

If the context is unambiguous, we use the term map to refer to an integer map, basic
map to refer to a basic integer map and union map to refer to an integer union map. A
(basic/union) map is called non-parametric, if it has zero parameter dimensions. We
allow the same syntactic sugar as for integer sets.

3.3 properties and operations on sets and maps

On integer sets and maps several properties and operations are defined. We list the ones
that are used within Polly.

• Properties

– equal

– empty

– disjoint

– (strict) subset

• Operations

– complement

– intersection

– union

– difference

– lexicographic minimum/maximum

– projection

– inverse (maps only)

– application
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– delta (maps only)

Most properties are well known mathematical concepts such that no further expla-
nation is needed. In addition, they are documented in the isl user manual.1 We detail
only on the not so common operations here. The lexicographic minimum (maximum)
of a map is a map that assigns to every element e in the domain the lexicographic mini-
mal (maximal) elements in the image of e under the original map. A map can either be
intersected with another map or either its domain or its range can be intersected with
some set. On maps the inverse operation switches the domain and the range of a map.
Furthermore, maps can be applied to the range of an integer map, the domain of an
integer map or to an integer set. The difference operation calculates the elements that
distinguish one set (map) from another. In contrast the delta function calculates for a
map a new map that assigns to every element e in the range of the original map the
differences between the elements in the image of e under the original map.

Integer sets and maps are closed under all these operations, basic integer sets and
maps are not.

1 http://www.kotnet.org/~skimo/isl/manual.pdf

http://www.kotnet.org/~skimo/isl/manual.pdf
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A R C H I T E C T U R E

Polly is a framework that uses polyhedral techniques to optimize for data-locality and
parallelism. It takes a three-step approach similar to Graphite [48]. First, it detects the
parts of a program that will be optimized and translates them into a polyhedral rep-
resentation. Then it analyses and optimizes the polyhedral representation. And finally,
optimized program code is generated. To implement this structure Polly uses as a set of
analysis and optimization passes that operate on LLVM-IR. We divided them into front
end, middle part and back end passes.

In the front end the parts of a program that Polly will optimize are detected. Those
parts, called Static Control Parts (SCoPs), are then translated into a polyhedral represen-
tation. To keep the implementation of Polly simple, Polly only detects SCoPs that match
some canonical form. Any code that is not in this form is canonicalized, before it is
passed to the SCoP detection.

The middle part of Polly provides an advanced dependency analysis and is the place
for polyhedral optimizations. At the moment, Polly itself does not perform any op-
timizations, but allows the export and reimport of its polyhedral representation. The
exported representation can be used to manually perform optimizations or to connect
existing polyhedral optimizers to Polly. To provide an advanced polyhedral optimizer,

Figure 9: Architecture of Polly
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we connected PoCC1 with Polly. PoCC is a collection of tools that can be used to build
polyhedral compilers.

In the back end of Polly the original LLVM-IR is replaced by new code that is generated
following the possibly transformed polyhedral representation. At this step we calculate
an imperative program structure from the polyhedral representation and create the cor-
responding LLVM-IR instructions. Furthermore, we detect parallel loops that can either
be executed with OpenMP to take advantage of thread level parallelism or replaced
with SIMD instructions, if fine grained parallelism is available. In future versions of Polly,
we plan to also integrate code generation for GPU based vector accelerators. Figure 9

illustrates the overall architecture of Polly.

4.1 how to use polly

There exist two ways to use Polly. One is to directly run one or several of Polly’s anal-
ysis and optimization passes on existing LLVM-IR files. The other is to use pollycc, a
gcc/clang replacement that allows to conveniently compile C and C++ files with Polly.

4.1.1 Polly’s LLVM-IR Passes

As Polly is implemented as a set of LLVM passes, it is possible to directly access each
pass. LLVM provides for this the tool opt, which can run an arbitrary list of passes on
a certain LLVM-IR file. To execute the Polly passes it is sufficient to load Polly into opt2

and to select the pass that should be executed. Figure 10 gives a list of available Polly
passes. Their behaviour will be explained in the subsequent parts of this thesis.

4.1.2 pollycc - A Convenient Polyhedral Compiler

A more convenient way to use Polly is the tool pollycc, which is a command line C and
C++ compiler that can replace gcc or clang. It is based on clang, but additionally sup-
ports a set of command line options that enable Polly based polyhedral optimizations.
pollycc automatically schedules all required canonicalization and cleanup passes, and
links with run time libraries, if necessary. Hence, a user only has to select the optimiza-
tions he wants to apply and pollycc performs them automatically.

To understand if Polly is able to detect any SCoPs, the option -fview-scops shows
the CFGs of a program and highlights the SCoPs found3. Several transformation options
are available. -fpolly enables Polly, but does not yet enable any optimizations on the
polyhedral representation. -fpluto uses Pluto to calculate an optimized schedule and
-ftile additionally enables Pluto based tiling4. To take advantage of parallelism exposed
for example by Pluto OpenMP and SIMD code generation is available through -fparallel

and -fvector. In addition -fpolly-export-jscop and -fpolly-import-jscop allow to

1 http://pocc.sf.net

2 Using opt -load LLVMPolly.so ...

3 Requires a dot viewer available at http://www.graphviz.org
4 Both require PoCC to be installed

http://pocc.sf.net
http://www.graphviz.org
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• Front End

polly-prepare Prepare code for Polly

polly-region-simplify Transform refined regions into simple regions

polly-detect Detect SCoPs in functions

polly-analyze-ir Analyse the LLVM-IR in the detected SCoPs

polly-independent Create independent blocks

polly-scops Create polyhedral description of SCoPs

• Middle End

polly-dependences Calculate the dependences in a SCoPs

polly-interchange Perform loop interchange (work in progress)

polly-optimize Optimize the SCoP using PoCC

– Import/Export

polly-export-cloog Export the CLooG input file
(Writes a .cloog file for each SCoP)

polly-export Export SCoPs with OpenScop library
(Writes a .scop file for each SCoP)

polly-import Import SCoPs with OpenScop library
(Reads a .scop file for each SCoP)

polly-export-scoplib Export SCoPs with ScopLib library
(Writes a .scoplib file for each SCoP)

polly-import-scoplib Import SCoPs with ScopLib library
(Reads a .scoplib file for each SCoP)

polly-export-jscop Export SCoPs as JSON

(Writes a .jscop file for each SCoP)

polly-import-jscop Import SCoPs from JSON

(Reads a .jscop file for each SCoP)

– Graphviz

dot-scops Print SCoPs of function

dot-scops-only Print SCoPs of function (without function bodies)

view-scops View SCoPs of function

view-scops-only View SCoPs of function (without function bodies)

• Back End

polly-cloog Execute CLooG code generation

polly-codegen Create LLVM-IR from the polyhedral information

Figure 10: Passes available in Polly
as printed by ’opt -load LLVMPolly.so -help’
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export and reimport the polyhedral representation as a JSCoP file. A complete list of
available options is shown in Figure 11. Their exact behaviour will be explained in the
corresponding sections of this thesis.
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pollycc -h

usage: pollycc [-h] [-o OUTPUT] [-I INCLUDES] [-D PREPROCESSOR] [-l LIBRARIES]

[-L LIBRARYPATH] [-O {0,1,2,3,s}] [-S] [-emit-llvm]

[-std STANDARD] [-p] [-c] [-fpolly] [-fpluto] [-faligned]

[-fview-scops] [-fview-scops-only] [-ftile] [-fparallel]

[-fvector] [-fpolly-export] [-fpolly-import] [-commands] [-d]

[-v]

files [files ...]

pollycc is a simple replacement for compiler drivers like gcc, clang or icc.

It uses clang to compile C code and can optimize the code with Polly. It will

either produce an optimized binary or an optimized '.o' file.

positional arguments:

files

optional arguments:

-h, --help show this help message and exit

-o OUTPUT the name of the output file

-I INCLUDES include path to pass to clang

-D PREPROCESSOR preprocessor directives to pass to clang

-l LIBRARIES library flags to pass to the linker

-L LIBRARYPATH library paths to pass to the linker

-O {0,1,2,3,s} optimization level

-S compile only; do not link or assemble

-emit-llvm output LLVM-IR instead of assembly if -S is set

-std STANDARD The C standard to use

-p, --progress Show the compilation progress

-c compile and assemble, but do not link

-fpolly enable polly

-fpluto enable pluto

-faligned Assume aligned vector accesses

-fview-scops Show the scops with graphviz

-fview-scops-only Show the scops with graphviz (Only Basic Blocks)

-ftile, -fpluto-tile enable pluto tiling

-fparallel enable openmp code generation (in development)

-fvector enable SIMD code generation (in development)

-fpolly-export Export Polly jscop

-fpolly-import Import Polly jscop

-commands print command lines executed

-d, --debug print debugging output

-v, --version print version info

Figure 11: pollycc command line options





5
L LV M - I R T O P O LY H E D R A L D E S C R I P T I O N

LLVM-IR has been designed for low level optimization. However, to hide unimportant
information and to focus on a high-level optimization problem a more abstract repre-
sentation is often better suited. The scalar evolution analysis is for example a higher
level representation used to abstract away the instructions needed to calculate a certain
scalar value. It has proved to be very convenient for the optimization of scalar computa-
tions. For memory access and loop optimizations an abstraction based on a polyhedral
model presented by Kelly and Pugh [29] is widely used. It hides imperative control flow
structures and allows to focus on the optimization of memory access patterns. Advanced
optimizers like CHiLL [15], LooPo [24] or Pluto [13] use such an abstraction to optimize
for data-locality and parallelism. An extended version of this polyhedral abstraction,
called the Z-polyhedra model was presented by Gupta and Rajopadhye [26].

Polly uses a similar extended polyhedral representation, but it uses a different way
to obtain it. In contrast to most optimizers, which generate a polyhedral representation
by analyzing a normal programming language, Polly analyzes a low level intermediate
representation. As a result, Polly is programming language independent and can trans-
parently support many constructs that would need special attention at the programming
language level. Graphite [48] takes a similar approach by analyzing Gimple, the GCC in-
termediate representation. Even though Graphite and Polly share the general approach,
there are notable differences between both. They arise directly from the differences of
the intermediate representations, but also from the fact that Polly introduced new tech-
niques to increase the amount of code that can be optimized and to decrease the amount
of dependences that can block possible transformations. Furthermore, Graphite does not
yet support the Z-polyhedra extension.

In this chapter we describe the polyhedral representation used and we explain how
it is derived from LLVM-IR. This includes a definition of the program parts that can be
described, an algorithm how to find such program parts and an explanation of how
to create their polyhedral representation. Furthermore, we present a set of preparing
transformations that we use to increase to amount of code that we detect, to remove
unneeded dependences and to simplify the implementation of Polly.1

1 The Polly front end was implemented in collaboration with Hongbin Zheng. His work was partially
founded by a Google Summer of Code 2010 scholarship where he was mentored by Tobias Grosser. His
work included code to verify if a region is a SCoP as well as code translating from LLVM-IR to the polyhedral
representation. He was also in charge of implementing the Polly automake and cmake build system as well
as parts of the test suite

35
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for (int i = 0; i < 100 + n; i = i + 4) {

A[i + 1] = B[i][3 * i] + A[i];

for (int j = i; j < 10 * i; j++)

A[i + 1] = A[i] + A[i - n];

}

Figure 12: A valid SCoP (validity defined on ASTs)

5.1 what can be translated?

Traditionally polyhedral optimizations work on the Static Control Parts (SCoPs) of a func-
tion. SCoPs are parts of a program in which all control flow and memory accesses are
known at compile time. As a result, they can be described in detail and a precise anal-
ysis is possible. Polly currently focuses on detecting and analysing SCoPs. Extensions to
support non-statically known control flow were presented by Benabderrahmane et al.
[12] and can be integrated in Polly, if needed.

SCoPs are normally defined on a high-level Abstract Syntax Tree (AST) representation
of a program. A common definition is the following. A part of a program is a SCoP if
the only control flow structures it contains are for-loops and if-conditions. For each loop
there exists a single integer induction variable that is incremented from a lower bound
to an upper bound by a constant stride. Upper and lower bounds are expressions which
are affine in parameters and surrounding loop induction variables, where a parameter
is any integer variable that is not modified inside the SCoP. If-conditions compare the
value of two affine expressions, but do not include anything else in their condition. The
only valid statements are assignments that store the result of an expression to an array
element. The expression itself consists of side effect free operators or function calls with
induction variables, parameters or array elements as operands. Array subscripts are
affine expressions in induction variables and parameters. An example of a SCoP can be
seen in Figure 12.

In contrast to a pattern matching approach on high-level ASTs, Polly uses a seman-
tic approach to detect SCoPs on LLVM-IR. In LLVM-IR high-level programming language
constructs have been lowered to basic instructions. Loops are for example expressed as
conditional jumps that form a control flow cycle, array accesses are expressed as pointer
manipulation and affine functions are split into a set of three-address operations. To
recover the necessary high-level information Polly uses existing LLVM analysis as pre-
sented in Section 2.3. A nice effect of recalculating high-level information is that it is
available, even if it was not expressed explicitly in the source code of a program. As a
result, Polly can not only optimize canonical programs that use specific programming
language constructs, but it can also work on any code that is semantically a SCoP. Fig-
ure 13 shows two SCoPs that can be detected by Polly easily. To illustrate their semantics
we provide two semantically equivalent versions that show the canonical form of the
SCoPs.
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i = 0;

do {

int b = 2 * i;

int c = b * 3 + 5 * i;

A[c] = i;

i += 2;

} while (i < N);

SCoP One

for (i = 0; i == 0 || i < N; i+=2)

A[11 * i] = i;

Semantics - SCoP One

int A[1024];

int *B = A;

while (B < &A[1024]) {

*B = 1;

++B;

}

SCoP Two

int A[1024];

for (i = 0; i < 1024 ; i++)

A[i] = 1;

Semantics - SCoP Two

Figure 13: Two valid SCoPs (validity defined based on semantics) and their canonical counter-
parts

5.2 how is a scop defined on llvm-ir?

In Polly we define a SCoP in LLVM-IR such that we can reuse the concepts developed for
high-level AST based SCoPs. Hence we detect parts of a program that are semantically
equivalent to a high-level language SCoP. A SCoP in LLVM-IR is a subgraph of the CFG,
which forms a simple region as defined in Section 2.3.3. In addition, it contains only well
structured control flow, has no unknown side effects and can generally be represented
in the polyhedral model. To ensure this, we verify the control flow in the region and
we check that the region does not contain any instructions that we cannot represent.
For most instructions this is simple, however two topics introduce some difficulties. The
possible aliasing of memory references and the need to derive affine access functions.

The control flow in a SCoP is a nest of structured conditional branches and natural
loops. Any other control flow instructions, irreducible control flow or infinite loops
are not allowed. We verify this on LLVM-IR by disallowing switch instructions, indirect
branch instructions and function returns. The only allowed control flow instructions are
conditional and unconditional branch instructions. To ensure that conditional branch
instructions do not form any unstructured code, they are only allowed in two places. At
the exit of a natural loop and at the head of a structured conditional branch. Natural
loops are detected by using the loop information as introduced in Section 2.3.2. Polly
allows only loops with a single exit edge, as other loops are difficult to model. Further-
more, structured conditional branches are enforced by verifying that each branch not
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exiting a loop is always the entry block of a refined region. This ensures that there are
no jumps into a conditional branch that bypass its header.

To model the control flow in a SCoP statically it is necessary to know the number of
times each loop is executed and to described this number with an affine expression.
The natural loop analysis together with the scalar evolution analysis introduced in Sec-
tion 2.3.4 can describe the number of loop iterations as a scalar evolution expression.
In case a certain loop cannot be analyzed and consequently its loop iteration count is
unknown, the loop can not be part of a SCoP. If the loop iteration count is available,
we need to check, if the scalar evolution expression describing it can be translated into
an affine expression. This is the case if it only consists of integer constants, parame-
ters, additions, multiplications with constants and add recurrences that have constant
steps. If parameters appear in the expression, we need to check that they are defined
outside of the SCoP and consequently do not change during the execution of the SCoP.
We currently do not allow minimum, maximum, zero extend, sign extend or truncate
expressions even though they can conceptually be represented in the polyhedral model.
A conditional branch is valid in a SCoP, if its condition is an integer comparison between
two affine expressions. Again, we use the scalar evolution analysis to get the scalar evo-
lution expressions for each operand of the comparison and check whether each can be
represented as an affine expression.

To decide whether an instruction is valid in a SCoP, we verify that either no unknown
side effects may happen or all side effects are known and can be represented in the poly-
hedral model. Computational instructions, vector management instructions and type
conversion instructions in LLVM-IR are side effect free and can consequently appear in
a valid SCoP. Function calls are allowed if LLVM provides the information they are side
effect free and always return. The same holds for compiler internal intrinsics. Exception
handling instructions on the other hand are always invalid, as they describe control flow
that we cannot model statically. Load and store instructions are the only instructions that
can access memory. We currently require that a memory access can be described by an
expression that is affine in the number of loop iterations and parameters. We check
this criterion by analyzing the scalar evolution of the pointer that defines the memory
location accessed. It must be affine following the conditions previously described. Addi-
tionally, the scalar evolution expression must contain a single parameter. This parameter
is used as the base address of the memory access and defines the array that is accessed.

Base addresses in a SCoP must reference distinct memory spaces or they must be
identical. A memory space in this context is the set of memory elements that can be
accessed by adding an arbitrary offset to the base address. In case this is ensured, we can
model the memory accesses as accesses to normal, non intersecting arrays. Fortunately,
LLVM provides a set of alias analyses as described in Section 2.3.5, which give us exactly
this information. In case two base addresses are analyzed as must alias, they are identical
and, in case they are analyzed as no alias, the memory spaces that can be reached from
them do not intersect. This may sound incorrect, as obviously a normal program has
just one large address space and consequently a base address plus an integer offset is
enough to reach any element in this space. However, programming languages like C
provide sufficient information to ensure in many cases that an address derived from
one base address cannot yield an address derived from another base address.
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The remaining restrictions are not conceptually necessary, but they simplify the overall
implementation of Polly. We require that every loop has a single, canonical induction
variable that starts at zero and is incremented with unit stride. Furthermore, any scalar
variable referenced must either be defined in the basic block it is used, it must be a loop
induction variable or it must be defined outside the SCoP. This ensures that no scalar
dependences exist between two different basic blocks. We later describe a preprocessing
pass that can remove scalars that are used across basic blocks.

5.3 the polyhedral representation of a scop

Polly uses an abstract polyhedral description to represent a SCoP. It is based on integer
sets and maps as described in Section 3.1.

A polyhedral SCoP S = (context, [statements]) is a tuple consisting of a context and
a list of statements. The context is an integer set that describes constraints on the pa-
rameters of the SCoP like the fact that they are always positive or that there are certain
relations between parameters.

A statement Stmt = (name, domain, schedule, [accesses]) is described in Polly by a
quadruple consisting of a name, a domain, a schedule and a list of accesses. It repre-
sents a basic block BBStmt in the SCoP and is the smallest unit that can be scheduled
independently.

The domain of a statement is a named integer set that describes the set of different
loop iterations in which a statement is executed. Its name corresponds to the name of
the statement. It has as many parameter dimensions as there are parameters in the SCoP.
The number of set dimensions is equal to the number of loops that contain BBStmt and
that are contained in the SCoP. Each set dimension describes one loop induction variable,
where the first dimension describes the outermost loop. An iteration vector is a single
element of the domain. Together with a statement it defines a statement instance.

The schedule of a statement is an integer map that assigns to each iteration vector a
multi-dimensional point in time. In the final code this time defines the execution order
of different statement instances. A statement instance (S1, v1) is executed before a state-
ment instance (S2, v2), if the iteration vector v1 is lexicographic smaller than the iteration
vector v2. It is valid to assign to an iteration vector no execution time. In this case the
corresponding statement instance is not executed at all. Assigning to one iteration vector
multiple execution times is at the moment not supported.

An access A = (kind, relation) is a pair that consists of the kind of the access and
the access relation. The kind is either read, write or may write. The access relation is an
integer map that maps from the domain of a statement into a named, possibly multi-
dimensional memory space. The name of the memory space is used to distinguish be-
tween accesses to distinct memory spaces. The access relation can be an affine function,
but also any other relation that can be expressed with integer maps. Hence, an access
may touch either a single element or a set of memory elements. If two accesses point to
memory spaces with different names.

Figure 14 shows an example of a high-level program represented as a SCoP. It shows
the domains, schedules and the accesses for each of the statements. For StmtA1 the
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void scop(long N) {

long i, j;

for (i = 0; i < N; i++) {

if (i <= N - 50)

A[5*i] = 1; // Stmt_A1

else

A[3*i] = 2; // Stmt_A2

for (j = 0; j < N; j++) {

B[i][2*j] = 3; // Stmt_B

}

}

}

Context = [N]→ {}

DStmtA1
= [N]→ {StmtA1 [i] : i ≥ 0∧ i ≤ N ∧ i ≤ N − 50}

SStmtA1
= {StmtA1 [i]→ Θ[0, i, 0, 0, 0]}

AStmtA1
= {StmtA1 [i]→ A[5i]}

DStmtA2
= [N]→ {StmtA2 [i] : i ≥ 0∧ i ≤ N ∧ i > N − 50}

SStmtA2
= {StmtA2 [i]→ Θ[0, i, 1, 0, 0]}

AStmtA2
= {StmtA2 [i]→ A[3i]}

DStmtB = [N]→ {StmtB[i] : i ≥ 0∧ i ≤ N ∧ j ≥ 0∧ j ≤ N}
SStmtB = {StmtB[i, j]→ Θ[0, i, 2, j, 0]}
AStmtB = {StmtB[i, j]→ B[i][2j]}

Figure 14: An example of a SCoP and its polyhedral representation.
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domain is one-dimensional as the statement is surrounded by only one loop. For this
loop the constraints i ≥ 0 and i ≤ N are added to the iteration space. In addition the
constraint i ≤ N − 50 is added as StmtA1 is also part of a conditional branch. The some
holds for StmtA2 , but as StmtA2 is part of the else-branch of the condition the reverted
constraint i > N− 50 is added to its domain. StmtB is surrounded by two loops, so a two-
dimensional domain is created that contains constraints for both loops. The schedules
of the statements map each statement iteration into a five-dimensional timescale, which
ensures the same execution order as in the original code. Furthermore, with AStmtA1

,
AStmtA2

and AStmtB three memory accesses are defined. The first two represent accesses
to a one-dimensional array A, the last one an access to a two-dimensional array B.

5.4 how to create the polyhedral representation from llvm-ir

A region of LLVM-IR code that forms a valid SCoP is translated into a polyhedral rep-
resentation by treating it conceptually as a high-level SCoP. We initialize the context of
the SCoP with an unconstrained integer set. This integer set has zero set dimensions
and as many parameter dimensions as there are parameters in the SCoP. To determine
the number of parameters the scalar evolution of all addresses used in load or store
instructions is calculated as well as a scalar evolution expression describing the iteration
count for every loop and one for each value used in a condition of a branch instruction.
The scalar evolution expressions are then scanned for the largest subexpressions, that
are not modified inside the region. These form the parameters of the SCoP. Polly does
not yet calculate relations between parameters, such that the context remains currently
unconstrained.

The statements of a SCoP are formed by the different basic blocks in the CFG. As,
besides memory accesses, basic blocks are side effect free, we only create polyhedral
statements for the basic blocks that contain at least one load or store instruction. For a
basic block BBStmt the name of a statement is a unique string set to the name of BBStmt.

The domain of a statement for BBStmt is created as follows. We add for each loop
surrounding BBStmt one constraint ivi ≥ 0 as its lower bound and another constraint
ivi ≤ ”number o f loop iterations”− 1 as its upper bound. Furthermore, if BBStmt is in a
conditional branch, we add the corresponding condition to the domain of the statement.
This is the case, if there exists a basic block BBCond that has a conditional statement,
dominates BBStmt and the immediate postdominator of BBCond post dominates BBStmt,
but is not BBStmt. The same property is used to understand, if a basic block that is part
of a loop is before or after the basic block exiting the loop. In case it is after the exiting
block, the exiting condition is also added to the domain to model the fact that BBStmt is
not executed during the last loop iteration.

The initial schedule for each statement has as many input dimensions Ii as the domain
has set dimension and it has 2d + 1 output dimensions Oo, where d is the maximal loop
depth in the SCoP. It contains a set of constraints Ii = O2i+1 that set the values of the odd
output dimensions to the values of the input dimensions. These constraints enforce for
different instances of a single statement the same execution order as in the original loop
nest. To ensure the correct execution order between instances of different statements the



42

even dimensions are used to define the textual order of the statements. The value at
dimension 2l is determined by topologically sorting the elements surrounded by exactly
l loops. These can either be basic blocks or control flow regions that represent loops
at level l + 1. For all basic blocks contained in loop regions at level l + 1 the value of
dimension 2l is set to the value assigned to the loop region. In case no loop exists to
define a dimension, the dimension is set to zero.

To calculate the accesses of a statement Polly analyzes all load and store instructions.
Load instructions are represented as read accesses and store instructions as write ac-
cesses. For each load and store instruction we extract the scalar that defines the memory
address and retrieve its scalar evolution. The scalar evolution expression is then trans-
lated into an affine expression. Here we use the parameter in the scalar evolution expres-
sion as the base address of the memory access. This base address is also used to name
the memory space which ensures that accesses to different parts of the memory are
modeled as accesses to different arrays. Polly currently only creates single-dimensional
access functions. This is sufficient to represent single-dimensional arrays, but also multi-
dimensional accesses, with statically know size. Support for multi-dimensional variable-
size arrays is planned.

Figure 15 shows the steps from C code over LLVM-IR to our polyhedral representation.
It starts with C code that is then lowered to a set of basic blocks. These blocks contain
LLVM-IR instructions that calculate loop bounds, induction variables and array access
functions. For instance the address of the memory accessed in StmtB is calculated and
the result of this calculation in stored in the virtual register %scevgep. To derive the
access function from %scevgep we calculate the scalar evolution expression {@B,+, (2 ∗
sizeo f ( f loat))}<%bb1>, which describes the memory address accessed. This expression
is then split into a base element B and a single dimensional access function 2× i, where
i is a virtual induction variable counting the number of loop iterations. As %indvar is a
canonical induction variable, its value is equivalent to i. To calculate the domain of the
statement we call the scalar evolution analysis and ask for the number of times the loop
back edge is executed. In this example the resulting expressing is the integer constant 99.
To derive the number of loop iterations we simply add one. With the knowledge, that
canonical induction variables always start at zero, we get the domain {StmtB[i] : 0 ≤ i <
100}.

5.5 how to detect maximal scops

Polly uses a structured approach to detect a set of maximal SCoPs. In general a func-
tion may contain various SCoPs which overlap or are nested. Optimizing overlapping or
nested SCoPs is difficult. A SCoP that was already optimized by Polly, can sometimes not
be recognized again or, in case it can, code that was already optimized will be optimized
again. To avoid such redundant calculations and to maximize the space of possible trans-
formations inside a SCoP, we detect SCoPs that are maximal and that cannot be enlarged
further.

Polly uses the region tree described in Section 2.3.3 to detect maximal SCoPs. The first
step is to find a set of maximal canonical regions that are SCoPs. This is done by walking
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void scop() {

for (i = 0; i < 100; i++)

B[2*i] = 3; // Stmt_B

}

define void @scop() {

bb:

br label %bb1

bb1: ; Basic block of Stmt_B

%indvar = phi i64 [ 0, %bb ], [ %indvar.next, %bb1 ]

; %indvar -> {0,+,1}<%bb1>

%tmp = mul i64 %indvar, 2

%scevgep = getelementptr [100 x float]* @B, i64 0, i64 %tmp

; %scevgep -> {@B,+,(2 * sizeof(float))}<%bb1>

store float 3.000000e+00, float* %scevgep, align 8

%indvar.next = add i64 %indvar, 1

%exitcond = icmp eq i64 %indvar.next, 100

br i1 %exitcond, label %bb2, label %bb1

bb2:

ret void

}

; Determining loop execution counts for: @scop

; Loop %bb1: backedge-taken count is 99

; Loop %bb1: max backedge-taken count is 99

DStmtB = [N]→ {StmtB[i] : 0∧ i < 100}
SStmtB = {StmtB[i]→ Θ[0, i, 0]}
AStmtB = {StmtB[i]→ B[2i]}

Figure 15: Translation from C over LLVM-IR to polyhedral shown on a simple example
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Figure 16: Region based SCoP detection

down the region tree. Starting from the largest possible canonical region we descend into
the tree. If a region forms a SCoP, we add it to the set of valid SCoPs and do not further
descend in this part of the region tree. In case a region is no valid SCoP, we continue
the search by examining its children. After the walk on the region tree, we have a set of
maximal, canonical regions that form valid SCoPs. Yet, a SCoP may also be described by
a non-canonical region. To get the set of maximal, not necessarily canonical regions that
form SCoPs we enlarge the canonical regions by merging them with subsequent regions.
This is done as long as the resulting regions still form valid SCoPs. When no region can
be further extended, we have a set of maximal SCoPs.

Figure 16 shows in steps how we detect the set of maximal SCoPs in a function. We
start at the outermost region A. It does not form a valid SCoP, as it contains basic block
two, which is marked as difficult. We than check its child region, region B. It is also
invalid, as it still contains basic block two. However, when we try the children of B,
C1 and C2, we successfully find two regions that are valid SCoPs. These are the largest
canonical regions that form valid SCoPs. To further increase their size we start to merge
regions. We begin with C1 and merge basic block four to create C1′. This is valid as
basic block four forms a (very simple) region. Next, we merge region C2. The resulting
C1′′ now contains basic block three, four and five. It cannot be enlarged further, as there
exists no region that starts at basic block 6. Even basic block 6 forms no region, as it has
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two exit edges, that terminate at different basic blocks. Hence, for our example the set
of maximal SCoPs is {C1′′}.

5.6 preparing transformations

A set of preparing transformations is necessary to increase the coverage of Polly. Polly’s
front end is on purpose kept simple and often handles LLVM-IR that is in a canonical form.
To ensure that LLVM-IR which does not match this form can be optimized, the LLVM-IR

of a program is canonicalized before it is passed to the SCoP detection. Canonicalization
is done by a set of transformations already available in LLVM and some transformations
especially developed for Polly.

5.6.1 LLVM canonicalization passes

The set of LLVM transformation and canonicalization passes used in Polly is derived
from the first half of the passes used in clang -O3. It contains a basic alias analysis,
memory to register promotion, simplification of library calls, instruction simplification,
tail call elimination, loop simplification, loop closed ssa form calculation, loop rotation,
loop unswitch, and induction variable canonicalization. The most important passes have
been described in Section 2.4. Furthermore, a pass to transform refined regions into
simple regions is used. This pass is conceptually not necessary, but it simplifies the
implementation of Polly.

5.6.2 Create Independent Basic Blocks

The independent block pass in Polly removes unnecessary inter basic block dependences
introduced by scalar values and creates basic blocks that can be freely scheduled. Fur-
thermore, the independent block pass promotes scalar dependences that cannot be re-
moved into loads and stores to single element arrays. This ensures that the only scalar
dependences that remain are references to induction variables or parameters. As induc-
tion variables and parameters are replaced during code generation, Polly does not need
to perform any special handling for scalar dependences. All basic blocks can be moved
freely during code generation.

Unnecessary dependences are regularly introduced due to calculations of array in-
dexes, branch conditions or loop bounds which are often spread over several basic
blocks. To remove such dependences, we duplicate all trivial scalar operations in each
basic block. This means, if an operation does not read or write memory and does not
have any side effects, its results are not transfered from another basic block, but it is en-
tirely recalculated in each basic block. The only exceptions are PHI-Nodes, parameters
and induction variables, which are not touched at all.

The recalculation of scalar values introduces a notable amount of redundant code and
would normally slow down the code a lot. However, as will be later shown in Section 8.2,
scheduling the normal LLVM cleanup passes after Polly is sufficient to remove these
redundant calculations.
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Figure 17 shows a SCoP that has several scalar dependences from bb1 to bb2, bb3, bb4

and bb5 which block possible transformations. They are introduced through the scalar
variables %scevgepA, %scevgepB, %i.0 and %valAdd. By applying the independent block
pass we move trivial calculations directly into bb2, bb3 and bb4. As can be seen in Fig-
ure 18, this introduces redundant calculations for %scevgepA.1 and %scevgepA.2. How-
ever, the updated basic blocks now only depend on the value of the induction variable.
The scalar dependency introduced by %valAdd cannot be removed by moving its calcu-
lation to bb5, as the load from %scevgepB cannot be moved. Consequently this scalar
dependency cannot be eliminated, but it is promoted to a memory dependency. Overall
the independent block pass removes all scalar dependences and it ensures that only the
dependences that cannot be eliminated will show up in the final memory dependency
graph.
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CFG for 'foo' function

bb:
 br label %bb1

bb1: 
 %indvar = phi i64 [ %indvar.next, %bb6 ], [ 0, %bb ]
 %scevgepA = getelementptr [1024 x i32]* @A, i64 0, i64 %indvar
 %scevgepB = getelementptr [1024 x i32]* @B, i64 0, i64 %indvar
 %i.0 = trunc i64 %indvar to i32
 %exitcond = icmp ne i64 %indvar, 1024
 %val = load i32* %scevgepB
 %valAdd = add i32 %val, 15
 br i1 %exitcond, label %bb2, label %bb7

T F

bb2: 
 %tmp = icmp sle i32 %i.0, 512
 br i1 %tmp, label %bb3, label %bb4

T F

bb7: 
 ret void

bb3: 
 store i32 1, i32* %scevgepA
 br label %bb5

bb4: 
 store i32 2, i32* %scevgepA
 br label %bb5

bb5: 
 store i32 %valAdd, i32* %scevgepB
 br label %bb6

bb6: 
 %indvar.next = add i64 %indvar, 1
 br label %bb1

Figure 17: Simple SCoP before independent block pass
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Figure 18: Simple SCoP after independent block pass



6
P O LY H E D R A L O P T I M I Z AT I O N S

After showing how SCoPs are represented in Polly, we describe how they can be opti-
mized. Basically there are two ways to optimize a SCoP. One is changing the execution
order of the statement instances in the SCoP, the other is changing the memory locations
they access. Polly currently focuses on changes of the execution order. Classical loop
transformations like interchange, tiling, fusion and fission but also advanced transfor-
mations [13] change the execution order. Support for optimizations that change data
accesses as proposed by Kandemir et al. [28] and Clauss and Meister [16] is planned.

In Polly changes to the execution order are expressed by modifying the schedules
of the statements. Access relations and iteration domains are read-only. This seems to
be obvious, as only the schedule is defining the execution times. However, previous
approaches as for example presented by Girbal et al. [23] had difficulties to express
transformations like tiling or index set splitting without changes to the domain. Those
difficulties do not arise in Polly, as the integer maps used to define the schedules are
expressive enough to describe those transformations.

There are two ways the schedules can be changed. Either they can be replaced by
schedules that are recalculated from scratch or the schedules can be modified by a set of
transformations. In Polly a transformation is an integer map that maps from the original
execution time to a new execution time. It is performed by applying it to the schedules
of the statements that should be transformed. Two transformations can be composed by
applying the second on the range of the first.

In this Chapter we describe how classical loop transformations can be expressed, how
optimizations can be applied manually, how external optimizers can be connected and
how dependency analysis is performed.

6.1 transformations on the polyhedral representation

In this section we present how classical loop transformations like interchange, fission,
strip mining, unroll and jam or loop blocking can be expressed as scheduling trans-
formations. Furthermore, we show how partial transformations that happen commonly
after index set splitting [25] can be expressed.

49
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interchange

for (i = 0; i < N; i++)

for (j = 0; j < M; j++)

Stmt(i,j);

DStmt = [N, M]→ {Stmt[i, j] : 0 ≤ i < N ∧ 0 ≤ j < M}
SStmt = {Stmt[i, j]→ Θ[i, j]}

A statement Stmt surrounded by two loops is described by a two-dimensional domain
DStmt and a schedule SStmt, which maps from this domain into a two-dimensional time.
To interchange the two loops we define a transformation TInterchange that maps from
the original time to a new time, with the dimensions of the new time being flipped.
Applying TInterchange on SStmt yields a new schedule S ′Stmt. This new schedule leads to
code that has interchanged loops in respect to the original code.

TInterchange = {Θ[s0, s1]→ Θ[s1, s0]}
S ′Stmt = SStmt ◦ TInterchange

= {Stmt[i, j]→ Θ[j, i]}

for (j = 0; j < M; j++)

for (i = 0; i < N; i++)

Stmt(i,j);

Following this concept an interchange of two loops in a domain with n loop dimen-
sions can be defined or even more general, an arbitrary transposition of loop dimensions.

fission

for (i = 0; i < N; i++)

Stmt_A(i);

for (j = 0; j < M; j++)

Stmt_B(i,j);

DStmtA = [N, M]→ {StmtA[i] : 0 ≤ i < N}
DStmtB = [N, M]→ {StmtB[i, j] : 0 ≤ i < N ∧ 0 ≤ j < M}
SStmtA = {StmtA[i]→ Θ[i, 0, 0]}
SStmtB = {StmtB[i, j]→ Θ[i, 1, j]}

An imperfectly nested set of loops containing two statements StmtA and StmtB can be
split into two independent loop nests. For this we introduce a new scalar time dimen-
sion that maps both statements to two hyperplanes which intersect the new dimension
at distinct points. In our example this is expressed by the transformations TFissionFirst

and TFissionLast . Applying TFissionFirst to SStmtA and TFissionLast two SStmtB yields to two new
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schedules S ′StmtA and S ′StmtB . They lead to code to execute the two statements in two
distinct loop nests.

TFissionFirst = {Θ[s0, s1, s2]→ Θ[0, s0, s1, s2]}
TFissionLast = {Θ[s0, s1, s2]→ Θ[1, s0, s1, s2]}
S ′StmtA = SStmtA ◦ TFissionFirst

= {StmtA[i]→ Θ[0, i, 0, 0]}
S ′StmtB = SStmtB ◦ TFissionLast

= {StmtB[i, j]→ Θ[1, i, 1, j]}

for (i = 0; i < N; i++)

Stmt_A(i);

for (i = 0; i < N; i++)

for (j = 0; j < M; j++)

Stmt_B(i,j);

Similarly it is possible to split loop nests starting at a loop depth of n. In this case the
new scalar dimension is not inserted at the first time dimension (counting from one),
but at the time dimension preceding the loop dimension that should be split.

strip mining

for (i = 0; i < N; i++)

Stmt(j);

DStmt = [N]→ {Stmt[i] : 0 ≤ i < N}
SStmt = {Stmt[i]→ Θ[i]}

To execute a single loop section wise it can be transformed into a nest of two loops by
applying strip mining. This transformation is not profitable on its own, but it is the base
for transformations like partial unrolling, loop blocking or unroll and jam. In our exam-
ple we want to execute sections of four loop iterations. Each section should be numbered
by an integer t where t mod 4 = 0 holds and it should enumerate the iterations from t
to t + 3. This is specified by transformation TStripMine. Applying TStripMine to SStmt yields
to the new schedule S ′Stmt and generates the expected loop nest.

TStripMine = {Θ[s0]→ Θ[t, s0] : t mod 4 = 0∧ t ≤ s0 < t + 4}
S ′Stmt = S ′Stmt ◦ TStripMine

= {Stmt[s0]→ Θ[t, s0] : t mod 4 = 0∧ t ≤ s0 < t + 4}

for (ii = 0; ii < N; ii+=4)

for (i = ii; i < min(N, ii+4); i++)

Stmt(i)
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unroll-and-jam

for (i = 0; i < N; i++)

for (j = 0; j < M; j++)

Stmt(i,j)

Context = [N, M]→ {[] : N mod 4 = 0}
DStmt = [N, M]→ {Stmt[i, j] : 0 ≤ i < N ∧ 0 ≤ j < M}
SStmt = {Stmt[i, j]→ Θ[i, j]}

Unroll-and-jam is a transformation that (partially) unrolls a non-innermost loop and
then subsequently fuses the created loop nests back together. We express this as a polyhe-
dral transformation that creates an innermost loop with a constant number of iterations.
This loop can then be unrolled by a simple code generation pass or it can be transformed
to SIMD code, if parallel execution is valid. In case the unroll factor does not divide the
number of original loop iterations in whole numbers, some preparing transformations
are necessary to apply unroll and jam.

To perform the loop transformation part of unroll and jam we create the transforma-
tions TStripMine and TInterchange which are conceptually already known. Combining both
yields to the transformation TUnrollAndJam, which applied to SStmt produces the schedule
S ′Stmt and generates the expected loop nest.

TStripMine = {Θ[s0, s1]→ Θ[t, s0, s1] : t mod 4 = 0∧ t ≤ s0 < t + 4}
TInterchange = {Θ[s0, s1, s2]→ Θ[s0, s2, s1]}
TUnrollAndJam = TStripMine ◦ TInterchange

= {Θ[s0, s1]→ Θ[t, s1, s0] : t mod 4 = 0∧ t ≤ s0 < t + 4}
S ′Stmt = SStmt ◦ TUnrollAndJam

= {Stmt[i, j]→ Θ[t, j, i] : t mod 4 = 0∧ t ≤ i < t + 4}

for (ii = 0; ii < N; ii+=4)

for (j = 0; j < M; j++)

for (i = ii; i < ii+4; i++)

Stmt(i,j);

loop blocking

for (i = 0; i < N; i++)

for (j = 0; j < M; j++)

Stmt(i,j);

DStmt = [N, M]→ {Stmt[i, j] : 0 ≤ i < N ∧ 0 ≤ j < M}
SStmt = {Stmt[i, j]→ Θ[i, j]}
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Loop blocking is a transformation that can increase data locality by executing a loop
nest block wise. It can be represented by combining the transformations TStripMineOuter ,
TStripMineInner and TInterchange to a single transformation TBlock.

TStripMineOuter = {Θ[s0, s1]→ Θ[t, s0, s1] : t mod 4 = 0∧ t ≤ s0 ≤ t + 3}
TStripMineInner = {Θ[s0, s1, s2]→ Θ[s0, s1, t, s2] : t mod 4 = 0∧ t ≤ s2 ≤ t + 3}
TInterchange = {Θ[s0, s1, s2, s3]→ Θ[s0, s2, s1, s3]}
TBlock = TStripMineOuter ◦ TStripMineInner ◦ TInterchange

= {Θ[s0, s1]→ Θ[t0, t1, s0, s1] : t0 mod 4 = 0∧ t0 ≤ s0 < t0 + 4

∧ t1 mod 4 = 0∧ t1 ≤ s1 < t1 + 4}
S ′Stmt = SStmt ◦ TBlock

= {Stmt[i, j]→ Θ[ti, tj, i, j] : ti mod 4 = 0∧ ti ≤ i < ti + 4

∧ tj mod 4 = 0∧ tj ≤ j < tj + 4}

for (ii = 0; ii < M; ii+=4)

for (jj = 0; jj < N; jj+=4)

for (i = ii; i < min(M, ii+4); i++)

for (j = jj; j < min(N, jj+4); j++)

Stmt(i,j);

partial transformations - index set splitting

for (i = 0; i <= 2 * N; i++)

A[i] = A[2 * N - 1]; // Stmt

DStmt = [N]→ {Stmt[i, j] : 0 ≤ i ≤ N}
SStmt = {Stmt[i]→ Θ[i]}

In some cases it is beneficial to split the iteration domain of a statement and to create
for different parts of the iteration domain different schedules. Such a transformation is
known as index set splitting as presented by Griebl et al. [25]. To represent it in Polly,
there is no need to create two separate statements. Instead we define a transformation
that applies only to a part of the index space. We call such a transformation partial
transformation.

In our example we have a single loop that cannot be executed in parallel because
of dependencies between the lower and the upper half of the iteration space. However,
if we apply loop fission and split the lower and the upper part of the iteration space
into two separate loops, two fully parallel loops can be generated. To describe this we
define two transformations, that generate a new time dimension on which we split the
iterations. TFissionFirst maps the lower part of the iteration space to an earlier time in this
dimension, and TFissionLast maps the upper part of the iteration space to a later time in
this dimension. Both can be merged to a single transformation TFissionCombined , which is
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subsequently applied to SStmt. This results in the new schedule S ′Stmt which produces
the expected parallel loops.

TFissionFirst = [N]→ {Θ[s0]→ Θ[0, s0] : s0 ≤ N}
TFissionLast = [N]→ {Θ[s0]→ Θ[1, s0] : s0 > N}

TFissionCombined = TFissionFirst ∪ TFissionLast

= [N]→ {Θ[s0]→ Θ[0, s0] : s0 ≤ N; Θ[s0]→ Θ[1, s0] : s0 > N}
S ′Stmt = SStmt ◦ TFissionCombined

= [N]→ {Stmt[i]→ Θ[0, i] : i ≤ N; Θ[i]→ Θ[1, i] : i > N}

# parallel

for (i = 0; i <= N; i++)

A[i] = A[2 * N - 1]; // Stmt

# parallel

for (i = N+1; i <= 2 * N; i++)

A[i] = A[2 * N - 1]; // Stmt

6.2 external optimizers - jscop

Polly can export its internal polyhedral representation and allows to reimport an opti-
mized version of it. As a result, new optimizations can be tested without any knowledge
about compiler internals. It is sufficient to analyze and optimize an abstract polyhedral
description. This facility can be used to try optimizations manually, but also to connect
existing optimizers with Polly or to develop new research prototypes.

Polly supports two exchange formats. The first one is the scoplib format1, as currently
used by Clan, Candl and Pluto [13]. The second one is called JSCoP and is specific
to Polly. The main reason for defining our own exchange format is that scoplib is not
expressive enough for Polly’s internal representation. Scoplib does not allow partial
schedules or memory accesses that touch more than one element at a time, and it can-
not represent existentially quantified variables. In case such constructs appear in the
description of a SCoP, it is not possible to derive a valid scoplib file. JSCoP is a file for-
mat based on JSON [17]. It contains a polyhedral description of a SCoP, that follows the
one used in scoplib, but it is more general. In case a tool wants to use JSCoP, but works
with a less generic definition, we propose to detect and ignore unsupported SCoPs or to
take conservative assumption. To read or write JSCoP files one of the many available
JSON libraries can be used.

A JSCoP is defined based on JSON elements. There are three types of elements used.
The first one is a string of characters written as ”sometext”, the second one is a list of
elements [e0, e1, ..., en] and the third one is a map {k0 : e0, k1 : e1, ..., kn : en}, that maps

1 http://www.cse.ohio-state.edu/~pouchet/software/pocc/download/modules/scoplib-0.2.0.tar.gz

http://www.cse.ohio-state.edu/~pouchet/software/pocc/download/modules/scoplib-0.2.0.tar.gz
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{

"name": "body => loop.end",

"context": "[N] -> { []: N >= 0 }",

"statements": [{

"name": "Stmt_body",

"domain": "[N] -> { Stmt_body[i0, i1, i2] : 0 <= i0, i1, i2 <= N }",

"schedule": "[N] -> { Stmt_body[i0, i1, i2] -> scattering[i0, i1, i2] }",

"accesses": [{

"kind": "read",

"relation": "[N] -> { Stmt_body[i0, i1, i2] -> MemRef_C[i0][i1] }"

},

{

"kind": "read",

"relation": "[N] -> { Stmt_body[i0, i1, i2] -> MemRef_A[i0][i2] }"

},

{

"kind": "read",

"relation": "[N] -> { Stmt_body[i0, i1, i2] -> MemRef_B[i1][i2] }"

},

{

"kind": "write",

"relation": "[N] -> { Stmt_body[i0, i1, i2] -> MemRef_C[i0][i1] }"

}]

}]

}

Figure 19: JSCoP file of a matrix multiplication kernel

from strings to elements. A JSCoP file may also contain integer sets and maps. They are
stored as strings using the textual representation of isl.

The root element in the JSCoP file describes a single SCoP. It is a map containing the
three elements name, context and statements. name is a string defining the name of the
SCoP, context is an integer set describing the set of valid parameters and statements is
a list of the statements as subsequently defined. context has zero set dimensions and as
many parameter dimensions as there are parameters in the SCoP.

A statement is a map containing four elements called name, domain, schedule and
accesses. name is a unique string that identifies a statement and domain is the itera-
tion space of the statement. The iteration space describes the set of statement instances
that will be executed. It is represented as an integer set, which has as many param-
eter dimensions as the context of the SCoP and as many set set dimensions as there
are loops that surround the statement. The space defined by domain is named with the
name of the statement. schedule is a map that defines for each statement instance a
multi-dimensional execution time. It has as many input dimensions as domain has set
dimension and an arbitrary number of output dimensions Yet, all schedules in the SCoP
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must have the same number of output dimensions. The name of the output space is
’scattering’. accesses is a list of the memory accesses of the statement.

A memory access is a map containing two elements called type and relation. The
type can be read, write or maywrite. It is read if the statement must or may read this
memory. It is write if the statement must write to this memory and it is maywrite if the
statement may or may not write to this memory. If a statement reads and writes identical
memory, two accesses are generated, one for the read and one for the write access.
relation defines the memory accessed. It is a mapping from the statement instance
executed to the memory element accessed. The input space of the access relation has
the same number of dimensions as the domain of the statement and is also identically
named. The output space defines the array elements accessed. It has a unique name
for each distinct array accessed in the SCoP and describes a possibly multi-dimensional
space of array elements.

All data structures are read-only, except the schedules of the statements. All transfor-
mations are expressed by modifying the schedules of the statements. To support array
expansion or memory access transformations we plan to also allow updates of the access
relations. Figure 19 shows an example of a JSCoP file of a matrix multiplication kernel.

6.3 dependency analysis

Polly provides an advanced dependency analysis implemented on top of the isl pro-
vided data flow analysis. The isl data flow analysis is based on techniques developed by
Feautrier [20] with influences from Pugh and Wonnacott [39]. It includes full support for
existentially quantified variables, can be restricted to non-transitive dependences and al-
lows full access relations as well as may-write accesses. We believe the last two features
do no exist in most implementations of data-dependency analyses.

Polly currently uses the dependency analysis to calculate read-after-write, write-after-
write and write-after-read dependences. The dependences are calculated from the poly-
hedral description. We pass the access relations and types, the domains and the sched-
ules of all statements in the SCoP to the isl data flow analysis. isl then calculates exact,
non-transitive data flow dependences as well as the statement instances that do not have
any source and consequently depend on the state the memory has before the execution
of the SCoP.

The following code is a simple matrix multiply kernel:

for (i = 0; i < 100; i++)

for (j = 0; j < 100; j++)

for (k = 0; k < 100; k++)

C[i][j] += A[i][k] + B[k][j];
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D = {Stmt[i, j, k] : 0 ≤ i, j, k < 100}
AReadA = {Stmt[i, j, k]→ A[i, k]}
AReadB = {Stmt[i, j, k]→ B[k, j]}
AReadC = {Stmt[i, j, k]→ C[i, j]}
AWriteC = {Stmt[i, j, k]→ C[i, j]}

S = {Stmt[i, j, k]→ [i, j, k]}

Our dependency analysis returns for this kernel a single read-after-write dependency
{StmtC[i, j, k] → StmtC[i, j, k + 1] : 0 ≤ i, j < 100 ∧ 0 ≤ k < 99}. The dependency only
exists from one iteration to the immediately following iteration. Even though iteration
[0, 0, 0] writes into C[0][0] and iteration [0, 0, 10] reads from the same element C[0][0], this
dependency is not reflected. The reason is that there exist intermediate writes for exam-
ple at [0, 0, 9] that overwrite the value of C[0][0]. Dependences that are hidden by such
intermediate writes are not calculated to keep the number of dependences low and to
allow maximal flexibility in terms of possible code transformations. Another interesting
point is that the iterations [∗, ∗, 0] are not target of any dependency. This is because the
initial write into C is not part of the SCoP. The same is true for A and B which are also not
initialized in the SCoP. Hence the dependency analysis provides additionally the follow-
ing set of statement-access combinations that must not have any source {StmtC[i, j, 0] :
0 ≤ i, j < 100; StmtA[i, j, k] : 0 ≤ i, j, k < 100; StmtB[i, j, k] : 0 ≤ i, j, k < 100; }. For this ker-
nel the analyses calculates write-after-write and write-after-read dependences with their
corresponding no-source-sets that are similar to the previously shown read-after-write
dependences.

The example we have seen, did not contain any may-write accesses and Polly itself
does currently neither generate may-write accesses nor does it create accesses to ranges
of memory. Still, we want to explain these features, as they are supported by the isl de-
pendency analysis and they will be soon integrated in Polly. Looking at Figure 20 we
see that StmtTwo has an array subscript that is calculated by a function call to f oo(). The
actual function calculated by f oo() is unknown such that it is impossible to derive an
affine access function. However, if we assume f oo() is side-effect free, we can conserva-
tively assume that in StmtTwo the whole array C may be written. We model this as the
may-write access AMayWriteStmtTwo = {StmtTwo[i] → A[o]} that accesses an unlimited
range of memory (There are no restrictions on o). The dependency analysis can now cal-
culate the write accesses that have dependences to the read in StmtThree. The result of
this calculation are two maps. One for the must-dependences and another for the may-
dependences. The must-dependences are {StmtOne[i] → StmtThree[i] : 50 ≤ i < 100}
as for i >= 50 the only write that could have defined the value of C[i] is the one at Stm-
tOne. StmtTwo is for i >= 50 not executed. The may-dependences are {StmtOne[i] →
StmtThree[i] : 0 ≤ i < 50; StmtOne[i] → StmtTwo[i, j] : 0 ≤ i < 100 ∧ i ≤ j < 50}
as for these statement instances it is unknown which dependency will at runtime de-
fine the value that is actually read. By using two types of dependences we can provide
conservative may-dependences if approximations are needed, but can use exact must-
dependences in all possible cases. This ensures a high SCoP coverage and simultaneously
maximal flexibility in terms of transformations.
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for (i = 0; i < 100; i++)

C[i] = 0; // StmtOne

for (j = i; j < 50; j++)

C[foo(j)] = j; // StmtTwo

... = C[i]; // StmtThree

DStmtOne = {StmtOne[i] : 0 ≤ i < 100}
DStmtTwo = {StmtTwo[i, j] : 0 ≤ i < 100∧ i ≤ j < 50}
DStmtThree = {StmtThree[i] : 0 ≤ i < 100}

AWriteStmtOne = {StmtOne[i]→ A[i]}
AMayWriteStmtTwo = {StmtTwo[i]→ A[o]}
AReadStmtThree = {StmtThree[i]→ A[i]}

SStmtOne = {StmtOne[i]→ [i, 0]}
SStmtTwo = {StmtTwo[i, j]→ [i, 1, j]}
SStmtThree = {StmtThree[i]→ [i, 2]}

Figure 20: MayWrites and accesses to memory ranges
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P O LY H E D R A L D E S C R I P T I O N T O L LV M - I R

In Polly transformations are applied on the polyhedral description of a SCoP. The LLVM-

IR of a program remains unchanged throughout a longer sequence of transformations.
Only after of all transformations have been applied on the polyhedral description, LLVM-

IR reflecting this possibly changed description is regenerate.
This section describes in two parts how we regenerate LLVM-IR. The first part describes

how we retrieve a generic AST that describes a program as defined in the polyhedral
representation. The second part describes how to use this AST to generate optimized
LLVM-IR. We discuss the generation of sequential code, but also techniques to detect
parallelism and to generate optimized OpenMP or SIMD code.

7.1 generation of a generic ast

The first step from the polyhedral representation of a SCoP back to a program described
in LLVM-IR is to generate a loop structure which enumerates all statement instances in
the order described by the schedule. This loop structure is first described by a generic
AST that is not yet related to LLVM-IR.

Bastoul [11] developed with the Chunky Loop Generator (CLooG) an efficient code gen-
erator, that solves exactly this problem. It uses an improved version version an algorithm
introduced by Quilleré et al. [41]. Further improvements that include for example sup-
port for existentially quantified variables, partial schedules as well as code generation
that uses exact Z-polyhedra were introduced by Verdoolaege [50] who also contributed
the CLooG isl backend.

Polly itself offloads the calculation of the generic AST completely to CLooG.

7.2 analyses on the generic ast

For some cases analyses on the generic AST are necessary to derive detailed information.
The polyhedral representation defines the execution order of the statement instances
in a SCoP. Yet, it does not define the exact control flow structures used to ensure this
execution order. Different ASTs can be generated for the same SCoP depending on the
implementation of the code generator or the chosen optimization goals. Listing 1 shows
two different ASTs (represented as C code), that are both generated from the same SCoP.
The first one has minimal code size, as it does not contain duplicated statements. The
second one has minimal branching with all conditions removed from the loop bodies.
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/* SCoP 1 */

for (i = 0; i <= N; i++) { // Loop L1

if (i <= 10)

B[0] += i;

A[i] = i;

}

/* SCoP 2 */

for (i = 0; i <= min(10, N); i++) { // Loop L2.1

B[0] += i;

A[i] = i;

}

for (i = 11; i <= N; i++) // Loop L2.2

A[i] = i;

Listing 1: Two different ASTs generated from the same SCoP.

In general, an analysis that derives information on the created AST is imprecise if per-
formed before code generation. Decisions taken during code generation are not available
to an early analysis such that always the complete scattering space needs to be consid-
ered instead of the actual subspaces enumerated by the individual loops. Loop L2.2 in
Listing 1 can for example be executed in parallel, but an analysis that does not take code
generation into account cannot derive this.

The code in Listing 1 is generated from the following SCoP:

DA = [N]→ {A[i] : 0 ≤ i ≤ N}
SA = [N]→ {A[i]→ Scattering[i]}
DB = [N]→ {B[i] : 0 ≤ i ≤ 10}
SB = [N]→ {B[i]→ Scattering[i]}

To perform a precise analysis we extract information on the subset of the scattering
space that is enumerated by each loop and include it in the analysis we perform. For
example for the loops in Listing 1 the following information is added:

EL1 = [N]→ {Scattering[i] : 0 ≤ i ≤ N}
EL2.1 = [N]→ {Scattering[i] : 0 ≤ i ∧ i ≤ N ∧ i ≤ 10}
EL2.2 = [N]→ {Scattering[i] : 11 ≤ i ≤ N}

Even though this information is obtained after code generation, it is not obtained by
reparsing the generated code. Instead, the polyhedral information is exported directly
from the code generator. This is different to approaches taken for example in PoCC where
the AST is reparsed to derive the necessary polyhedral information.
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7.2.1 Detection of Parallel Loops

Polly detects loops that can be executed in parallel to automatically generate OpenMP or
SIMD code. As explained in the previous section this analysis is performed after code
generation, to detect all forms of parallelism. This includes parallelism that existed in
the original code, parallelism that was exposed by transformations through a changed
schedule and parallelism that was introduced during generation of the AST. Even though
external optimizers could provide information on parallelism, Polly does intentionally
not rely on any external information. As a result Polly can ensure that all introduced
parallelism maintains the correctness of the program.

Listings 2 and 3 show code where the instances of two statements are either enumer-
ated in a single loop nest or in two separate ones. Which code is generated depends on
the schedule of the statements. In case of a single loop nest no loop can be executed in
parallel, as the i- and j loop carry dependences of S1 and the k-loop carries dependences
of S2. However, in the case of two separate loop nests, each loop nests contains loops
that do not carry any dependency. In the first loop nest these are the i- and j-loop and
in the second one this is the k-loop. All loops that do not carry any dependency can be
executed in parallel.

To decide if a certain loop, e.g. the innermost loop in the second loop nest of Listing 3,
is parallel we check if it carries any dependences. We start from the set of dependences
as calculated in Chapter 6.3. For our example these are described by the union map D =

{S1[i, j, k] → S1[i, j, k + 1]; S2[i, j, k] → S2[i, j + 1, k]; S2[i,−1 + N, k] → S2[1 + i, 0, k]}.
D contains relations between statement instances. We translate them into the schedul-
ing space by applying on their ranges and domains the statement schedules contained
in S = {S1[i, j, k] → S1[0, i, j, k]; S2[i, j, k] → [1, i, j, k]}. The resulting dependences are
described by the union map DS = S−1.D.S = {[0, i, j, k] → [0, i, j, k + 1]; [1, i, j, k] →
[1, i, j + 1, k]; [1, i,−1 + N, k] → [1, 1 + i, 0, k]}. DS is now limited to the dependences in
the second loop nest by intersecting its domains and ranges with the scheduling space
enumerated in this loop nest. The space enumerated is EL2 = [M, N, K] → {[1, i, j, k] :
0 ≤ i < M ∧ 0 ≤ j < N ∧ 0 ≤ k < K} such that the remaining dependences are
DL2 = {[1, i, j, k] → [1, i, j + 1, k]; [1, i,−1 + N, k] → [1, 1 + i, 0, k]}. If we now calculate
the dependence distances with deltas(DL2) = {[0, 0, 1, 0]; [0, 1, 1− N, 0]}, we can see that
the second and the third dimension carry dependences while the others are parallel.
As the very first dimension is a scalar dimension only the innermost dimension and
consequently the innermost loop is parallel. If we would have checked the innermost di-
mension before code generation, it would have carried a dependency and consequently
parallel execution would have been invalid. Though after code generation, we were able
to eliminate dependences in certain loop nests. Proving that the innermost dimension
of the second loop nest is parallel became possible.

7.2.2 The Stride of a Memory Access Relation

Especially for SIMD code generation it is important to understand the pattern in which
memory is accessed during the execution of a loop. For common pattern special vector
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for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

for (k = 0; k < K; k++) {

C[i][j] += k; // S1

X[k] += k; // S2

}

Listing 2: A single loop nest hides parallelism

for (i = 0; i < M; i++) // parallel loop

for (j = 0; j < N; j++) // parallel loop

for (k = 0; k < K; k++)

C[i][j] += k; // S1

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

for (k = 0; k < K; k++) // parallel loop

X[k] += k; // S2

Listing 3: Two separate loop nests expose parallelism

instructions can be used to load or store memory in a more efficient way. To detect such
pattern we calculate the distance between the memory accesses of two subsequently ex-
ecuted statement instances. This distance is called the stride of the memory accesses re-
lation and is calculated in respect to the innermost loop. The analysis used is again fully
polyhedral. For accurate results every loop in the generated AST is analyzed individu-
ally, such that the iteration space taken into account is limited to the subset enumerated
by each loop.

To calculate for a statement S the stride of a specific memory access X the following
information is needed: AX, the access relation to array ’X’ , S the scattering function of
the statement containing the memory access and E , the subset of the scattering space
enumerated by the loop we analyze.

We explain this with the following example:

for (i = 0; i <= N; i++)

for (j = 0; j <= N; j++) {

A[j] = B[i] + C[2 * j];

and its polyhedral representation:

AA = [N]→ {Stmt[i, j]→ A[j]} (7.1)

AB = [N]→ {Stmt[i, j]→ B[i]} (7.2)

AC = [N]→ {Stmt[i, j]→ C[2j]} (7.3)

S = [N]→ {Stmt[i, j]→ Scattering[i, j]} (7.4)

E = [N]→ {Scattering[s0, s1] : 0 ≤ s0 ≤ N ∧ 0 ≤ s1 ≤ N} (7.5)
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The first step is to create a map from one iteration to the next iteration. We start
with a map that maps from the scattering space back into the scattering space. Then we
add constraints that force input and output to have identical values for all dimensions
smaller than the dimension of the loop that is analyzed. At the dimension of the loop
we analyze the input has to be smaller than the output. This is enforced by the following
map:

LT = [N]→ {Scattering[i0, i1]→ Scattering[o0, o1] : i0 = o0 ∧ i1 < o1}

LT is then limited to the elements that are actually enumerated by our loop. For this we
intersect the range and the domain of LT with Sactual . The result is called LTscattering.

LTscattering = Sactual ∩ LT ∩ Sactual

LTscattering is used to obtain for each point in the scattering space the point that is
executed subsequently. To get this point we calculate the lexicographic minimum of
LTscattering. The result is called NEXT. NEXT is still a mapping from one scattering
point to another. To create a mapping between different statement instances we apply
the scattering on both sides, range and domain, of NEXT.

NEXT = lexmin(LTscattering)

NEXTDom = S−1.NEXT.S

With NEXTDom we can now create a map that gives for each memory address accessed
the memory address that is accessed by the subsequently executed statement instance.
To create this map we apply the access maps on both sides of NEXTDom.

NEXTAccessX = A−1
X .NEXTDom.AX

The last step to obtain the stride of subsequent memory accesses is to calculate the
distance between the access on the left side and the one on the right side.

StrideX = delta(NextAccessX )

There exists a large variety of possible strides, however some common ones are worth
mentioning. A stride of zero means that the memory accessed during the execution of
a loop is always at the same location. It is also called a constant stride memory access.
A statement with a stride-one memory access always accesses subsequent memory cells
in increasing order. A statement with a stride equal to minus one accesses subsequent
memory cells in decreasing order.

7.3 generation of llvm-ir

To generate optimized LLVM-IR for the program, we use the generic AST as a description
of the final loop structure. Based on this description we create the matching LLVM-IR

instructions. Polly provides three ways to generate LLVM-IR. Sequential code generation,
OpenMP code generation and SIMD code generation. Their only difference is the way
loops are code generated.
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7.3.1 Sequential Code Generation

Polly generates by default sequential code. For this it replaces each abstract construct in
the generic AST with a sequential LLVM-IR implementation. The control flow structures
are generated by replacing the abstract for-loops with LLVM-IR loops and abstract if-
conditions with LLVM-IR conditional branches. The actual calculations are reintroduced
by replacing each abstract statement with the corresponding LLVM-IR basic block. The
general code generation is straightforward, such that implementation details are not
explained here. The interested reader may take a look at the source code documentation.
Yet, there are two points worth mentioning. The benefits of independent blocks for code
generation and the problem of deriving a correctly sized type for newly introduced
variables.

As stated in Section 5.6.2 we require that all basic blocks in a SCoP are independent
basic blocks that only reference induction variables or parameters. This allows a very
simple code generation algorithm. First of all we create code that calculates the value
of all parameters that are not just a single register, but constant subexpressions which
we were not able to analyze further. The newly calculated parameter registers, are now
stored in a map which is later used to replace in each basic block references to old
parameters with references to new ones. To obtain the new values of the induction vari-
ables a similar approach is taken. CLooG provides in its generated generic AST for each
original induction variable an expression that describes it in terms of new induction
variables and parameters. We take this expression, translate it into LLVM-IR and replace
all occurrences of the old induction variables in a basic block with their newly calculated
values. The translated basic block can now easily be inserted into the regenerated control
flow structures. Then we only need to remove the old induction variables and branch in-
structions to obtain a working program. There is no need to insert any PHI-instructions,
as the only PHI-instructions allowed in the input SCoP were induction variables. We
also do not spend any afford on optimizing possibly redundant scalar computations, as
they are for example introduced by the independent blocks pass. Here, we rely entirely
on the standard LLVM optimization passes to remove such computations. As shown in
Section 8.2, this works very reliable.

The next interesting problem is the selection of the data types for the newly gen-
erated induction variables and array subscripts. At the moment Polly uses always 64

bit induction variables and signed calculations. This is correct as long as the input
loops use signed calculations for their induction variables (ensured in the frontend),
these variables have at most 64 bit size and the schedules of the statements do not
produce any larger values. A schedule that may produce larger values is for instance
{Stmt[i, j] → [i + j]}. It may produce an overflow when calculating the bounds of i + j.
However, in practical programs we have not yet seen such an overflow as most loops
do not get close to the maximal value possible in a 64 bit counter. To ensure correctness
even in uncommon pathological cases and to get native types for non 64 bit architec-
tures, we plan to automatically derive the minimal and maximal values the newly gen-
erated induction variables may have. For this we plan to add additional information to
the polyhedral representation, that defines the maximal values induction variables may
reach due to their integer types in the original program. This information is then avail-
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able after code generation through a polyhedra interface, such that we can conveniently
derive the minimal type, needed to ensure that no unforeseen integer overflows occur.
The implementation of this feature is not yet finished, as we still need to investigate
the compile time overhead introduced and we need to ensure, that no no unnecessary
computations are introduced into LLVM-IR because of additional constraints that CLooG

cannot remove.

7.3.2 OpenMP Code Generation

Polly supports OpenMP code generation1 to take advantage of shared memory paral-
lelism in a SCoP. In case OpenMP code generation is enabled each loop that is parallel as
detected by the analysis in Section 7.2.1 and not surrounded by any other parallel loop
is code generated as an OpenMP parallel loop. As the run time functions are targeted the
user can use environment variables to define the scheduling policy and the number of
threads used for execution.

Currently only the GNU OpenMP [22] run time library is targeted, however similar
libraries like the multiprocessor computing framework (MPC) developed by Perache
et al. [36] can be integrated.

A detailed explanation of how OpenMP code is generated will be included in the not
yet published masters thesis of Raghesh Aloor from IIT Madras.

7.3.3 Vector Code Generation

Polly generates vector code2 for so-called trivially vectorizable loops. Instead of gener-
ating an explicit loop that enumerates all statement instances, only a single basic block
is generated that executes all statement instances of the loop in parallel by taking ad-
vantage of LLVM vector instructions. The vector code generation in Polly is on purpose
limited to a very restricted set of loops to decouple the actual vector code generation
from the transformations that enable it. Therefore, previous optimizations are required
to create those trivially vectorizable loops, which the Polly code generation will au-
tomatically detect and transform into efficient vector operations. Later the LLVM back
ends translate the LLVM vector instructions into efficient platform specific operations.

A loop is called trivially vectorizable if it fulfills the following requirements: First it
does not carry any dependency, such that it can be executed in parallel. Next it has
a constant, non parametric number of loop iterations, which will be the width of the
generated LLVM vector instructions. And finally the loop is an innermost loop that does
not contain any conditional control flow. Listing 4 shows an example of a loop nest that
is strip mined, to expose a trivially vectorizable loop, and than vectorized.

Three steps are required to detect if a loop is trivially vectorizable: First it is checked
by using an AST walk, if no other loop or conditional AST node is a descendant of the
current loop. If this is true the current loop is an innermost loop, free of any inner
control flow. Than the number of loop iterations is calculated using the polyhedral set

1 Enabled by the command line option -enable-polly-openmp

2 Enabled by the command line option -enable-polly-vector
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for (i = 0; i <= 1024; i++)

B[i] = A[i];

for (i = 0; i <= 1024; i+=4)

for (ii = i; ii <= i + 3; ii++)

B[ii] = A[ii];

for (i = 0; i <= 1024; i+=4)

B[i][i:(i+3)] = A[i][i:(i+3)];

Listing 4: Two steps to vectorize a loop

difference on the lower and upper loop bound. It needs to be constant and a valid vector
size. Finally it is verified that the loop can be executed in parallel using the analysis
described in Section 7.2.1.

In the case of classical, non vector code generation control flow for a loop is created
and the LLVM-IR of the original statement is embedded inside this loop. To generate vec-
tor code no loop structure is generated at all, but for each instruction in the original
code a set of dedicated instructions is created, each representing a different loop itera-
tion. All references to the current loop induction variable are replaced by references to
variables, that contain the value of the induction variable at the specific loop iteration.
Those instantiated loop induction variables are code generated at the beginning of the
new basic block, as well as variables of the lower loop bound and the stride needed to
calculate the induction variables.

Vector code is introduced as soon as a load instruction is code generated. Besides
generating the scalar loads of all instances of the load instruction, vector instructions
are generated that store those scalars next to each other in a vector. Any later instruction
that used the loaded scalar in the original loop body is now translated into a vector
instruction, such that all instances of the original instruction are executed in a single
vector instruction. Starting from a load instruction, all calculations depending on the
loaded value are done on vector types up to the final store operations. For the final
stores the scalar values are again extracted from the vectors and stored separately.

for (i = 0; i < 2; i++)

C[i] = A[i] + B[0];

Listing 5: Example of a trivially vectorizable loop

Listing 5 shows a loop that has two loop iterations, no inner control flow and can be
executed in parallel. It is therefore trivially vectorizable. Vector code as shown in 7 can
therefore be created from the LLVM-IR of the loop body in listing 6. At the beginning
of the basic block variables for the loop stride, the lower bound of the loop as well as
for each instance of the loop induction variable are generated. Furthermore for each
load in the original code corresponding instructions are generated to load all accessed
values into vectors %A.vector.1 and %B.vector.1. The add instruction is code generated
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%A.pointer = getelementptr [1024 x float]* @A, i64 0, i64 %indVar

%B.pointer = getelementptr [1024 x float]* @B, i64 0, i64 0

%A.scalar = load float* %A.pointer

%B.scalar = load float* %B.pointer

%result = add float %A.scalar, %B.scalar

%C.pointer = getelementptr [1024 x float]* @C, i64 0, i64 %indVar

store float %result, float* %C.pointer

Listing 6: The LLVM-IR of the loop body in listing 5

a b c d g g g g q t r m
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Figure 21: Three kinds of vector loads: v1 is a stride-one vector load, v2 is a stride-zero vector
load and v3 is a complex vector load

as a two-element vector instruction as it depends on the values loaded from @A and @B.
Finally the scalar values of the %result are extracted and stored separately to memory.

Through the introduction of vector code several instructions can be merged into single
vector operations, however the current approach still shows a large overhead for loads
and stores, as each scalar is loaded or stored separately. Fortunately several common
cases can be optimized. By using the analysis described in Section 7.2.2 the strides of the
memory accesses are detected. Vector loads can be grouped into stride-one vector loads,
stride-zero vector loads and other more complex vector loads. Stores can be grouped
in either stride-one vector stores or other more complex stores. Stride zero stores do
not exist in a parallel loop, as the different loop iterations would overwrite each other.
Figures 21 and 22 show the different groups graphically.
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Figure 22: Two kind of vector stores: v1 is a stride-one vector store and v3 is a complex vector
store
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%stride = add i64 0, 1

%lowerBound = add i64 0, 0

%indVar.0 = add i64 %lowerBound, 0

%indVar.1 = add i64 %indVar.0, %stride

%A.pointer.0 = getelementptr [1024 x float]* @B, i64 0, i64 %indVar.0

%A.pointer.1 = getelementptr [1024 x float]* @B, i64 0, i64 %indVar.1

%A.scalar.0 = load float* %A.pointer.0

%A.vector.0 = insertelement <2 x float> undef, float %scalar.0, i32 0

%A.scalar.1 = load float* %A.pointer.1

%A.vector.1 = insertelement <2 x float> %vector.0, float %scalar.1, i32 1

%B.pointer.0 = getelementptr [1024 x float]* @B, i64 0, i64 0

%B.pointer.1 = getelementptr [1024 x float]* @B, i64 0, i64 0

%B.scalar.0 = load float* %B.pointer.0

%B.vector.0 = insertelement <2 x float> undef, float %scalar.0, i32 0

%B.scalar.1 = load float* %B.pointer.1

%B.vector.1 = insertelement <2 x float> %vector.0, float %scalar.1, i32 1

%result = add <2 x float> %A.vector.1, %B.vector.1

%C.pointer.0 = getelementptr [1024 x float]* @C, i64 0, i64 %indVar.0

%C.pointer.1 = getelementptr [1024 x float]* @C, i64 0, i64 %indVar.1

%C.scalar.0 = extractelement <2 x float> %result, i32 0

store float %C.scalar.0, float* %C.pointer.0

%C.scalar.1 = extractelement <2 x float> %result, i32 1

store float %C.scalar.1, float* %C.pointer.1

Listing 7: Unoptimized vector code for listing 5

All except the more complex vector accesses are optimized in Polly. A stride zero
vector load, appears in the case of a load from an address that is constant during loop
execution. It is optimized by loading the constant value once into a scalar and using
a vector instruction to splat the value into a wider vector. A stride-one vector load or
store, appears in the case of a memory reference accessing consecutive memory cells
in subsequent loop iterations. It is optimized by loading or storing the whole vector at
once using a single vector load or vector store.

Listing 8 shows the optimized vector code for the example of listing 5. The load from
A is a stride-one access, that is translated to a full vector load. The load from B is a
stride-zero access, that is translated to a scalar load followed by a splat, and the store to
C is a stride-one access translated to a full vector store. It can be seen that the number
of instructions for a memory access is reduced and is now independent of the vector
width.

Future optimizations are possible starting from stride minus one, which can be opti-
mized as a vector load plus a reversal, up to more sophisticated approaches that take
more than one loop dimension into account to take advantage of possible vector loads
in outer loops, that can be used to construct the vectors used in the inner loop.
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%stride = add i64 0, 1

%lowerBound = add i64 0, 0

%indVar.0 = add i64 %lowerBound, 0

%A.pointer.0 = getelementptr [1024 x float]* @A, i64 0, i64 %indVar.0

%A.vector_pointer = bitcast float* %A.pointer.0 to <2 x float>*

%A.vector = load <2 x float>* %A.vector_pointer

%B.pointer.0 = getelementptr [1024 x float]* @B, i64 0, i64 0

%B.scalar.0 = load float* %B.pointer.0

%B.vector = shufflevector <1 x float> %B.scalar.0, <1 x float> undef,

<2 x i32> zeroinitializer

%result = add <2 x float> %A.vector, %B.vector

%C.pointer.0 = getelementptr [1024 x float]* @C, i64 0, i64 %indVar.0

%C.vector_pointer = bitcast float* %C.pointer.0 to <2 x float>*

store <2 x float> %result, <2 x float>* %C.vector_pointer

Listing 8: Optimized vector code for listing 5: Usage of a full vector load for array A, a scalar
load plus a splat for array B and a full vector store for array C

To enable the LLVM back ends to generate optimal vector code it is necessary to derive
the alignment of the different load and store instructions such that operations working
on aligned memory can be used. However, it became apparent that LLVM can often
calculate this information in its standard optimization passes.

In general a single vectorized loop has still a large load and store overhead and will
probably not give huge performance improvements. Polyhedral optimizations that tar-
get vector code generation should therefore make sure that most memory accesses can
be hoisted out of the new inner loops either directly or after some unrolling. This how-
ever is not part of the vector code generation, but just clever usage of existing compiler
technology. Some examples how to generate good vector code are shown in Section 8.1.
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E X P E R I M E N T S

8.1 matrix multiplication - vectorized

Matrix multiplication is a well known computation kernel, not just because of its simple
structure, but especially because of its importance as a building block of many complex
algorithms. To obtain good performance an optimized version of the matrix multipli-
cation kernel is crucial. Such a kernel can be obtained by linking with special linear
algebra libraries like BLAS [18] or their vendor optimized counterparts. Yet, a more con-
venient approach is to rely on the compiler to optimize such kernels automatically. By
analyzing and optimizing a challenging variant of matrix multiplication we show what
improvements are still possible over current compilers.

Listing 9 shows a plain matrix multiplication kernel that multiplies two 32x32 matrices
and adds the obtained result to a third matrix. The kernel is not optimized in terms of
vector intrinsics or any special loop structure, but a competitive compiler should create
such a loop structure automatically. For the shown kernel this is not straightforward,
as all memory accesses have unit stride in respect to different loop dimensions. If the
loop nest is vectorized along one dimension only one memory access has unit stride,
whereas the other two memory accesses will have non unit strides. With clever use of
unrolling, loop interchange and strip mining, the cost of those non-unit stride accesses
can be reduced, such that the use of SIMD instructions becomes profitable.

void matmul(float *restrict A, float *restrict B, float *restrict C) {

for (i=0; i < 32; i++)

for (j=0; j < 32; j++)

for (k=0; k < 32; k++)

C[i][j] += A[k][i] * B[j][k];

}

Listing 9: Matrix multiplication kernel where each memory access has a unit stride in respect to
another loop dimension

Figure 23 shows the performance of this kernel with the different steps that can be
taken to optimize code with Polly. The baseline is LLVM with all optimizations enabled,
which is equivalent to the use of clang -O3. At version 2.8 LLVM does not change the
loop structure of the kernel at all and no SIMD instructions are created. Even if LLVM

does not apply neither vectorization nor memory access optimizations, good scalar code
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is created. GCC 4.4.5 does also not apply any loop transformations nor does it apply
any vectorization. The performance of the GCC generated code shows that its scalar
code is not as good as the code created by LLVM. In contrast ICC 11.1 performs loop
transformations and introduces SIMD instructions. The code it generates is almost twice
as fast as the one generated with LLVM. Yet, the assembly of the ICC generated code
contains a large amount of scalar loads, which suggests that further optimization are
possible.

Now Polly is used to generate optimized vector code. We lower the kernel to LLVM-IR

and execute the Polly optimizations on it. After Polly’s code generation the LLVM stan-
dard optimizations are scheduled to remove redundant scalar operations introduced by
Polly. The first run shown is the Polly identity transformation which translates the kernel
into the polyhedral model and recreates the LLVM-IR from the polyhedral representation
without applying any transformations. This example shows, that the indirection through
Polly does not add any notable overhead. The run time of the generated code does not
increase.

for (k=0; k < 32; k++)

for (j=0; j < 32; j+=4)

for (i=0; i < 32; i++)

for (jj=j; jj < j + 4; j++)

C[i][jj] += A[k][i] * B[jj][k];

Listing 10: Matrix multiplication kernel with loop structure prepared for vectorization

The first transformation with Polly (+StripMine) changes the loop structure to im-
prove data-locality and, more important, to expose a trivially vectorizable loop. We
derive the structure of the new loop nest with the help of a research tool developed
by Stock et al. [44]. The abstract description of the loop structure is translated into a
polyhedral schedule and this schedule is manually imported into Polly. As can be seen
in Listing 10 an innermost trivially vectorizable jj loop is generated. In addition the i
loop is moved deeper into the loop structure, a transformation that later enables further
optimizations. Even the simple change of the loop structure increases the performance
by 19%.

for (k=0; k < 32; k++)

for (j=0; j < 32; j+=4)

for (i=0; i < 32; i++)

C[i][j:j+3] += A[k][i] * B[j:3][k];

Listing 11: Vectorized matrix multiplication kernel

In the next run (+= Vectorization) we take advantage of the previously created trivially
vectorizable loop. Instead of creating the innermost loop, we generate SIMD operations.
As Polly can prove that the innermost loop does not carry any dependences, it can, if
requested, apply the necessary transformations fully automatically. As described in Sec-
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Figure 23: 10000 times 32x32 float matrix multiplication on Intel i5 CPU M 520 @ 2.40GHz
(Options to Polly are cumulative, ICC 11.1, GCC 4.4.5, Clang 2.8)

tion 7.3.3, Polly automatically generates full vector loads for the access to C, a stride zero
load for the access to A as well as scalar loads for the elements loaded from B. Since
LLVM is able to prove aligned vector accesses, fast, aligned vector operations are gener-
ated by the LLVM X86 backend. At this point, the performance of the Polly optimized
code is twice as good as the LLVM base line and the performance of ICC is reached.

In the innermost there is still an inefficient load from B. This load combines four
elements distributed in memory and requires four scalar loads to initialize the SIMD

vector. However, due to our previous changes to the loop structure the loads from B are
invariant in the innermost loop. As Polly can prove that the i loop is always executed
at least once, the loads from B can be hoisted out of this loop. The number for Polly
(+= Hoisting) shows, that this transformation can triple the performance such that Polly
easily outperforms ICC.

Finally, it is possible to trade code size for performance. By increasing the unrolling
limits in the LLVM unrolling pass the inner two loops can be fully unrolled. As can be
seen this leads to further increases in performance. The overall speedup we achieve is
8x compared to clang -O3 and 4x over icc -fast.

We have shown that Polly significantly improves performance in comparison to ICC
and Clang/LLVM by automatically generating optimized (SIMD) code. Only to calculate
the optimal loop structure we use an external tool. We have seen that the largest perfor-
mance improvements appear not because of the SIMD code introduced, but because of
further optimization opportunities exposed through our preparing loop transformations.
As subsequent transformations are already performed in Polly/LLVM automatically, the
remaining problem is now the calculation of loop structure that exposes sufficient opti-
mization opportunities. The polyhedral abstractions provide a powerful instrument to
target this problem.



74

2mm
3mm

adi
atax

bicg
cholesky

correlation

covariance

doitgen

durbin
dynprog

fdtd-2d

fdtd-apml

gauss-filter

gemm
gemver

gesummv

gramschmidt

jacobi-1d-imper

jacobi-2d-imper

lu ludcmp

mvt
reg_detect

seidel

symm
syr2k

syrk
trisolv

trmm
0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 "

cl
a
n
g
 -

O
3
" pollycc -fpolly

Figure 24: Runtime overhead introduced by Polly

8.2 automatic optimization of the polybench benchmarks

8.2.1 The Identity Transformation

To understand if the use of Polly has any negative impact on the quality of the generated
code we analyze the overhead of the Polly identity transformation. The identity trans-
formation translates from LLVM-IR to the polyhedral representation and back to LLVM-IR

without applying any polyhedral transformations in between. It is run by the command
pollycc -fpolly and the code it generates is compared to code compiled with plain
clang -O3.

For our tests we use the benchmarks provided by the PolyBench1
2.0 test suite. They

are used unmodified with a single exception. The type of some induction variables is
changed from int to long to remove implicit type casts which would currently prevent
the detection of some valid SCoPs. Except this change, the detection of SCoPs is fully au-
tomatic and does in particular not use any annotations in the source code. Furthermore,
all tests are performed on an Intel® Xeon® X5670 system.

Looking at the results of the tests as presented in Figure 24, we can see that only for
two benchmarks the run time changes significantly. For reg_detect we get a slowdown
of 15%, because LLVM seems to generate some inefficient unrolling when simplifying
the code generated by Polly. In the case of jacobe-1d-imper, there is an 18% speedup.
However, this speedup is not caused by Polly, but is caused by some pass ordering
issues in LLVM. Those issues are hidden, if the LLVM standard optimization passes are
run a second time to clean up the LLVM-IR produced by the Polly code generation. Except
of these two cases, all other 28 benchmarks show performance changes of less than 2%
and on average a run time increase of less than 0.4%. This shows clearly, that the use of
Polly does in most cases not introduce significant overhead.
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Figure 25: Sequential speedup of pollycc compared to clang (Both current from 25/03/2011,
Benchmark: Polybench 2.0, run on Intel® Core™ Xeon X5670 CPU @ 2.93GHz)
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8.2.2 Creating Optimized Sequential Code with Pluto

To investigate the benefits fully automatic optimizations can currently provide for sin-
gle thread performance we connect Polly with PoCC2 and test the benefits of Pluto based
tiling and vectorization. Even though Pluto based tiling is focusing on parallel perfor-
mance, it can already give a first impression what polyhedral optimizations can achieve.
Our tests were run again on the PolyBench 2.0 test suite on an Intel® Xeon® X5670 sys-
tem. All tests are run with double precision floating point numbers on both small and
larger data sizes.

The test results presented in Figure 25a show 7 benchmarks, where tiling decreases
the performance. Those are most of the time benchmarks, where tiling is not beneficial
in general or where the problem size is too small to benefit from tiling. Due to the intro-
duction of more complex control flow, the run time of those test cases increases. This is
expected, as Polly currently does not include a heuristic to determine, if the use tiling
will be profitable. For 9 of 30 benchmarks, Pluto based tiling can provide significant
performance improvements even on small data sizes. For larger data sizes we obtain in
average 2x speedup with 4 benchmarks showing more than 4x speedup and two even
reaching 8x speedup. This is promising, as we have not yet analyzed the benchmarks
intensively and the calculated schedules are most probably not yet optimal. Looking at
the SIMD code generation we see that for two cases Pluto based vectorization can further
increase the speedup. This is for example the case for gemm where additional use of
vector operations leads to an overall speedup of 14x. To emphasize, this is still single
thread performance and the speedup is only obtained by a more efficient use of caches
and SIMD units. We also see that in many cases vectorization actually decreases the
performance of the code. The reason here is that Pluto currently does not include any
useful heuristics to decide how to vectorize, but always vectorizes the innermost parallel
loop. In case this loop has no stride one accesses, the vectorization of this loop is often
not beneficial. We believe, that by developing better heuristics for vectorization, benefits
as seen for gemm can be shown for more benchmarks.

8.2.3 Creating Optimized Parallel Code with Pluto

We also analyze the performance benefits that we can obtain by generating OpenMP
parallel code. For this we start with tiling and vectorization. Then, we use Pluto’s par-
allel mode to expose parallelism and we use Polly to create OpenMP code that takes
advantage of this parallelism. All tests were run on a 2 socket, 12 core, 24 HT3 threads
Intel® Xeon® X5670 system.

As can be seen in Figure 26, 16 of 30 benchmarks benefit from parallel execution.
Even with small data sizes 8 benchmarks reach more than 10x speedup. For larger data
sizes we obtain in average 12x speedup and there exist even a case that shows more
than 80x speedup. We believe this already shows clearly that there exists a larger set
of benchmarks that benefit from automatic parallelization as it can be performed in

1 http://www.cse.ohio-state.edu/p̃ouchet/software/polybench/
2 PoCC-rc3.1 as available from http://www.cse.ohio-state.edu/~pouchet/software/pocc/

3 HyperThreading

http://www.cse.ohio-state.edu/~pouchet/software/pocc/
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Figure 26: Parallel speedup of pollycc compared to clang (Both current from 25/03/2011, Bench-
mark: Polybench 2.0, run on Intel® Core™ Xeon X5670 CPU @ 2.93GHz)

Polly. Together with vectorization, the gemm kernel is again the top performer with an
overall speedup of more than 100x. As can be seen, parallelism combined with tiling
and vectorization can show significant performance improvements for a large number
of benchmarks. And again, we did not yet optimize the tests intensively such that we
expect further improvements. The limited benefits vectorization currently provides sug-
gest another area where further performance improvements may be possible.





9
C O N C L U S I O N

In this thesis we presented Polly, a framework to apply polyhedral transformations on
a low level intermediate representation. We have shown how to automatically extract
the static control parts of a program, how to translate them into a polyhedral descrip-
tion, how to apply transformations on this description and finally, how to regenerate
optimized program code. The process described is programming language independent
and does not require the input code to follow any syntactical form. Instead, we analyze
a program semantically such that different textual incarnations of semantically equiv-
alent constructs are supported transparently. As a result, code that contains constructs
like goto-loops or pointer arithmetic can be optimized.

To represent the code Polly uses a modern polyhedral description based on an inte-
ger set library with support for a detailed data-flow analysis. This analysis is used to
detect different forms of parallelism. For outermost parallel loops we introduce calls to
an OpenMP runtime and in case of innermost parallel loops we create SIMD code. For the
generated SIMD code we automatically determine the optimal vector instructions, such
that polyhedral optimizers can focus on finding an execution order that exposes op-
portunities for generating effective vector code. Furthermore, we have defined a generic
interface for external optimizers. It was used to connect PoCC,1 a collection of polyhedral
tools which includes the advanced data-locality and parallelism optimizer Pluto.

To understand the effectiveness of Polly, we optimized the Polybench 2.0 test suite and
analyzed the results. The indirection through the polyhedral representation does not in-
troduce any overhead in the generated code. In case the Pluto optimizations are used,
we have seen significant speedups that reached 14x without introducing thread level
parallelism and more than 100x when taking advantage of thread level parallelism.2 In
average we reached a 2x speedup without and a 12x speedup with thread level paral-
lelism.3 As the focus of this work was more on the infrastructure than on the optimizer,
we believe these numbers can be further improved.

At this stage, we have finished the core of Polly, but to optimize code that commonly
appears in larger applications further extensions are necessary. The main areas that
need work are type cast operations, possible integer overflows and multi-dimensional
variable sized arrays (multi-dimensional arrays with static size are already supported).
Furthermore, we have seen that Pluto does not yet produce loop nests that allow effective

1 http://pocc.sf.net

2 For the gemm kernel and large data size
3 For large data sizes
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SIMD code generation, such that currently only manually calculated optimizations show
the benefits of our SIMD back end. Work to extend the Pluto algorithm to expose better
SIMD code generation opportunities is planned. Another topic that we plan to target is
the support for memory layout transformations.

Polly can apply advanced, polyhedral transformations without the need of any source
code annotations or the use of source-to-source techniques. As it works directly inside
a compiler, it can be used to optimize existing programs fully automatically. We have
already shown significant performance improvements on a number of computation ker-
nels with the help of the Pluto optimizers and believe that the Polly infrastructure will
simplify the development of new, advanced optimizations. As it abstracts away all lan-
guage specific details and code generation problems, it allows to focus on the high-level
optimization problems. With the interface for external optimizers new transformations
can be added to Polly without the need to understand all LLVM internals. Open re-
search topics that may benefit from Polly are for example polyhedral optimizations in
just-in-time environments, automatic offloading of calculations to vector accelerators or
polyhedral optimizations in high level synthesis. As LLVM provides a good infrastruc-
ture for these topics,4 even solutions that target several of these problems at once could
be investigated.

4 In LLVM provides a JIT compiler as well as PTX and Verilog code generation.
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