
A Framework for

Automatic OpenMP Code Generation

A Project Report

submitted by

RAGHESH A

in partial fulfilment of the requirements
for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

April 2011

CERTIFICATE

This is to certify that the project report entitled A Framework for Automatic

OpenMP Code Generation, submitted by Raghesh A, to the Indian Institute of

Technology, Madras, for the award of the degree of Master of Technology, is a

bona fide record of the research work carried out by him under my supervision.

The contents of this report, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Dr. Shankar Balachandran
Research Guide
Assistant Professor
Dept. of Computer Science and Engineering
IIT-Madras, 600 036

Place: Chennai

Date:

ACKNOWLEDGEMENTS

The successful completion of this project would not have been possible without the

guidance, support and encouragement of many people. I take this opportunity to

express my sincere gratitude and appreciation to all those who were instrumental

in the culmination of the project.

I am deeply indebted to my supervising guide Dr. Shankar Balachandran for his

persistent encouragement and motivation, for his continual and creative feedback,

for his stimulating suggestions in all time of work, and for his constructive criticism.

His ingenious suggestions and thought provoking propositions have helped me

widen my perspective on the subject matter of this report.

I offer my earnest gratitude to Tobias Grosser who has supported me throughout

my project with his patience and knowledge. I gratefully acknowledge him for his

advice, supervision, and crucial contribution, which made him a backbone of this

project and so to this report. His involvement with his originality has triggered

and nourished my intellectual maturity that I will benefit from, for a long time to

come. I am grateful in every possible way and hope to keep up our collaboration

in the future.

A special thanks is also due to the faculty advisors, Dr N.S Narayanaswamy,

Dr. C. Pandurangan and Dr. D. Janakiram who patiently listened, evaluated, criti-

cized and guided us periodically. I extend my heartfelt thanks to Dr B. Ravindran,

i

Pramod C E and C K Raju for their valuable suggestions and care throughout the

project.

Heartfelt love to my parents, brother and wife, the main pillars of my life, for

being with me through thick and thin. Special thanks to Sunil, Jyothi Krishna, Bal-

agopal, Ajeesh Ramanujan, Sunitha and Jignesh for their support and motivation.

ii

ABSTRACT

KEYWORDS: Loop Transformation, OpenMP, Polyhedral Model, Vector-

ization, Autoparallelism

It is always a tedious task to manually analyze and detect parallelism in pro-

grams. When we deal with autoparallelism the task becomes more complex.

Frameworks such as OpenMP is available through which we can manually anno-

tate the code to realize parallelism and take the advantage of underlying multi-core

architecture. But the programmer’s life becomes simple when this is done auto-

matically. In this report we present a framework for autoparallelism through Polly,

a project to enable polyhedral optimizations in LLVM and the work done towards

automatically generating OpenMP library calls for relevant parts of the code.

Various powerful polyhedral techniques exist to optimize computation inten-

sive programs effectively. Applying these techniques on any non-trivial program

is still surprisingly difficult and often not as effective as expected. Most polyhe-

dral tools are limited to a specific programming language. Even for this language,

relevant code needs to match specific syntax that rarely appears in existing code.

It is therefore hard or even impossible to process existing programs automatically.

In addition, most tools target C or OpenCL code, which prevents effective commu-

nication with compiler internal optimizers. As a result target architecture specific

optimizations are either little effective or not approached at all.

iii

Polly automatically detects and transforms relevant program parts in a language-

independent and syntactically transparent way. Therefore, it supports programs

written in most common programming languages and constructs like C++ iter-

ators, goto based loops and pointer arithmetic. Internally it provides a state-

of-the-art polyhedral library with full support for Z-polyhedra, advanced data

dependency analysis and support for external optimizers. Through LLVM, ma-

chine code for CPUs and GPU accelerators, C source code and even hardware

descriptions can be targeted.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

LIST OF TABLES viii

LIST OF FIGURES ix

ABBREVIATIONS x

1 Introduction 1

1.1 Parallelism in programs . 1

1.1.1 Parallelism and locality . 1

1.1.2 Realizing parallelism . 2

1.2 Auto parallelization . 4

1.3 The polyhedral model . 5

1.4 LLVM . 6

1.5 Polly and OpenMP code generation 6

1.6 Outline of report . 7

2 The Polyhedral Model 8

2.1 Program transformations with polyhedral model 8

2.1.1 Transformation for improving data locality 9

2.1.2 Scalar expansion . 9

2.2 Polyhedral representation of programs 10

2.2.1 Iteration domain . 11

2.2.2 Schedule . 13

v

2.2.3 Access function . 15

3 Polly - Polyhedral Optmizations in LLVM 17

3.1 Introduction to LLVM . 17

3.2 Introduction to Polly . 17

3.3 Implementation . 19

3.3.1 LLVM-IR to polyhedral model 20

3.3.2 Polyhedral model . 23

3.3.3 Polyhedral model to LLVM-IR 25

3.4 Related work . 26

4 OpenMP Code Generation in Polly 27

4.1 Introduction . 27

4.2 The framework . 27

4.3 Code generation pass in Polly . 28

4.4 Detecting parallelism in Polly . 29

4.5 Generating OpenMP library calls 31

4.6 Support for inner loops . 34

4.7 Dealing with memory references 35

4.7.1 Adding memory references 35

4.7.2 Extracting memory references 36

4.8 Enabling OpenMP code generation in Polly 36

4.9 OpenMP testcases . 37

5 Testing With PolyBench 38

5.1 A simple test case . 38

5.2 PolyBench . 39

5.3 Experimental results . 41

6 Conclusion and Future Work 45

6.1 Conclusion . 45

vi

6.2 Support for memory access transformations in Polly 45

6.3 Increasing coverage of Polly . 46

6.3.1 Increasing SCoP coverage 46

6.3.2 Increasing the system coverage 47

6.4 Integrating profile guided optimization into Polly 47

A Setting up the environment 49

A.1 CLooG . 49

A.2 PoCC . 50

A.3 Scoplib . 50

A.4 Building LLVM with Polly . 51

B Various Tools Used in Polyhedral Community 52

B.1 ClooG . 52

B.2 PLUTO . 54

B.3 VisualPolylib . 55

LIST OF TABLES

5.1 Performance Comparison . 39

5.2 Performance improvement of seidel 43

5.3 Performance of seidel with different OpenMP parameters 44

viii

LIST OF FIGURES

2.1 Graphical representation of iteration domain(S1) 12

2.2 Graphical representation of iteration domain(S2) 13

2.3 Graphical representation of iteration domain(S3) 14

2.4 Transformation in polyhedral model 16

3.1 Architecture of Polly . 19

3.2 A valid syntactic SCoP. Not always a valid semantic SCoP 21

3.3 Valid semantic SCoPs . 23

4.1 The framework . 28

4.2 Detailed control flow in Polly . 29

4.3 CFG showing sequence of OpenMP library calls 32

4.4 CFG showing basic blocks in the subfunction body 34

5.1 Performance comparison(2 core 32 bit) 40

5.2 Performance comparison(2 core 64bit) 40

5.3 Performance comparison(10-core 64 bit) 41

B.1 Visualizing polyhedra with VisualPolylib 56

ix

ABBREVIATIONS

LLVM Low Level Virtual Machine

Polly Polyhedral Optimization in LLVM

ClooG Chunky Loop Generator

Isl Integer Set Library

AST Abstract Syntax Tree

SIMD Single Instruction Multiple Data

CFG Control Flow Graph

SCoP Static Control Part

POCC The Polyhedral Compiler Collection

GRAPHITE GIMPLE Represented as Polyhedra Interchangeable Envelopes

x

CHAPTER 1

Introduction

1.1 Parallelism in programs

These days it is hard to find somebody using a single-core processor machine. With

the help of multi-core and multi-processor machines it is possible to speed up the

program by mapping the sections of the program to available processors. This

is generally termed as parallelism in programs. It is very difficult to parallelize

the entire program though. The degree of parallelism is limited by certain factors

which is explained later in this section. In addition this section discusses vari-

ous types of parallelism and make a comparison of various approaches towards

parallelism which can be applied to programs.

1.1.1 Parallelism and locality

When there is a need for parallelism there is a need for interprocessor communi-

cation. So while optimizing programs for parallelism extreme attention should be

given to minimize the communication overhead. We can minimize communica-

tion if the processor accesses recently used data. That is we need to improve data

locality. Considering the performance of a single processor it is essential to extract

more data locality which in turn increases the cache hits. While dealing with par-

allelism we need to be aware about the restrictions on the degree of parallelism

that can be extracted from a given program, which is well stated by Amdahl’s law.

Amdahl’s law states that, if f is the fraction of the code parallelized, and if

the parallelized version runs on a p-processor machine with no communication or

parallelization overhead, the speedup is given by,

1
(1 − f) + (f/p)

For instance, if half the computation is sequential, the computation can only

double in speed, regardless of the number of processors used. The speedup is a

factor of 1.6 if we have 4 processors. So researchers keep on working for extracting

more parallelism and thereby reducing the fraction of sequential computation.

1.1.2 Realizing parallelism

Some of the approaches to realize parallelism are explained in this section.

POSIX Threads/Pthreads

Pthreads provides a standard interface for performing multihreaded computation.

Threads are subprocesses running with in a process. We can find many applications

such as a web browser which can take advantage of multithreading. The efficiency

of an application improves when it is designed with threads because they have

their own stack and status. The overhead of creating a separate process can be

avoided here. Resources like files are shared among threads. Though Pthreads are

good alternatives for having multiple processes in a single processor machine it is

very difficult to scale it to multi-core processors. Another limitation of Pthreads is

programmers are required to deal with a lot of thread-specific code. The number

2

of threads required for a computation need to be hard corded which makes it less

scalable.

OpenMP

In view of the shortcomings of POSIX threads there was an urge to formulate a new

threading interface. The major objective was to overcome the burden of learning

different ways for programming threads in different operating systems with in

different programming languages. OpenMP is able to deal with this by a great

extend. As the framework is evolved rather than its APIs, support for pragmas

became the distinguished feature of OpenMP. The user has to specify only the

blocks of code that need to be run as parallel. The compiler does the rest. It will

take care of making the pragma annotated blocks into threads. Necessary APIs

are inserted to map those threads into different cores. The example below shows

usage of pragma.

#pragma omp p a r a l l e l f o r

f o r (i = 1 ; i <= N; i++)

A[i] = B [i] + C[i]

Another characteristic of OpenMP is that by disabling support for OpenMP the

same program can be treated as single threaded. This enables easy debugging and

makes the programmer’s life easier.

If the developer needs more fine-grained control a small set of APIs are available

in OpenMP. But in this case Pthreads could be the right choice because it provides

a greater number of primitive functions. So if in applications in which threads

require individual attention the appropriate choice would be Pthreads.

Ample care should be taken to ensure the correctness of the program while

3

using OpenMP pragmas. The following example illustrates that.

f o r (i = 0 ; i < 1 0 ; i++) {

#pragma omp p a r a l l e l f o r p r i v a t e (k)

f o r (j = 0 ; j < 1 0 ; j ++) {

k++;

A[i] += k ;

}

}

We get incorrect result if the data sharing attribute for the variable k is private.

It should be shared to get the intended result.

1.2 Auto parallelization

The techniques described in the previous section relies heavily on manually identi-

fying parallelism, which is not always a good approach. We can take the advantage

of hardware support for parallelism only if the compiler has support for gener-

ating the parallel code. There are interfaces like OpenMP for developing parallel

applications. But the user has to manually provide the annotations for it in the

source code. This becomes a tedious task for the user and he has to ensure the

correctness of the code too. This prompted researchers to explore mechanisms for

finding out the parallel portions of the code without manual intervention.

It can be noticed that most of the execution time of a program is spend inside

some for loop. Parallelizing compiler tries to split up a loop so that its iterations

can be executed on separate processors concurrently. A dependency analysis pass

is performed on the code to determine whether it can be safely parallelized. The

4

following example illustrates this.

f o r (i = 1 ; i <= N; i++)

A[i] = B [i] + C[i]

The analysis detects that there is no dependency between two consecutive itera-

tions and can be safely parallelized. Consider another example

f o r (i = 2 ; i <= N; i++)

A[i] = A[i −1] ∗ 2 ;

Here a particular iteration is dependent on previous one and so its not safe to

parallelize. An intelligent compiler can convert this into parallel as follows.

f o r (i = 1 ; i <= N; i++)

A[i] = A[1] ∗ 2 ∗ ∗ (i − 1) ;

Detecting this kind of opportunities for parallelization and applying automatic

transformation is a tedious task for existing compilers. A powerful mathematical

model explained in the next section act as a helping hand for the compilers to do

such transformations with some restrictions applied on the input.

1.3 The polyhedral model

In this model the program is transformed into an algebraic representation which

can be used to detect data dependences. This representation is then converted in

such a way that the degree of parallelism is improved. Polyhedral optimizations

are used for many kind of memory access optimization by looking into the memory

access pattern of any piece of code. Any kind of classical loop optimization

5

techniques like tiling can be used for this purpose. The model is explained in

detail in Chapter 2.

1.4 LLVM

LLVM defines a common, low-level code representation in Static Single Assign-

ment (SSA) form, with several novel features. The LLVM compiler framework and

code representation together provide a combination of key capabilities that are

important for practical, lifelong analysis and transformation of programs. One of

the important features of LLVM is that the output of all the transformation passes

have same intermediate representation(LLVM IR), which makes the programmer

to analyze it with ease.

1.5 Polly and OpenMP code generation

The framework for automatic OpenMP code generation is implemented using, an

open source1 compiler optimization framework that uses a mathematical represen-

tation, the polyhedral model, to represent and transform loops and other control

flow structures. It is an effort towards achieving autoparallelism in programs.

The transformations are being implemented in LLVM(Low level virtual machine).

Polly can detect parallel loops, issue vector instructions and generate OpenMP

code corresponding to those loops. Polly try to expose more parallelism with the

help of polyhedral model. A loop which does not look parallel can be transformed

1http://llvm.org/releases/2.8/LICENSE.TXT

6

http://llvm.org/releases/2.8/LICENSE.TXT

to a parallel loop and these can be vectorized or parallelize using OpenMP. More

details on LLVM and Polly can be found in Chapter 3.

1.6 Outline of report

The organization of this report is as described here. In Chapter 2 we describe

the background required for understanding the polyhedral model. Chapter 3

deals with the internals of Polly - Polyhedral optimization in LLVM. Next chapter

consists of the details of the workdone for OpenMP code generation in Polly. Then

Chapter 5 explains the testing framework and shows the experimental results.

And the last chapter has the list of future projects that can be done on Polly and

we conclude with that.

7

CHAPTER 2

The Polyhedral Model

There are different types optimizations that can be performed on a program to

improve its performance. The optimization can be made for finding data locality

and hence extracting parallelism. Starting from the early history of programming

languages the internal representation of program is done with Abstract Syntax

Tree(AST). Though some elementary transformation can be performed on AST it

is tough to carry out complex transformations like dependency analysis among

statements inside a loop. Trees are very rigid data structures to do such transfor-

mations. In this chapter an extremely powerful mathematical model which puts

together analysis power, expressiveness and flexibility is explained in detail.

2.1 Program transformations with polyhedral model

In this section some of the common program transformations which can be realized

with the assistance of polyhedral model are explained. The polyhedral model is

not a normal representation of programs when compared to the classical structure

of programs(like AST) that every programmer is familiar with. But it is easier to

do transformations smoothly in this model.

2.1.1 Transformation for improving data locality

The polyhedral model can detect common array accesses which improves the data

locality. It is illustrated with a simple example.

f o r (i = 1 ; i <= 1 0 ; i++)

A[i] = 1 0 ;

f o r (j = 6 ; j <= 1 5 ; j ++)

A[j] = 1 5 ;

The two loops will be represented by two polyhedrons and it can find the

common array accesses starting from index 6 to 10 and the code can be transformed

as follows.

f o r (i = 1 ; i <= 5 ; i++)

A[i] = 1 0 ;

f o r (j = 6 ; j <= 1 5 ; j ++)

A[j] = 1 5 ;

2.1.2 Scalar expansion

f o r (i = 0 ; i < 8 ; i++)

sum += A[i] ;

With the support of memory access transformation in polyhedral model this loop

can be executed in parallel. It can be transformed to the code below where the

scalar ’sum’ is changed to array ’tmp’.

<c r e a t e and i n i t i a l i z e an array ’tmp ’ with s i z e 4>

f o r (i = 0 ; i < 8 ; i++)

tmp [i % 4] += A[i] ;

9

sum = tmp [0] + tmp [1] + tmp [2] + tmp [3] ;

With the help of some optimizer (like PLUTO[3]) the following code can be

generated, where the outer loop is parallel.

parfor (i i = 0 ; i i < 4 ; i i ++)

tmp [i i] = 0 ;

f o r (i = i i ∗ 2 ; i < (i i +1) ∗ 2 ; i++)

tmp [i i] += A[i] ;

sum = tmp [0] + tmp [1] + tmp [2] + tmp [3] ;

2.2 Polyhedral representation of programs

The polyhedral model does its transformations based on linear algebra and linear

programming. Certain parts of programs known as SCoPs(Static Control Part)

are represented in this model. A program part that can be represented using

polyhedral model is called SCoPs. Generally loops are the candidates for SCoPs.

There are some restrictions to the set of statements in the section of code to be

qualified as SCoP. Those are listed below.

• The set of statements in the loops should have bounds and conditionals
having affine functions(linear combination with constant) of surrounding
iterators and the parameters (constants whose values are unknown at compile
time).

• There should be structured control flow.

• Side effect free(Only pure functions are allowed)

There are efforts to increase the application domain of polyhedral model [2]

which shows most of the restrictions are artificial.

10

The representation of polyhedral model has three parts. Each of them is ex-

plained in detail with simple examples in the following sections.

2.2.1 Iteration domain

Consider the following loop.

f o r (i n t i = 2 ; i <= N; i++)

f o r (i n t j = 2 ; j <= N; j ++)

A[i] = 1 0 ; / / S1

Notice that the statement A[i]= 10 is denoted by S1. Even though this is a single

statement, considering the loop as a whole it has several statement instances along

the life time of the loop. Each statement instance has an iteration vector associated

with it. In general the iteration vector for S1 is (i,j). To be more precise each

statement instance has its own iteration vector. The set of all iteration vectors for

a given statement is called iteration domain of that statement. Since the value of

N is not known at compile time and the value is unchanged while runtime we call

N as parameter. Hence the above loop is parametric. For the above loop we can

write the iteration domain mathematically as

DS1 = {(i, j) ǫ Z2 | 2 ≤ i ≤ N ∧ 2 ≤ j ≤ N}

This is a subspace of Z2. To get a better view this can be represented graphically

as in Figure 2.1

Consider another example by just adding a conditional statement

f o r (i n t i = 2 ; i <= 6 ; i++)

f o r (i n t j = 2 ; j <= 6 ; j ++)

11

����������
N21

1

2

N

i >= 2 i <= N

j <= N

j >= 2

j

i

��
��
������������
������������
��������������
�
�
�
���
�
�
�
�����
�
�
�
�
��
��
��
������
��
��
��
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�����

����
����

��������

����

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 2.1: Graphical representation of iteration domain(S1)

i f (i <= j)

A[i] = 1 0 ; / / S2

And the iteration domain here is as below and the corresponding graphical repre-

sentation is shown in Figure 2.2

DS2 = {(i, j) ǫ Z2 | 2 ≤ i ≤ 6 ∧ 2 ≤ j ≤ 6 ∧ i ≤ j}

Now we will consider a more complicated example where the iteration domain is

subspace of Z3.

f o r (i n t i = −3; i <= 3 ; i++)

f o r (i n t j = −3; j <= 3 ; j ++)

f o r (i n t k = −3; k <= 3 ; k++)

i f (k <= j and (i + 4∗k) <= 4∗ j)

A[i] [j] = 1 0 ; / / S3

Iteration domain is as below and graphical representation is shown in Figure 2.3

12

����������
21

1

2

i >= 2

j >= 2

j

i

��
����
��������
�
�
�
���
�
�
�
�������
��
��
��
��
��
��
��
����������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�����

����
����

��������

����

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

6

6

i <= 6

j <= 6

Figure 2.2: Graphical representation of iteration domain(S2)

DS3 = {(i, j, k) ǫZ3 | −3 ≤ i ≤ 3 ∧ −3 ≤ j ≤ 3 ∧ −3 ≤ k ≤ 3 ∧ k ≤ j ∧ i + 4k ≤ 4 j}

It can be seen that the iteration domain is specified by set of constraints. When

those constraints are affine and depend only on the outer loop induction vari-

ables and parameters, the set of constraints defines a polyhedron (Z-polyhedron,

polyhedron for short). Hence it has got the name Polyhedral Model.

2.2.2 Schedule

The iteration domain does not give any information on the order of statements to be

executed. If there is no order specified among the execution of statements it means

that all the statements can be executed in parallel. But due to data dependences

this assumption may not be always true. So a method is devised to represent this

order of execution which is called scattering function. There are many kinds of

scattering in polyhedral model, as allocation, scheduling, chunking. For simplicity

we are dealing only with scheduling. We are free to select any scheduling for better

13

�2
�1

0
1

2
�2

�1
0

1
2

�2

�1

0

1

2

Figure 2.3: Graphical representation of iteration domain(S3)

transformation and hence better parallelism. Consider the following loop.

f o r (i = 0 ; i < 3 2 ; i++)

f o r (j 0 ; j < 1000 ; j ++)

A[i] [j] += 1 ; / / S4

We can define a scheduling(scattering) function:

φS4(i, j) = (i, j)

, which means that each iteration vector (i,j) in the iteration domain is associated

with a logical date. That is the statement instances need to be executed in the

lexicographical order of the logical date. Another possible scattering function

would be:

14

φ
′

S4
(i, j) = (j, i)

The code generated for this particular transformation is:

f o r (j = 0 ; j < 1000 ; j ++)

f o r (i = 0 ; i < 3 2 ; i++)

A[i] [j] += 1 ;

It can be observed that we just performed loop interchange. Consider another

schedule as follows

φ
′′

S4
(i, j) = {(i, j j, j) : j j mod 4 = 0 ∧ j j ≤ j < j j + 4}

Such a transformation can produce code which does strip mining, where we group

a set of operations into different blocks. These block by block execution can

improve data locality in some cases. The transformed code will look like:

f o r (j = 0 ; j < 1000 ; j ++)

f o r (i i = 0 ; i i < 3 2 ; i i += 4)

f o r (i = i i ; i < i i + 4 ; i++)

A[i] [j] += 1 ;

2.2.3 Access function

Consider a statement with array access A[i+j][i+N]. The access function corre-

sponding to this can be written as:

FA(i, j) = (i + j, i +N)

We can manipulate the access function for achieving better data locality and par-

allelism.

15

Transformations in
polyhedral modelStatic dependence

 analysis of input
 program

Codegeneration of
transformed program

* Schedule
* Access function

* Iterationdomain

Figure 2.4: Transformation in polyhedral model

In general any optimization framework which makes use of polyhedral model

will transform the code through the blocks shown in Figure 2.4. As the first

stage dependence analysis is carried out followed by representing it by polyhedral

model in terms of iteration domain, schedule and access function. This is further

transformed for better optimization and code is generated for this.

16

CHAPTER 3

Polly - Polyhedral Optmizations in LLVM

This chapter deals with the internals of Polly - Polyhedral Optimization in LLVM1.

3.1 Introduction to LLVM

LLVM(Low level virtual machine)[8] is a collection of reusable compiler toolchain

technologies that allows sophisticated program transformations to be performed

with much ease. The major feature of LLVM is its low level intermediate repre-

sentation (LLVM-IR) which captures very minute details(like size and type of a

variable) of the program code. Such details would be handy to implement effective

optimizations. Tools are already available to convert programs written in popular

programming languages like C, Python, Java, etc. to LLVM-IR and back. Polly

operates on LLVM-IR, which increases the range of programming languages that

gets benefited. A complete list of documents for LLVM is available here2

3.2 Introduction to Polly

Today, effective polyhedral techniques exist to optimize computation intensive pro-

grams. Advanced data-locality optimizations are available to accelerate sequential

1http://llvm.org
2http://llvm.org/docs/

http://llvm.org
http://llvm.org/docs/

programs [3]. Effective methods to expose SIMD and thread-level parallelism were

developed.

Yet, the use of programming-language-specific techniques significantly limits

their impact. Most polyhedral tools use a basic, language specific front end to ex-

tract relevant code regions. This often requires the source code to be in a canonical

form, disallowing any pointer arithmetic or higher level language constructs like

C++ iterators and prevents the optimization of programs written in languages like

Java or Haskell. Nevertheless, even tools that limit themselves to a restricted sub-

set of C may apply incorrect transformations, as the effects of implicit type casts,

integer wrapping or aliasing are mostly ignored. To ensure correctness manual

annotation of code that is regarded safe to optimize is often required. This prevents

automatic transformations and consequently reduces the impact of existing tools.

With Polly we are developing a state-of-the-art polyhedral infrastructure for

LLVM, that supports fully automatic transformation of existing programs. Polly

detects and extracts relevant code regions without any human interaction. Since

Polly accepts LLVM-IR as input, it is programming language independent and

transparently supports constructs like C++ iterators, pointer arithmetic or goto

based loops. It is built around an advanced polyhedral library and includes a state-

of-the-art dependency analysis. Due to a simple file interface it is easily possible

to apply transformations manually or to use an external optimizer. We use this

interface to integrate Pluto [3], a modern data locality optimizer and parallelizer.

With integrated SIMD and OpenMP code generation, Polly automatically takes

advantage of existing and newly exposed parallelism.

This chapter focuses on concepts of Polly which are new or little discussed in

18

Figure 3.1: Architecture of Polly

the polyhedral community.

3.3 Implementation

Polly is designed as a set of compiler internal analysis and optimization passes.

They can be divided into front end, middle end and back end passes. The front

end translates from LLVM-IR into a polyhedral representation, the middle end

transforms and optimizes this representation and the back end translates it back

to LLVM-IR. In addition, there exist preparing passes to increase the amount of

analyzable code as well as passes to export and reimport the polyhedral represen-

tation. Figure 3.1 illustrates the overall architecture.

To optimize a program manually three steps are performed. First of all the

program is translated to LLVM-IR. Afterwards Polly is called to optimize LLVM-

IR and target code is generated. The LLVM-IR representation of a program can be

19

obtained from language-specific LLVM based compilers. clang is a good choice.

Polly also provides a gcc like user interface that is called pollycc.

3.3.1 LLVM-IR to polyhedral model

To apply polyhedral optimizations on a program, the first step that needs to be

taken is to find relevant code sections and create a polyhedral description for them.

The code sections that will be optimized by Polly are static control parts (SCoPs),

the classical domain of polyhedral optimizations.

Region-based SCoP detection

Polly implements a structured, region-based approach to detect the SCoPs avail-

able in a function. It uses a refined version of the program structure tree described

by Johnson [7].

A region is a subgraph of the control flow graph (CFG) that is connected to

the remaining graph by only two edges, an entry edge and an exit edge. Viewed

as a unit it does not change control flow. Hence, it can be modelled as a simple

function call, which can easily be replaced with a call to an optimized version of

the function. A canonical region is a region that cannot be constructed by merging

two adjacent smaller regions. A region contains another region if the nodes of one

region are a subset of the nodes of the other region. A tree is called region tree,

if the nodes of it are canonical regions and the edges are defined by the contains

relation.

To find the SCoPs in a function we look for the maximal regions that are valid

20

f o r (i = 0 ; i < n + m; i++)
A[i] = i ;

Figure 3.2: A valid syntactic SCoP. Not always a valid semantic SCoP

SCoPs. Starting from the outermost region, we look for canonical regions in the

region tree that are valid SCoPs. In case the outermost region is a valid SCoP,

we store it. Otherwise, we check each child. After analyzing the tree, we have a

set of maximal canonical regions that form valid SCoPs. These regions are now

combined to larger non-canonical regions such that the maximal non-canonical

regions that form valid SCoPs are found.

Semantic SCoPs

In contrast to approaches based on the abstract syntax tree (AST), Polly does not

require a SCoP to match any specific syntactic structure. Instead, it analyzes the

semantics of a SCoP. We call SCoPs that are detected based on semantic criteria

semantic SCoPs.

A common approach to detect a SCoP is to analyze an AST representation of

the program, that is close to the programming language it is implemented in. In

this AST control flow structures like for loops and conditions are detected. Then

it is checked if they form a SCoP. Refer to Chapter 2 for the common restrictions

that need to be met for a SCoP. There are various ways to extend this definition of

a SCoP, which we did not include in this basic definition.

The detection of SCoPs as shown in Figure 3.2 with an AST based approach

is easily possible, however as soon as programs become more complex and less

21

canonical difficulties arise. The AST of a modern language is often very expressive,

such that there exist numerous ways a program can be represented. Sometimes

different representations can be canonicalized. However, as soon as goto based

loops should be detected, various induction variables exist or expressions are

spread all over the program, sophisticated analyses are required to check if a

program section is a SCoP. Further difficulties arise through the large amount of

implicit knowledge that is needed to understand a programming language. A

simple, often overlooked problem is integer wrapping. Assuming n and m are

unsigned integers of 32 bit width, it is possible that n + m < n holds. The upper

bound in the source code must therefore be represented as n + m mod 232, but no

polyhedral tool we know of models the loop bound in this way. Further problems

can be caused by preprocessor macros, aliasing or C++ (operator) overloading.

We believe even standard C99 is too complex to effectively detect SCoPs in it.

Tools like PoCC, avoids this problem by requiring valid SCoPs to be explicitly

annotated in the source code. However, this prevents any automatic optimization

and significantly limits the impact of polyhedral techniques.

Fortunately, after lowering programs to LLVM-IR the complexity is highly re-

duced and constructs like implicit type casts become explicit. Furthermore, it

is possible to run a set of LLVM optimization passes, that further canonicalize

the code. As a result, an analysis that detects SCoPs based on their semantics is

possible. LLVM-IR is a very low-level representation of a program, which does

not have loops, but jumps and gotos and has no arrays or affine expressions, but

pointer arithmetic and three address form operations. From this representation all

necessary information is recomputed using advanced compiler internal analyses

available in LLVM. Simple analyses used are loop detection or dominance infor-

22

int A[1024];

void pointer_loop () {

int *B = A;

while (B < &A[1024]) {

*B = 1;

++B;

}

}

Figure 3.3: Valid semantic SCoPs

mation to verify a SCoP contains only structured control flow. More sophisticated

ones check for aliasing or provide information about side effects of function calls.

As Polly successfully recovers all necessary information from a low-level repre-

sentation, there are no restrictions on the syntactic structure of the program source

code. A code section is accepted as soon as the LLVM analyses can prove that

it has the semantics of a SCoP. As a result, arbitrary control flow structures are

valid if they can be written as a well-structured set of for-loops and if-conditions

with affine expressions in lower and upper bounds and in the operands of the

comparisons. Furthermore, any set of memory accesses is allowed as long as they

behave like array accesses with affine subscripts. A loop written with do..while

instead of for or fancy pointer arithmetic can easily be part of a valid SCoP. To

illustrate this an example is shown in Figure 3.3.

3.3.2 Polyhedral model

The integer set library

Polly uses isl, an integer set library developed by Verdoolaege [10]. Isl natively

supports existentially quantified variables in all its data structures; therefore, Polly

23

also supports them throughout the whole transformation. This enables Polly to

use accurate operations on Z-polyhedra instead of using polyhedra in the ratio-

nals as approximations of integer sets. Native support of Z-polyhedra simplified

many internal calculations and we expect it to be especially useful to represent the

modulo semantics of integer wrapping and type casts.

Composable polyhedral transformations

Polly uses the classical polyhedral description [5] that describes a SCoP as a set of

statements each defined by a domain, a schedule and a set of memory accesses.

For more details refer to Chapter 2.

In contrast to most existing tools the domain of a statement cannot be changed

in Polly. All transformations need to be applied on the schedule. There are two

reasons for this. First, we believe it is conceptually the cleanest approach to use the

domain to define the set of different statement instances that will be executed and to

use the schedule for defining their execution times. As the set of different statement

instances never changes there is no need to change the domain. The second reason

is to obtain compositionality of transformations. As transformations on SCoPs

are described by schedules only, the composition of transformations is simply the

composition of the relations representing the schedules.

Export/Import

Polly supports the export and reimport of the polyhedral description. By importing

an updated description with changed schedules a program can be transformed eas-

24

ily. To prevent invalid optimizations Polly automatically verifies newly imported

schedules. Currently Polly supports the Scoplib exchange format, which is used

by PoCC and Pluto [3]. Unfortunately, the Scoplib exchange format is not expres-

sive enough to store information on existentially quantified variables, schedules

that include inequalities or memory accesses that touch more than one element.

Therefore, we have introduced a simple JSON[4] and isl based exchange format to

experiment with those possibilities.

3.3.3 Polyhedral model to LLVM-IR

Polly uses CLooG [1] to translate the polyhedral representation back into a generic

AST. This AST is then translated into LLVM-IR based loops, conditions and ex-

pressions.

Detecting parallel loops

Polly can detect parallel loops automatically and generates, if requested, thread-

level parallel code by inserting calls to the GNU OpenMP runtime. This is targeted

to automatically take advantage of parallelism present in the original code or ex-

posed by previously run optimizers. To ensure correctness of generated code Polly

does not rely on any information provided by external optimizers, but indepen-

dently detects parallel loops. We present a novel approach how to detect them.

For details refer to Chapter 4

25

3.4 Related work

The work in Polly was inspired by ideas developed in the Graphite project [9], yet

Polly uses novel approaches in many areas. For instance, Graphite did not include

a structured SCoP detection, even though currently a SCoP detection similar to the

one in Polly is developed. Furthermore, Graphite works on the GCC intermediate

representation, which is in several areas higher level than LLVM-IR, such that

several constructs like multi-dimensional arrays are easily available. Internally

Graphite still uses a rational polyhedral library and only in some cases relies on

an integer linear programming solver. Graphite uses the classical parallelization

detection before code generation and is not yet closely integrated with the OpenMP

code generation. In contrast to Polly, it has been tested for several years and is

reaching production quality.

The only other compiler with an internal polyhedral optimizer we know of

is IBM XL/C. Unfortunately, we could not find any information on how SCoP

detection and code generation is done. There exists a variety of source to source

transformation tools such as Pluto [3], PoCC or LooPo.

26

CHAPTER 4

OpenMP Code Generation in Polly

4.1 Introduction

Transformations in Polly create loops that are executed in parallel, as if the user

would have added some OpenMP pragmas. To achieve this, code generation

needs to emit code that calls OpenMP library functions to be executed in parallel.

The GNU OpenMP Library(libgomp) is used for this purpose. The dependency

analysis module of Polly automatically detects parallel loops(SCoPs) and are given

to OpenMP code generation module. Here we generate the required libgomp

library calls. The generated code is similar to the one generated if the user have

added OpenMP pragmas1. The following sections explain the steps taken towards

generating the OpenMP code. The generated code is in LLVM IR format.

4.2 The framework

To get an understanding about OpenMP codegeneration in Polly consider the

Figure 4.1.

A code written in any programming language(supported by LLVM) can be

coverted into LLVM IR. Polly performs its transformations on LLVM IR and can

1http://gcc.gnu.org/onlinedocs/libgomp/Implementing-FOR-construct.html

http://gcc.gnu.org/onlinedocs/libgomp/Implementing-FOR-construct.html

LLVM IR
Sequential

Manually Annotated
Source code

Parallel
LLVM IR1

Parallel
LLVM IR2

Source code

Executable 1

Clang Polly OpenMP llvm−gcc

Executable 2 Executable 3

(Automatic) (Manual)

Figure 4.1: The framework

automatically generate IR (Parallel LLVM IR1) with OpenMP library calls. With

manual annotation with OpenMP pragmas we can generate LLVM IR(Parallel

LLVM IR2) using llvm-gcc. Parallel LLVM IR1 and Parallel LLVM IR2 will look

similar and if we generated executable for both we are getting same performance.

In short Polly with OpenMP support is as powerful as manual OpenMP annotated

code with added advantage of automatic code generation.

4.3 Code generation pass in Polly

Refer to the detailed control flow in Polly in Figure 4.2. Each of the module in

Polly is implemented as a LLMV pass2. We have to generate the OpenMP code in

2http://llvm.org/docs/WritingAnLLVMPass.html

28

http://llvm.org/docs/WritingAnLLVMPass.html

l

 Build Z−polyhedra
 (isl, Domain, Schedule
 memory access)

SCoP DetectionLLVM−IR
Maximal Valid
non−canonical

regions marked
as SCoP

Polyhedral

Representation

Front End

Polyhedral

Input to
ClooG

Apply Tranformations
only on Schedule
(Domain Untouched)

Transformed
Polyhedral

Representation
hedral representation
(scoplib/ json, isl)

Pluto through Pocc/
Optimization with

proposed libpluto
library

Export the new poly−

CLooG
Detect

Parallelism

OpenMP/
SIMD/
Sequential
Codegeneration

LLVM−IRAST

Middle End

Back End

Figure 4.2: Detailed control flow in Polly

the code generation pass of Polly(CodeGeneration.cpp). LLVM does the magic of

running this code generation pass for each of the detected SCoP. The runOnScop

function initiates this. This function gather the required information by running

all passes(ScalarEvolution, LoopInfo, CloogInfo, SCopDetection, etc.). The current

pass can refer to the output of those passes as and when required.

While generating the code for a loop we check whether this loop is parallel

or not. If it is parallel instead of generating the normal sequential code, loop

is embedded in libgomp library calls. The approach for detecting parallelism is

explained in the next section.

4.4 Detecting parallelism in Polly

A common approach to detect parallelism is to check before code generation, if a

certain dimension of the iteration space is carrying dependences. In case it does not,

29

the dimension is parallel. This approach can only detect fully parallel dimensions.

However, during the generation of the AST, CLooG may split loops such that a

single dimension is enumerated by several loops. This may happen automatically,

when CLooG optimizes the control flow. With the classical approach either all split

loops are detected as parallel or no parallelism is detected at all.

The approach taken in Polly detects parallelism after generating the generic

AST and calculates for each generated for-loop individually if it can be executed in

parallel. This is achieved by limiting the normal parallelism check to the subset of

the iteration space enumerated by the loop. To obtain this subset we implemented

an interface to directly retrieve it from CLooG. As a result, we do not need to

parse the AST to obtain it. With this enhanced parallelism check parallel loops

in a partial parallel dimension can be executed in parallel, even though there

remain some sequential loops. This increases the amount of parallel loops that

can be detected in unoptimized code and removes the need for optimizers to place

parallel and sequential loops in different dimensions.

Polly automatically checks all generated loops and introduces OpenMP paral-

lelism for the outermost parallel loops. By default it assumes parallel execution

is beneficial. Optimizers that can derive that for some loops sequential execution

is faster may provide hints to prevent generation of OpenMP code. Polly could

incorporate such hints during code generation easily, as they do not infect the

correctness of the generated code.

30

4.5 Generating OpenMP library calls

Typically when a user want to run a particular section of the code in parallel

he/she annotate the code with OpenMP pragmas. The compiler will then convert

this pragmas into the corresponding library calls. In Polly the approach taken is

to generate these calls automatically when a loop is detected as parallel. Consider

the for loop below to have a basic understanding about what is to be done.

f o r (i n t i = 0 ; i <= N; i++)

A[i] = 1 ;

This is detected as a parallel and given for OpenMP code generation. Here

the following sequence of GOMP library calls with proper arguments and return

types(signature) has to be generated in LLVM IR format. A general outline of the

steps are given here and we enter into the implementation details.

• GOMP parallel loop runtime start

• subfunction

• GOMP parallel end

The control flow graph corresponding to the previous example is shown in

Figure 4.3 The code for body of the for loop is generated inside the subfunction

which has the following GOMP library calls to achieve the necessary parallelism.

• GOMP loop runtime next

• GOMP loop end nowait

The signature and descriptions of each of the above functions can be found in

in libgomp manual3.

3http://gcc.gnu.org/onlinedocs/libgomp/

31

http://gcc.gnu.org/onlinedocs/libgomp/

call void@foo.omp_subfn

call void @GOMP_parallel_loop_runtime_start

call void@GOMP_parallel_end
br label %polly.after _loop.region

polly.after_loop.region:

br label %polly.after_loop

()

polly.loop_body:

br label %polly BB
%indvar=phi i32{0,%entry}

%omp_data,i32 0,i32 0,i32 100,i32 1)(void(i8 *)*@foo.omp_subfn.i8*
(i8*%omp_data)

PollyBB

%o=getelementptr inbounds %foo.omp_subfn.omp.userContext * %omp.userContext
%omp.userConyext=alloca %foo.omp_subfn.omp.userContext
%insertInst=Zext i1 true to i16

* %omp.userContext, i32 0,i32 0
store [100 x float]*@A,[100xfloat]**%0
%omp_data=bitcast %foo.omp_subfn.omp.userContext * %omp.userContext to i8*

Figure 4.3: CFG showing sequence of OpenMP library calls

The very first step is to create the prototype for each of the functions in LLVM-IR

format4. Code for generating prototype for ”GOMP parallel end” is given below.

Module ∗M = Bui lder . Get Inser tB lock ()−> getParent ()−> getParent () ;

LLVMContext &Context = Bui lder . getContext () ;

i f (!M−>getFunct ion (” GOMP parallel end ”)) {

FunctionType ∗FT = FunctionType : : get (Type : : getVoidTy (Context) , f a l s e) ;

Function : : Create (FT , Function : : ExternalLinkage , ” GOMP parallel end ” , M) ;

}

The first line gets the global module(M) where we store the information about

the function to be created. The ’Builder’ function gives the current place to insert

instructions. The ’FunctionType::get’ method puts the types of arguments and

return type and ’Function::Create’ create and insert the prototype into the code. In

4http://llvm.org/docs/tutorial/LangImpl3.html#funcs

32

http://llvm.org/docs/tutorial/LangImpl3.html#funcs

a similar manner all the prototypes for other functions are created.

The next step is to insert calls to the library calls. These calls replaces the

sequential code for the original loop and the body of the loop is embedded in the

OpenMP subfunction which is going to be exectuted as an OpenMP thread. Here

is the code to create call to ”GOMP parallel end”:

Function ∗FN = M−>getFunct ion (” GOMP parallel end ”) ;

Bui lder . CreateCal l (FN) ;

The next step which is more interesting is to create the body of the subfunction

which involves the difficult process of linking the basic blocks in proper manner.

Here is the code to generate an empty body for the subfunction:

LLVMContext &Context = FN−>getContext () ;

/ / Create a new b a s i c block to s t a r t i n s e r t i o n i n t o .

Bas icBlock ∗BB = BasicBlock : : Create (Context , ” entry ” , FN) ;

/ / Store the previous b a s i c block .

Bas icBlock ∗PrevBB = Builder−>Get Inser tB lock () ;

/ / Add the return i n s t r u c t i o n .

Builder−>S e t I n s e r t P o i n t (BB) ;

Builder−>CreateRetVoid () ;

/ / Restore the bui lder back to previous b a s i c block .

Builder−>S e t I n s e r t P o i n t (PrevBB) ;

This is just a basic code to create basic block ’BB’ with label ’entry’ The

’SetInsertPoint’ function can be used to insert code in a particular basic block.

The complete control flow graph for the subfunction body of a typical for loop

will look like Figure 4.4. In the basic block labelled ’omp.checkNext’ we call

”GOMP loop runtime next” which finds the upper and lower bound of each

OpenMP thread. In the basic block with label ’polly.loop body’ we generate the

sequential code for the loop.

33

CFG for ’parallel_loop_simple.omp_subfn’ function

omp.setup

omp.checkNext

T F

omp.exitomp.loadIVBounds

polly.loop_header

T F

polly.loop_body polly.after_loop

polly.stmt_bb5

Figure 4.4: CFG showing basic blocks in the subfunction body

4.6 Support for inner loops

So far OpenMP code created apply only for outermost loops, which is detected as

SCoP. Next step is to do it for inner loops. Due to dependency issues the outer loop

is not detected as SCoP, but innerloop can be safely parallelized as in the following

example.

f o r (i n t i = 0 ; i < M; i++)

f o r (i n t j = 0 ; j < N; j ++)

A[i] [j] = A[i −1] [j] + B [i −1] [j] ;

Those loops need the values of the surrounding induction variables and pa-

rameters in the OpenMP subfunction. We need to pass the values of the outer

induction variables in a structure to the subfunction. All the required variables

were already available in a data structure used by Polly. We just needed to copy

34

those into the body of the subfunction so that it can refer those whenever needed.

4.7 Dealing with memory references

def ine N 10

void foo () {

f l o a t A[N] ;

f o r (i n t i =0; i < N; i++)

A[i] = 1 0 ;

re turn ;

}

Consider the above code segment. The ’for’ loop will be detected as parallel by

Polly and will be embedded in the body of the OpenMP subfunction. But it accesses

a non-global array ’A’ and so accessing the same will not be possible inside the

subfunction. The approach for solving this issue is explained below.

4.7.1 Adding memory references

The base addresses of all memory references made by a statement is available in

each statement instance. Prior to creating the body of the subfunction we add

all these base addresses are added into the same data structure where we stored

the induction variables and parameters. And then it is added to the subfunction

structure.

35

4.7.2 Extracting memory references

Inside the body of the subfunction the base addresses are extracted from the

subfunction structure and a new LLVM load instruction is created for each. The

new base addresses mapped to the old addresses so that any future references are

made on the new addresses.

4.8 Enabling OpenMP code generation in Polly

Refer to Appendix A for setting up the environment for Polly. Here we describe the

steps to generate OpenMP code in Polly. The easiest way to create the executable

for a program with OpenMP support is by using the ’polycc’ utility which is

available in ’utils’ directory under Polly source tree. Suppose you want to build a

C file named ’a.c’ issue the commands

export LIBPOLLY=<path to cmake>/ l i b /LLVMPolly . so

p o l l y c c − f p o l l y − f p a r a l l e l a . c

Polly is built as a shared library as LLVMPolly.so.

If we need more debugging options we can use the ’opt’ command, which is

the optimizer command for LLVM.

Generate the LLVM−IR f i l e s from source code .

clang −S −emit−llvm a . c

a l i a s opt=”opt −load $LIBPOLLY

Apply opt imizat ions to prepare code f o r pol ly

opt −S −mem2reg −loop−s i m p l i f y −indvars a . c −o a . preopt . l l

36

Generate OpenMP code with Pol ly

opt −S −polly−codegen −enable−polly−openmp a . preopt . l l −o a . l l

Link with libgomp

l l c a . l l −o a . s

llvm−gcc a . s −lgomp

4.9 OpenMP testcases

Polly follows the LLVM testing infrastrcutre5 to add regression testcases. Testcases

for OpenMP are added into ’test/Codegen/OpenMP’ directory under Polly source

tree. The tests can be carried out by just issuing the command ’make polly-test’

from the ’cmake’ build directory.

5http://llvm.org/docs/TestingGuide.html

37

http://llvm.org/docs/TestingGuide.html

CHAPTER 5

Testing With PolyBench

This chapter deals with the experiments performed and the results obtained for

our framework. The performance of OpenMP code generated by Polly compared

with that of the code generated by various compilers on various machines. In the

first section a simple program is tested to show that we get similar performance as

that of a program having manual OpenMP annotations. Then in the next section

we deal with test cases available in the PolyBench benchmark.

5.1 A simple test case

The following loop is tested on different machines and the results are shown in the

Table 5.1.

f o r (i = 0 ; i < 1024 ; i++) {

f o r (j = 0 ; j < 5000000 ; j ++)

A[i] += j ;

}

The comparison is made in four different machines with the code compiled

with

• Clang1 which generates only serial code (Serial Execution).

• Polly with OpenMP enabled which generates necessary OpenMP code auto-
matically (Automatic Parallelization).

1http://clang.llvm.org

http://clang.llvm.org

• GCC with OpenMP enabled. Here the user have to give the OpenMP prag-
mas manually (Manual Parallelization).

Serial Exe-
cution

Automatic
Paralleliza-
tion(Polly)

Manual
Paralleliza-
tion(GCC)

Intel Core 2 Duo(32 Bit OS) 9.509s 4.852s 4.835s
Intel Core 2 Duo(64 Bit OS) 6.40s 3.32s 3.50s
Intel Core i5(64 Bit OS) 6.96s 3.78s 3.75s
AMD Engineering Sample(24 Core)(64 Bit OS) 17.039s 0.757s 0.796s

Table 5.1: Performance Comparison

It can be observed that when OpenMP is enabled in Polly we are getting a

performance almost similar to GCC with OpenMP pragmas provided by the user

manually, which is the expected result. More speedup is obtained in the 24 Core

machine.

5.2 PolyBench

The framework is tested with polyBench 1.02 and the results are shown in the next

section. PolyBench is a set of computationally intensive programs often used in the

polyhedral community. There are benchmarks from linear algebra, datamining,

stencil computation and solver and manipulation algorithms operating on matri-

ces. On those benchmarks Polly extracts the relevant SCoPs and optimizes them

automatically.

39

2mm adi
correlation

covariance doitgen gemm
jacobi-2d-imper seidel0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ru
nt

im
e(

s)

Polybench results(2 Core 32bit)

gcc
graphite
polly with openmp

Figure 5.1: Performance comparison(2 core 32 bit)

2mm adi
correlation

covariance doitgen gemm
jacobi-2d-imper seidel0.0

0.5

1.0

1.5

2.0

Ru
nt

im
e(

s)

Polybench results(2 Core 64bit)

gcc
graphite
polly with openmp

Figure 5.2: Performance comparison(2 core 64bit)

40

2mm adi
correlation

covariance doitgen gemm
jacobi-2d-imper seidel0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ru
nt

im
e(

s)

Polybench results(10-Core 64bit)

gcc
graphite
polly with openmp

Figure 5.3: Performance comparison(10-core 64 bit)

5.3 Experimental results

The OpenMP code generated by Polly is compared with gcc and graphite[9]. With

gcc we make a comparison with serial execution and with graphite we make

comparison with an existing autoparallelization framework, which is also based

on polyhedral model. The tests are carried out in 3 different machine with the

following configurations

• Intel Core 2 Duo with 32 Bit OS

• Intel Core 2 Duo with 64 bit OS

• 10-Core AMD Engineering Sample with 64 Bit OS

The 10-core machine is part of GCC compile farm3. The GCC Compile farm

project maintains a set of machines of various architectures and provides ssh

2http://www-roc.inria.fr/˜pouchet/software/polybench/
3http://gcc.gnu.org/wiki/CompileFarm

41

http://www-roc.inria.fr/~pouchet/software/polybench/
http://gcc.gnu.org/wiki/CompileFarm

access to free software developers, GCC and others. Once the account application

is approved, we get full ssh access to all the farm machines. Then we are free to

install any packages and test our work. The only prerequisite to get access is that

we should be an active contributer for at least one free software project.

The script for testing is given below and the results are shown in the graphs in

Figures 5.1, 5.2 and 5.3.

s e r i a l

gcc − I u t i l i t i e s u t i l i t i e s / instrument . c −DPOLYBENCH TIME \

−DPOLYBENCH DUMP ARRAYS −O3 $1 −lm

Autopar with graphi te

n = 4 # n = 2 f o r 2 core , n = 10 f o r 10− core

gcc − I u t i l i t i e s u t i l i t i e s / instrument . c −DPOLYBENCH TIME \

−DPOLYBENCH DUMP ARRAYS −O3 −f loop−in terchange \

−f loop−block −f loop−p a r a l l e l i z e −a l l \

− f t r e e −p a r a l l e l i z e −loops=$n $1 −lm

Autopar with pol ly OpenMP

p o l l y c c − f p o l l y − f p a r a l l e l − I u t i l i t i e s u t i l i t i e s / instrument . c \

−DPOLYBENCH TIME −DPOLYBENCH DUMP ARRAYS $1 −lm

While we look into the results it can be observed that Polly with OpenMP

support shows nice performance other than the benchmarks ’adi’ and ’seidel’. The

reason for this is, due to dependences, the parallelism detection algorithm available

in Polly is not able to detect the kernel of these testcases as parallel. Consider the

kernel of ’seidel’ given below.

f o r (t = 0 ; t <= t s t e p s − 1 ; t++)

f o r (i = 1 ; i<= n − 2 ; i++)

f o r (j = 1 ; j <= n − 2 ; j ++)

A[i] [j] = (A[i −1] [j −1] + A[i −1] [j] + A[i −1] [j +1]

42

+ A[i] [j −1] + A[i] [j] + A[i] [j +1]

+ A[i +1] [j −1] + A[i +1] [j] + A[i +1] [j + 1]) / 9 . 0 ;

This has some loop carried dependences due to which Polly fails to detect

parallelism. In this case Polly can get help from PLUTO optimizations. PLUTO

can transform the loop in a way that some parallelism can be extracted. It is

observed that OpenMP code is generated in this way. But the result was not im-

proved at least in case of ’seidel’. It was improved when the OpenMP scheduling

policy is changed. The default scheduling policy set while generating OpenMP

code is ’runtime’, using which the user can provide one of the three scheduling

algorithms(’static’, ’guided’, ’dynamic’). This can be set at runtime with the en-

vironment variable ’OMP SCHEDUlE’. The performance of ’seidel is improved

with ’OMP SCHEDULE’ set to ’guided’ with ’PLUTO’. But for ’adi’ even with-

out help from PLUTO, just setting ’OMP SCHEDULE’ was enough to improve

performance. The results are shown in Table 5.2

Serial Exe-
cution

Polly +

OpenMP
Polly +

PLUTO +

OpenMP

2 Core 32 Bit 0.417174s 0.591673s 0.348909s
2 Core 64 Bit 0.310160s 0.459641s 0.254605s

Table 5.2: Performance improvement of seidel

Another interesting result observed is when ’seidel is tested in 10-core machine

with larger data size(N=4096). There is significant variations when the OpenMP

parameters are tuned to different values. Optimizations is done with the com-

bination of Polly and PLUTO. The scheduling policy is set to ’guided’ and other

parameters(chunk size and number of OpenMP threads) are varied. The results

are show in Table 5.3

43

h
h
h

h
h
h

h
h
h
h

h
h
h

hh

No of threads
Chunk size

512 256 128

default 12.930170s 11.254353s 37.003882s
10 15.433336s 14.657253s 14.518356s
5 14.002886s 12.283284s 14.018281s
2 16.649145s 18.778266s 18.013177s

Table 5.3: Performance of seidel with different OpenMP parameters

A sub project for Polly is already planned to increase the coverage and per-

formance of Polly, which will consider various possibilities for improvement. For

details refer to Chapter 6.

44

CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

Polly integrated with automatic OpenMP code generation helps users to realize

parallelism without much worries about the internals of the program. Lot of effort

and programming time can be saved because the approach eliminates the need for

manually finding parallelism and providing annotation. Since the optimizations

are performed on LLVM-IR the framework is not restricted to only C/C++, but al-

so supports a wide range of other programming languages. Powerful polyhedral

techniques are available to optimize programs, but their impact is still limited.

The main reasons are difficulties to optimize existing programs automatically and

generate parallel code. Polly and its integrated OpenMP support is an attempt

to strengthen the impact. There is enough space for further enhancements and

anybody interested can make their contribution. There are lot of possibilities for

improving Polly. Some of the subprojects that can be done are discussed here.

6.2 Support for memory access transformations in Polly

An improvement that can be made to polly is to add support for memory access

transformations in Polly. In many cases it would be great to change the pattern of

memory access to obtain better data locality. This can remove dependences that

would otherwise block transformations and it can allow LLVM to use registers to

store such values.

Polly performs its optimization on LLVM-IR based on the polyhedral model.

Currently the transformations can be applied on Schedule (Order of computations)

Transformations can also be applied on the Memory Access (Pattern of memory

access). A proper memory access transformation can improve data locality. This

will in turn improve parallelism.

6.3 Increasing coverage of Polly

Polly (Polyhedral optimization framework in LLVM) is showing very nice results

for several testcases. Yet, lot of larger test cases needs to be improved. we can

explore the reasons for this, find solutions for those and implement it. There are

two parts for this.

6.3.1 Increasing SCoP coverage

The number of SCoPs detected need to be improved. This can be called as ”In-

creasing SCoP Coverage”.

Expressions like min, max, sext, zext, trunc or unsigned comparisons in the

loop bounds or memory accesses are not handled in the current implementation.

For example consider the following loop.

f o r (i n t i = 0 ; i < N; i++)

A[i] = B [i] + C[i] ;

46

In this case a sext is necessary if the code is translated to LLVM-IR and keep i as

an i32 and use an i64 to calculate the access to A[i]. This is not currently handled

in Polly.

Overflows NSW(No signed wrap) or NUW(No unsigned wrap) are not handled

in the current implementation. So it is not safe to compile a large project with Polly.

Polly can be tested with large benchmarks like SPEC and there is a very high

possibility for finding areas which are not detected as SCoPs. It will be interesting

to explore the reasons for this fix it.

6.3.2 Increasing the system coverage

Some of the testcases are failing when Polly is tested in machines which does

not have 64-bit Operating system. This needs to be fixed and can be called as

”Increasing the System Coverage”. This can also be treated as porting to Polly

to more architectures. A solution for this issue could be to derive the data type

needed by the maximal possible value a variable can have.

6.4 Integrating profile guided optimization into Polly

An improvement that can be made to Polly is integrating profile guided optimiza-

tion [6]. The idea is explained below with a few examples. Consider the following

code.

scanf (”%d” , &b) ;

f o r (i = 0 ; i < N; i += b) {

body ;

47

}

Polly will not detect this as a SCoP because the variable b is read as a user input.

So to detect this as a SCoP we instrument the IR with the information provided by

profiling. Suppose using profiling we figure out that most of the time the value of

b is say 2. we can convert the above code as follows.

scanf (”%d” , &b) ;

i f (b == 2) {

f o r (i = 0 ; i < N; i += 2) {

body ;

}

} e l s e {

f o r (i = 0 ; i < N; i += b) {

body ;

}

}

Now with the transformed code the for loop inside ’if’ will be detected as a

SCoP and can be parallelised. Since value of b is 2 most of the time, the overall

performance will be improved.

Consider another scenario.

f o r (i = 0 ; i < N; i++) {

body ;

}

Suppose using profiling we know that N is always very small. So there will

not be much gain from parallelising it. So we have to tell polly that do not detect

this as a SCoP if N is less than a specific value. Integrating such versioning we can

expect to get heavily optimized performance for some often used cases.

48

APPENDIX A

Setting up the environment

The source code for Polly can be downloaded from http://repo.or.cz/w/polly.git.

This section describes how to set up the environment to work with Polly. We

have to install libgmp, llvm-gcc/clang executables, cmake, llvm, ClooG, Pocc and

scoplib. libgmp, llvm-gcc/clang and cmake can be installed using the package

management system of the operating system. Installing others are explained below

A.1 CLooG

Get the source code of ClooG using the command

g i t c lone g i t : / / repo . or . cz / cloog . g i t

Get the required submodules and build it

cd cloog

. / get submodules . sh

. / autogen . sh

. / conf igure −−with−gmp−p r e f i x =/path / to /gmp / i n s t a l l a t i o n \

−−p r e f i x =/path / to / cloog / i n s t a l l a t i o n

make

make i n s t a l l

A.2 PoCC

Get a released source code of PoCC with

wget ht tp : / /www. cse . ohio−s t a t e . edu / ˜ pouchet / software / \

pocc / download / pocc−1.0− rc3 .1− f u l l . t a r . gz

Extract the tarball and build

t a r xzf pocc−1.0− rc3 .1− f u l l . t a r . gz

cd pocc−1.0− rc3 . 1

. / i n s t a l l . sh

export PATH= ‘pwd‘ / bin

A.3 Scoplib

Get a released source code of Scoplib with

wget ht tp : / /www. cse . ohio−s t a t e . edu / ˜ pouchet / software / \

pocc / download /modules / scopl ib − 0 . 2 . 0 . t a r . gz

Extract the tarball and build

t a r xzf scopl ib − 0 . 2 . 0 . t a r . gz

cd scopl ib −0 . 2 . 0

. / conf igure −−enable−mp−vers ion \

−−p r e f i x =/path / to / s c o p l i b / i n s t a l l a t i o n

make && make i n s t a l l

50

A.4 Building LLVM with Polly

Download the source code of LLVM

g i t c lone http : / / llvm . org / g i t / llvm . g i t

Download the Polly source into the ’tools’ directory of LLVM and build it using

’cmake’

cd llvm / t o o l s

g i t c lone g i t : / / repo . or . cz / pol ly . g i t

mkdir bui ld

cd bui ld

cmake < l lvm source dir >

I f CMAKE cannot f ind CLooG and ISL

cmake −DCMAKE PREFIX PATH=/path / to / cloog / i n s t a l l a t i o n .

To point CMAKE to the s c o p l i b source

cmake −DCMAKE PREFIX PATH=/path / to / s c o p l i b / i n s t a l l a t i o n .

make

51

APPENDIX B

Various Tools Used in Polyhedral Community

Some of the tools used in polyhedral community is described here with one exam-

ple.

B.1 ClooG

CLooG is a free software and library generating loops for scanning Z-polyhedra.

It finds a code that reaches each integral point of one or more parameterized

polyhedra. CLooG has been written to solve the code generation problem for

optimizing compilers based on the polytope model.

This is explained here with a simple example. Suppose we need to generate

code for a polyhedra with the following iteration domain.

DS = {(i, j) ǫ Z2 | 2 ≤ i ≤ 6 ∧ 2 ≤ j ≤ 6 ∧ i ≤ j}

We can give input to cloog as file which has the following format.

−−−−−−−−−−−−−−−−−−−−−− CONTEXT −−−−−−−−−−−−−−−−−−

c # language i s C

Context (c o n s t r a i n t s on two parameters)

2 4 # 2 l i n e s and 4 columns

eq / in m n 1 eq / in : 1 f o r >=0, 0 f o r =0

0 1 0 −6 # 1∗m + 0∗n −6∗1 >= 0 , i . e . m=6

0 0 1 −6 # 0∗m + 1∗n −6∗1 >= 0 , i . e . n=6

1 # We want to s e t manually the parameter names

m n # parameter names

−−−−−−−−−−−−−−−−−−−−− STATEMENTS −−−−−−−−−−−−−−−−

1 # Number of s tatements

1 # F i r s t statement : one domain

F i r s t domain

5 6 # 5 l i n e s and 6 columns

eq / in i j m n 1

1 1 0 0 0 −2 # i >= 2

1 −1 0 0 1 0 # i <= n

1 0 1 0 0 −2 # j >= 2

1 0 −1 1 0 0 # j <= m

1 −1 1 0 0 0 # n+2− i>= j

0 0 0 # f o r future opt ions

1 # We want to s e t manually the i t e r a t o r names

i j # i t e r a t o r names

−−−−−−−−−−−−−−−−−−−−− SCATTERING −−−−−−−−−−−−−−−

0 # No s c a t t e r i n g f u n c t i o n s

Giving this file to ’cloog’ command as input it will generate the following code.

/ ∗ Generated from ex1 . cloog by CLooG 0 . 1 6 . 2 gmp b i t s in 0 . 0 0 s . ∗ /

f o r (i =2; i <=6; i++) {

f o r (j= i ; j <=6; j ++) {

S1 (i , j) ;

}

}

53

B.2 PLUTO

PLUTO is an automatic parallelization tool based on the polyhedral model. The

polyhedral model for compiler optimization is a representation for programs that

makes it convenient to perform high-level transformations such as loop nest opti-

mizations and loop parallelization. Pluto transforms C programs from source to

source for coarse-grained parallelism and data locality simultaneously. The core

transformation framework mainly works by finding affine transformations for ef-

ficient tiling and fusion, but not limited to those. Suppose we want to generate the

tiled version of lu.c just issue the command ./polycc –tile lu.c which will generate

the output in a separate file called lu.tiled.c and displays the following information

[Pluto] Number of s tatements : 2

[Pluto] Tota l number of loops : 5

[Pluto] Number of deps : 10

[Pluto] Maximum domain dimensional i ty : 3

[Pluto] Number of parameters : 1

[Pluto] Aff ine t rans format ions [< i t e r coe f f ’ s> <const >]

T (S1) : (k , j , k)

3 3

1 0 0

0 1 0

1 0 0

T (S2) : (k , j , i)

3 4

1 0 0 0

0 0 1 0

0 1 0 0

t1 −−> fwd dep loop (band 0)

t2 −−> fwd dep loop (band 0)

t3 −−> fwd dep loop (band 0)

54

[Pluto] Outermost t i l a b l e band : t0−−t 2

[Pluto] After t i l i n g :

t1 −−> fwd dep tLoop (band 0)

t2 −−> fwd dep tLoop (band 0)

t3 −−> fwd dep tLoop (band 0)

t4 −−> fwd dep loop (band 0)

t5 −−> fwd dep loop (band 0)

t6 −−> fwd dep loop (band 0)

[Pluto] using Cloog − f /− l opt ions : 4 6

[Polycc] Output wri t ten to . / lu . t i l e d . c

B.3 VisualPolylib

This is a tool using which we can visualize various operations on polyhedra. The

polyhedral description is given in a file and given as input to the ’visualpolylib’

command. For instance consider the following input

P := { i , j , k | k <= 1 , k >= 0 , i <= j , i+ j >= k , i+4k <= 4 j , j <=10} ;

C : = { | } ;

CS := { i , j , k | i −2 j+2k<=0} ;

P2 := CS . P ;

i n i t v i s u (3 ,C)

The polyhedron for P2 which is the intersection of CS and P can be viewed

graphically as in Figure B.1

55

Figure B.1: Visualizing polyhedra with VisualPolylib

56

Publications

1. Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin
Größlinger and Louis-Noël Pouchet Polly - Polyhedral optimization in LLVM
IMPACT 2011(First International workshop on PolyhedrAl Compilation Techniques
as part of CGO 2011), Chamonix, France.

57

REFERENCES

[1] Bastoul, C., Code generation in the polyhedral model is easier than you think. In
PACT’13 IEEE International Conference on Parallel Architecture and Compilation Tech-
niques. Juan-les-Pins, France, 2004. URL http://hal.ccsd.cnrs.fr/ccsd-00017260.
Classement CORE : A, nombre de papiers acceptés : 23, soumis : 122, student award.

[2] Benabderrahmane, M.-W., C. Bastoul, L.-N. Pouchet, and A. Cohen (2009). A con-
servative approach to handle full functions in the polyhedral model. Technical Report
6814, INRIA Research Report.

[3] Bondhugula, U., A. Hartono, J. Ramanujam, and P. Sadayappan, A practical
automatic polyhedral parallelizer and locality optimizer. In Proceedings of the
2008 ACM SIGPLAN conference on Programming language design and implementa-
tion, PLDI ’08. ACM, New York, NY, USA, 2008. ISBN 978-1-59593-860-2. URL
http://doi.acm.org/10.1145/1375581.1375595.

[4] Crockford, D. (2006). The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627 (Informational). URL http://www.ietf.org/rfc/rfc4627.txt.

[5] Girbal, S., N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and O. Temam

(2006). Semi-automatic composition of loop transformations for deep parallelism and
memory hierarchies. International Journal of Parallel Programming, 34, 261–317.

[6] Gupta, R., E. Mehofer, and Y. Zhan (2002). Profile guided compiler optimization.
The Compiler Design Handbook: Optimizations and Machine Code Generation.

[7] Johnson, R., D. Pearson, and K. Pingali, The program structure tree: computing
control regions in linear time. In Proceedings of the ACM SIGPLAN 1994 conference on
Programming language design and implementation, PLDI ’94. 1994.

[8] Lattner, C. and V. Adve, Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization, CGO ’04.
IEEE Computer Society, Washington, DC, USA, 2004. ISBN 0-7695-2102-9. URL
http://portal.acm.org/citation.cfm?id=977395.977673.

[9] Trifunovic, K., A. Cohen, D. Edelsohn, F. Li, T. Grosser, H. Jagasia, R. Ladelsky,
S. Pop, J. Sjödin, and R. Upadrasta, GRAPHITE Two Years After: First Lessons
Learned From Real-World Polyhedral Compilation. In GCC Research Opportunities
Workshop (GROW’10). Pisa Italy, 2010.

[10] Verdoolaege, S., Isl: An integer set library for the polyhedral model. In Mathematical
Software - ICMS 2010, volume 6327 of Lecture Notes in Computer Science. 2010, 299–302.

58

http://hal.ccsd.cnrs.fr/ccsd-00017260
http://doi.acm.org/10.1145/1375581.1375595
http://www.ietf.org/rfc/rfc4627.txt
http://portal.acm.org/citation.cfm?id=977395.977673

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction
	Parallelism in programs
	Parallelism and locality
	Realizing parallelism

	Auto parallelization
	The polyhedral model
	LLVM
	Polly and OpenMP code generation
	Outline of report

	The Polyhedral Model
	Program transformations with polyhedral model
	Transformation for improving data locality
	Scalar expansion

	Polyhedral representation of programs
	Iteration domain
	Schedule
	Access function

	Polly - Polyhedral Optmizations in LLVM
	Introduction to LLVM
	Introduction to Polly
	Implementation
	LLVM-IR to polyhedral model
	Polyhedral model
	Polyhedral model to LLVM-IR

	Related work

	OpenMP Code Generation in Polly
	Introduction
	The framework
	Code generation pass in Polly
	Detecting parallelism in Polly
	Generating OpenMP library calls
	Support for inner loops
	Dealing with memory references
	Adding memory references
	Extracting memory references

	Enabling OpenMP code generation in Polly
	OpenMP testcases

	Testing With PolyBench
	A simple test case
	PolyBench
	Experimental results

	Conclusion and Future Work
	Conclusion
	Support for memory access transformations in Polly
	Increasing coverage of Polly
	Increasing SCoP coverage
	Increasing the system coverage

	Integrating profile guided optimization into Polly

	Setting up the environment
	CLooG
	PoCC
	Scoplib
	Building LLVM with Polly

	Various Tools Used in Polyhedral Community
	ClooG
	PLUTO
	VisualPolylib

