summaryrefslogtreecommitdiff
path: root/clang-tools-extra/clangd/FuzzyMatch.cpp
blob: 2a908fd684da3e0e2f2fe4e36b3c114c182c51d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
//===--- FuzzyMatch.h - Approximate identifier matching  ---------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// To check for a match between a Pattern ('u_p') and a Word ('unique_ptr'),
// we consider the possible partial match states:
//
//     u n i q u e _ p t r
//   +---------------------
//   |A . . . . . . . . . .
//  u|
//   |. . . . . . . . . . .
//  _|
//   |. . . . . . . O . . .
//  p|
//   |. . . . . . . . . . B
//
// Each dot represents some prefix of the pattern being matched against some
// prefix of the word.
//   - A is the initial state: '' matched against ''
//   - O is an intermediate state: 'u_' matched against 'unique_'
//   - B is the target state: 'u_p' matched against 'unique_ptr'
//
// We aim to find the best path from A->B.
//  - Moving right (consuming a word character)
//    Always legal: not all word characters must match.
//  - Moving diagonally (consuming both a word and pattern character)
//    Legal if the characters match.
//  - Moving down (consuming a pattern character) is never legal.
//    Never legal: all pattern characters must match something.
// Characters are matched case-insensitively.
// The first pattern character may only match the start of a word segment.
//
// The scoring is based on heuristics:
//  - when matching a character, apply a bonus or penalty depending on the
//    match quality (does case match, do word segments align, etc)
//  - when skipping a character, apply a penalty if it hurts the match
//    (it starts a word segment, or splits the matched region, etc)
//
// These heuristics require the ability to "look backward" one character, to
// see whether it was matched or not. Therefore the dynamic-programming matrix
// has an extra dimension (last character matched).
// Each entry also has an additional flag indicating whether the last-but-one
// character matched, which is needed to trace back through the scoring table
// and reconstruct the match.
//
// We treat strings as byte-sequences, so only ASCII has first-class support.
//
// This algorithm was inspired by VS code's client-side filtering, and aims
// to be mostly-compatible.
//
//===----------------------------------------------------------------------===//

#include "FuzzyMatch.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/Format.h"

namespace clang {
namespace clangd {

constexpr int FuzzyMatcher::MaxPat;
constexpr int FuzzyMatcher::MaxWord;

static char lower(char C) { return C >= 'A' && C <= 'Z' ? C + ('a' - 'A') : C; }
// A "negative infinity" score that won't overflow.
// We use this to mark unreachable states and forbidden solutions.
// Score field is 15 bits wide, min value is -2^14, we use half of that.
static constexpr int AwfulScore = -(1 << 13);
static bool isAwful(int S) { return S < AwfulScore / 2; }
static constexpr int PerfectBonus = 4; // Perfect per-pattern-char score.

FuzzyMatcher::FuzzyMatcher(llvm::StringRef Pattern)
    : PatN(std::min<int>(MaxPat, Pattern.size())),
      ScoreScale(PatN ? float{1} / (PerfectBonus * PatN) : 0), WordN(0) {
  std::copy(Pattern.begin(), Pattern.begin() + PatN, Pat);
  for (int I = 0; I < PatN; ++I)
    LowPat[I] = lower(Pat[I]);
  Scores[0][0][Miss] = {0, Miss};
  Scores[0][0][Match] = {AwfulScore, Miss};
  for (int P = 0; P <= PatN; ++P)
    for (int W = 0; W < P; ++W)
      for (Action A : {Miss, Match})
        Scores[P][W][A] = {AwfulScore, Miss};
  PatTypeSet = calculateRoles(llvm::StringRef(Pat, PatN),
                              llvm::makeMutableArrayRef(PatRole, PatN));
}

llvm::Optional<float> FuzzyMatcher::match(llvm::StringRef Word) {
  if (!(WordContainsPattern = init(Word)))
    return llvm::None;
  if (!PatN)
    return 1;
  buildGraph();
  auto Best = std::max(Scores[PatN][WordN][Miss].Score,
                       Scores[PatN][WordN][Match].Score);
  if (isAwful(Best))
    return llvm::None;
  float Score =
      ScoreScale * std::min(PerfectBonus * PatN, std::max<int>(0, Best));
  // If the pattern is as long as the word, we have an exact string match,
  // since every pattern character must match something.
  if (WordN == PatN)
    Score *= 2; // May not be perfect 2 if case differs in a significant way.
  return Score;
}

// We get CharTypes from a lookup table. Each is 2 bits, 4 fit in each byte.
// The top 6 bits of the char select the byte, the bottom 2 select the offset.
// e.g. 'q' = 010100 01 = byte 28 (55), bits 3-2 (01) -> Lower.
constexpr static uint8_t CharTypes[] = {
    0x00, 0x00, 0x00, 0x00, // Control characters
    0x00, 0x00, 0x00, 0x00, // Control characters
    0xff, 0xff, 0xff, 0xff, // Punctuation
    0x55, 0x55, 0xf5, 0xff, // Numbers->Lower, more Punctuation.
    0xab, 0xaa, 0xaa, 0xaa, // @ and A-O
    0xaa, 0xaa, 0xea, 0xff, // P-Z, more Punctuation.
    0x57, 0x55, 0x55, 0x55, // ` and a-o
    0x55, 0x55, 0xd5, 0x3f, // p-z, Punctuation, DEL.
    0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, // Bytes over 127 -> Lower.
    0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, // (probably UTF-8).
    0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55,
    0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55,
};

// The Role can be determined from the Type of a character and its neighbors:
//
//   Example  | Chars | Type | Role
//   ---------+--------------+-----
//   F(o)oBar | Foo   | Ull  | Tail
//   Foo(B)ar | oBa   | lUl  | Head
//   (f)oo    | ^fo   | Ell  | Head
//   H(T)TP   | HTT   | UUU  | Tail
//
// Our lookup table maps a 6 bit key (Prev, Curr, Next) to a 2-bit Role.
// A byte packs 4 Roles. (Prev, Curr) selects a byte, Next selects the offset.
// e.g. Lower, Upper, Lower -> 01 10 01 -> byte 6 (aa), bits 3-2 (10) -> Head.
constexpr static uint8_t CharRoles[] = {
    // clang-format off
    //         Curr= Empty Lower Upper Separ
    /* Prev=Empty */ 0x00, 0xaa, 0xaa, 0xff, // At start, Lower|Upper->Head
    /* Prev=Lower */ 0x00, 0x55, 0xaa, 0xff, // In word, Upper->Head;Lower->Tail
    /* Prev=Upper */ 0x00, 0x55, 0x59, 0xff, // Ditto, but U(U)U->Tail
    /* Prev=Separ */ 0x00, 0xaa, 0xaa, 0xff, // After separator, like at start
    // clang-format on
};

template <typename T> static T packedLookup(const uint8_t *Data, int I) {
  return static_cast<T>((Data[I >> 2] >> ((I & 3) * 2)) & 3);
}
CharTypeSet calculateRoles(llvm::StringRef Text,
                           llvm::MutableArrayRef<CharRole> Roles) {
  assert(Text.size() == Roles.size());
  if (Text.size() == 0)
    return 0;
  CharType Type = packedLookup<CharType>(CharTypes, Text[0]);
  CharTypeSet TypeSet = 1 << Type;
  // Types holds a sliding window of (Prev, Curr, Next) types.
  // Initial value is (Empty, Empty, type of Text[0]).
  int Types = Type;
  // Rotate slides in the type of the next character.
  auto Rotate = [&](CharType T) { Types = ((Types << 2) | T) & 0x3f; };
  for (unsigned I = 0; I < Text.size() - 1; ++I) {
    // For each character, rotate in the next, and look up the role.
    Type = packedLookup<CharType>(CharTypes, Text[I + 1]);
    TypeSet |= 1 << Type;
    Rotate(Type);
    Roles[I] = packedLookup<CharRole>(CharRoles, Types);
  }
  // For the last character, the "next character" is Empty.
  Rotate(Empty);
  Roles[Text.size() - 1] = packedLookup<CharRole>(CharRoles, Types);
  return TypeSet;
}

// Sets up the data structures matching Word.
// Returns false if we can cheaply determine that no match is possible.
bool FuzzyMatcher::init(llvm::StringRef NewWord) {
  WordN = std::min<int>(MaxWord, NewWord.size());
  if (PatN > WordN)
    return false;
  std::copy(NewWord.begin(), NewWord.begin() + WordN, Word);
  if (PatN == 0)
    return true;
  for (int I = 0; I < WordN; ++I)
    LowWord[I] = lower(Word[I]);

  // Cheap subsequence check.
  for (int W = 0, P = 0; P != PatN; ++W) {
    if (W == WordN)
      return false;
    if (LowWord[W] == LowPat[P])
      ++P;
  }

  // FIXME: some words are hard to tokenize algorithmically.
  // e.g. vsprintf is V S Print F, and should match [pri] but not [int].
  // We could add a tokenization dictionary for common stdlib names.
  WordTypeSet = calculateRoles(llvm::StringRef(Word, WordN),
                               llvm::makeMutableArrayRef(WordRole, WordN));
  return true;
}

// The forwards pass finds the mappings of Pattern onto Word.
// Score = best score achieved matching Word[..W] against Pat[..P].
// Unlike other tables, indices range from 0 to N *inclusive*
// Matched = whether we chose to match Word[W] with Pat[P] or not.
//
// Points are mostly assigned to matched characters, with 1 being a good score
// and 3 being a great one. So we treat the score range as [0, 3 * PatN].
// This range is not strict: we can apply larger bonuses/penalties, or penalize
// non-matched characters.
void FuzzyMatcher::buildGraph() {
  for (int W = 0; W < WordN; ++W) {
    Scores[0][W + 1][Miss] = {Scores[0][W][Miss].Score - skipPenalty(W, Miss),
                              Miss};
    Scores[0][W + 1][Match] = {AwfulScore, Miss};
  }
  for (int P = 0; P < PatN; ++P) {
    for (int W = P; W < WordN; ++W) {
      auto &Score = Scores[P + 1][W + 1], &PreMiss = Scores[P + 1][W];

      auto MatchMissScore = PreMiss[Match].Score;
      auto MissMissScore = PreMiss[Miss].Score;
      if (P < PatN - 1) { // Skipping trailing characters is always free.
        MatchMissScore -= skipPenalty(W, Match);
        MissMissScore -= skipPenalty(W, Miss);
      }
      Score[Miss] = (MatchMissScore > MissMissScore)
                        ? ScoreInfo{MatchMissScore, Match}
                        : ScoreInfo{MissMissScore, Miss};

      auto &PreMatch = Scores[P][W];
      auto MatchMatchScore =
          allowMatch(P, W, Match)
              ? PreMatch[Match].Score + matchBonus(P, W, Match)
              : AwfulScore;
      auto MissMatchScore = allowMatch(P, W, Miss)
                                ? PreMatch[Miss].Score + matchBonus(P, W, Miss)
                                : AwfulScore;
      Score[Match] = (MatchMatchScore > MissMatchScore)
                         ? ScoreInfo{MatchMatchScore, Match}
                         : ScoreInfo{MissMatchScore, Miss};
    }
  }
}

bool FuzzyMatcher::allowMatch(int P, int W, Action Last) const {
  if (LowPat[P] != LowWord[W])
    return false;
  // We require a "strong" match:
  // - for the first pattern character.  [foo] !~ "barefoot"
  // - after a gap.                      [pat] !~ "patnther"
  if (Last == Miss) {
    // We're banning matches outright, so conservatively accept some other cases
    // where our segmentation might be wrong:
    //  - allow matching B in ABCDef (but not in NDEBUG)
    //  - we'd like to accept print in sprintf, but too many false positives
    if (WordRole[W] == Tail &&
        (Word[W] == LowWord[W] || !(WordTypeSet & 1 << Lower)))
      return false;
  }
  return true;
}

int FuzzyMatcher::skipPenalty(int W, Action Last) const {
  if (W == 0) // Skipping the first character.
    return 3;
  if (WordRole[W] == Head) // Skipping a segment.
    return 1; // We want to keep this lower than a consecutive match bonus.
  // Instead of penalizing non-consecutive matches, we give a bonus to a
  // consecutive match in matchBonus. This produces a better score distribution
  // than penalties in case of small patterns, e.g. 'up' for 'unique_ptr'.
  return 0;
}

int FuzzyMatcher::matchBonus(int P, int W, Action Last) const {
  assert(LowPat[P] == LowWord[W]);
  int S = 1;
  bool IsPatSingleCase =
      (PatTypeSet == 1 << Lower) || (PatTypeSet == 1 << Upper);
  // Bonus: case matches, or a Head in the pattern aligns with one in the word.
  // Single-case patterns lack segmentation signals and we assume any character
  // can be a head of a segment.
  if (Pat[P] == Word[W] ||
      (WordRole[W] == Head && (IsPatSingleCase || PatRole[P] == Head)))
    ++S;
  // Bonus: a consecutive match. First character match also gets a bonus to
  // ensure prefix final match score normalizes to 1.0.
  if (W == 0 || Last == Match)
    S += 2;
  // Penalty: matching inside a segment (and previous char wasn't matched).
  if (WordRole[W] == Tail && P && Last == Miss)
    S -= 3;
  // Penalty: a Head in the pattern matches in the middle of a word segment.
  if (PatRole[P] == Head && WordRole[W] == Tail)
    --S;
  // Penalty: matching the first pattern character in the middle of a segment.
  if (P == 0 && WordRole[W] == Tail)
    S -= 4;
  assert(S <= PerfectBonus);
  return S;
}

llvm::SmallString<256> FuzzyMatcher::dumpLast(llvm::raw_ostream &OS) const {
  llvm::SmallString<256> Result;
  OS << "=== Match \"" << llvm::StringRef(Word, WordN) << "\" against ["
     << llvm::StringRef(Pat, PatN) << "] ===\n";
  if (PatN == 0) {
    OS << "Pattern is empty: perfect match.\n";
    return Result = llvm::StringRef(Word, WordN);
  }
  if (WordN == 0) {
    OS << "Word is empty: no match.\n";
    return Result;
  }
  if (!WordContainsPattern) {
    OS << "Substring check failed.\n";
    return Result;
  }
  if (isAwful(std::max(Scores[PatN][WordN][Match].Score,
                       Scores[PatN][WordN][Miss].Score))) {
    OS << "Substring check passed, but all matches are forbidden\n";
  }
  if (!(PatTypeSet & 1 << Upper))
    OS << "Lowercase query, so scoring ignores case\n";

  // Traverse Matched table backwards to reconstruct the Pattern/Word mapping.
  // The Score table has cumulative scores, subtracting along this path gives
  // us the per-letter scores.
  Action Last =
      (Scores[PatN][WordN][Match].Score > Scores[PatN][WordN][Miss].Score)
          ? Match
          : Miss;
  int S[MaxWord];
  Action A[MaxWord];
  for (int W = WordN - 1, P = PatN - 1; W >= 0; --W) {
    A[W] = Last;
    const auto &Cell = Scores[P + 1][W + 1][Last];
    if (Last == Match)
      --P;
    const auto &Prev = Scores[P + 1][W][Cell.Prev];
    S[W] = Cell.Score - Prev.Score;
    Last = Cell.Prev;
  }
  for (int I = 0; I < WordN; ++I) {
    if (A[I] == Match && (I == 0 || A[I - 1] == Miss))
      Result.push_back('[');
    if (A[I] == Miss && I > 0 && A[I - 1] == Match)
      Result.push_back(']');
    Result.push_back(Word[I]);
  }
  if (A[WordN - 1] == Match)
    Result.push_back(']');

  for (char C : llvm::StringRef(Word, WordN))
    OS << " " << C << " ";
  OS << "\n";
  for (int I = 0, J = 0; I < WordN; I++)
    OS << " " << (A[I] == Match ? Pat[J++] : ' ') << " ";
  OS << "\n";
  for (int I = 0; I < WordN; I++)
    OS << llvm::format("%2d ", S[I]);
  OS << "\n";

  OS << "\nSegmentation:";
  OS << "\n'" << llvm::StringRef(Word, WordN) << "'\n ";
  for (int I = 0; I < WordN; ++I)
    OS << "?-+ "[static_cast<int>(WordRole[I])];
  OS << "\n[" << llvm::StringRef(Pat, PatN) << "]\n ";
  for (int I = 0; I < PatN; ++I)
    OS << "?-+ "[static_cast<int>(PatRole[I])];
  OS << "\n";

  OS << "\nScoring table (last-Miss, last-Match):\n";
  OS << " |    ";
  for (char C : llvm::StringRef(Word, WordN))
    OS << "  " << C << " ";
  OS << "\n";
  OS << "-+----" << std::string(WordN * 4, '-') << "\n";
  for (int I = 0; I <= PatN; ++I) {
    for (Action A : {Miss, Match}) {
      OS << ((I && A == Miss) ? Pat[I - 1] : ' ') << "|";
      for (int J = 0; J <= WordN; ++J) {
        if (!isAwful(Scores[I][J][A].Score))
          OS << llvm::format("%3d%c", Scores[I][J][A].Score,
                             Scores[I][J][A].Prev == Match ? '*' : ' ');
        else
          OS << "    ";
      }
      OS << "\n";
    }
  }

  return Result;
}

} // namespace clangd
} // namespace clang