summaryrefslogtreecommitdiff
path: root/clang/lib/Analysis/CFG.cpp
blob: a8c002fe6eb16d3387aaef3aa5e3cff6536fbc6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines the CFG and CFGBuilder classes for representing and
//  building Control-Flow Graphs (CFGs) from ASTs.
//
//===----------------------------------------------------------------------===//

#include "clang/Analysis/Support/SaveAndRestore.h"
#include "clang/Analysis/CFG.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/CharUnits.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Format.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/OwningPtr.h"

using namespace clang;

namespace {

static SourceLocation GetEndLoc(Decl* D) {
  if (VarDecl* VD = dyn_cast<VarDecl>(D))
    if (Expr* Ex = VD->getInit())
      return Ex->getSourceRange().getEnd();
  return D->getLocation();
}

/// The CFG builder uses a recursive algorithm to build the CFG.  When
///  we process an expression, sometimes we know that we must add the
///  subexpressions as block-level expressions.  For example:
///
///    exp1 || exp2
///
///  When processing the '||' expression, we know that exp1 and exp2
///  need to be added as block-level expressions, even though they
///  might not normally need to be.  AddStmtChoice records this
///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
///  the builder has an option not to add a subexpression as a
///  block-level expression.
///
class AddStmtChoice {
public:
  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };

  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}

  bool alwaysAdd() const { return kind & AlwaysAdd; }

  /// Return a copy of this object, except with the 'always-add' bit
  ///  set as specified.
  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
    return AddStmtChoice(alwaysAdd ? Kind(kind | AlwaysAdd) :
                                     Kind(kind & ~AlwaysAdd));
  }

private:
  Kind kind;
};

/// LocalScope - Node in tree of local scopes created for C++ implicit
/// destructor calls generation. It contains list of automatic variables
/// declared in the scope and link to position in previous scope this scope
/// began in.
///
/// The process of creating local scopes is as follows:
/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
/// - Before processing statements in scope (e.g. CompoundStmt) create
///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
///   and set CFGBuilder::ScopePos to the end of new scope,
/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
///   at this VarDecl,
/// - For every normal (without jump) end of scope add to CFGBlock destructors
///   for objects in the current scope,
/// - For every jump add to CFGBlock destructors for objects
///   between CFGBuilder::ScopePos and local scope position saved for jump
///   target. Thanks to C++ restrictions on goto jumps we can be sure that
///   jump target position will be on the path to root from CFGBuilder::ScopePos
///   (adding any variable that doesn't need constructor to be called to
///   LocalScope can break this assumption),
///
class LocalScope {
public:
  typedef BumpVector<VarDecl*> AutomaticVarsTy;

  /// const_iterator - Iterates local scope backwards and jumps to previous
  /// scope on reaching the beginning of currently iterated scope.
  class const_iterator {
    const LocalScope* Scope;

    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
    /// Invalid iterator (with null Scope) has VarIter equal to 0.
    unsigned VarIter;

  public:
    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
    /// Incrementing invalid iterator is allowed and will result in invalid
    /// iterator.
    const_iterator()
        : Scope(NULL), VarIter(0) {}

    /// Create valid iterator. In case when S.Prev is an invalid iterator and
    /// I is equal to 0, this will create invalid iterator.
    const_iterator(const LocalScope& S, unsigned I)
        : Scope(&S), VarIter(I) {
      // Iterator to "end" of scope is not allowed. Handle it by going up
      // in scopes tree possibly up to invalid iterator in the root.
      if (VarIter == 0 && Scope)
        *this = Scope->Prev;
    }

    VarDecl* const* operator->() const {
      assert (Scope && "Dereferencing invalid iterator is not allowed");
      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
      return &Scope->Vars[VarIter - 1];
    }
    VarDecl* operator*() const {
      return *this->operator->();
    }

    const_iterator& operator++() {
      if (!Scope)
        return *this;

      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
      --VarIter;
      if (VarIter == 0)
        *this = Scope->Prev;
      return *this;
    }
    const_iterator operator++(int) {
      const_iterator P = *this;
      ++*this;
      return P;
    }

    bool operator==(const const_iterator& rhs) const {
      return Scope == rhs.Scope && VarIter == rhs.VarIter;
    }
    bool operator!=(const const_iterator& rhs) const {
      return !(*this == rhs);
    }

    operator bool() const {
      return *this != const_iterator();
    }

    int distance(const_iterator L);
  };

  friend class const_iterator;

private:
  BumpVectorContext ctx;
  
  /// Automatic variables in order of declaration.
  AutomaticVarsTy Vars;
  /// Iterator to variable in previous scope that was declared just before
  /// begin of this scope.
  const_iterator Prev;

public:
  /// Constructs empty scope linked to previous scope in specified place.
  LocalScope(BumpVectorContext &ctx, const_iterator P)
      : ctx(ctx), Vars(ctx, 4), Prev(P) {}

  /// Begin of scope in direction of CFG building (backwards).
  const_iterator begin() const { return const_iterator(*this, Vars.size()); }

  void addVar(VarDecl* VD) {
    Vars.push_back(VD, ctx);
  }
};

/// distance - Calculates distance from this to L. L must be reachable from this
/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
/// number of scopes between this and L.
int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
  int D = 0;
  const_iterator F = *this;
  while (F.Scope != L.Scope) {
    assert (F != const_iterator()
        && "L iterator is not reachable from F iterator.");
    D += F.VarIter;
    F = F.Scope->Prev;
  }
  D += F.VarIter - L.VarIter;
  return D;
}

/// BlockScopePosPair - Structure for specifying position in CFG during its
/// build process. It consists of CFGBlock that specifies position in CFG graph
/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
struct BlockScopePosPair {
  BlockScopePosPair() : block(0) {}
  BlockScopePosPair(CFGBlock* b, LocalScope::const_iterator scopePos)
      : block(b), scopePosition(scopePos) {}

  CFGBlock *block;
  LocalScope::const_iterator scopePosition;
};

/// TryResult - a class representing a variant over the values
///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
///  and is used by the CFGBuilder to decide if a branch condition
///  can be decided up front during CFG construction.
class TryResult {
  int X;
public:
  TryResult(bool b) : X(b ? 1 : 0) {}
  TryResult() : X(-1) {}
  
  bool isTrue() const { return X == 1; }
  bool isFalse() const { return X == 0; }
  bool isKnown() const { return X >= 0; }
  void negate() {
    assert(isKnown());
    X ^= 0x1;
  }
};

/// CFGBuilder - This class implements CFG construction from an AST.
///   The builder is stateful: an instance of the builder should be used to only
///   construct a single CFG.
///
///   Example usage:
///
///     CFGBuilder builder;
///     CFG* cfg = builder.BuildAST(stmt1);
///
///  CFG construction is done via a recursive walk of an AST.  We actually parse
///  the AST in reverse order so that the successor of a basic block is
///  constructed prior to its predecessor.  This allows us to nicely capture
///  implicit fall-throughs without extra basic blocks.
///
class CFGBuilder {
  typedef BlockScopePosPair JumpTarget;
  typedef BlockScopePosPair JumpSource;

  ASTContext *Context;
  llvm::OwningPtr<CFG> cfg;

  CFGBlock* Block;
  CFGBlock* Succ;
  JumpTarget ContinueJumpTarget;
  JumpTarget BreakJumpTarget;
  CFGBlock* SwitchTerminatedBlock;
  CFGBlock* DefaultCaseBlock;
  CFGBlock* TryTerminatedBlock;
  
  // Current position in local scope.
  LocalScope::const_iterator ScopePos;

  // LabelMap records the mapping from Label expressions to their jump targets.
  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
  LabelMapTy LabelMap;

  // A list of blocks that end with a "goto" that must be backpatched to their
  // resolved targets upon completion of CFG construction.
  typedef std::vector<JumpSource> BackpatchBlocksTy;
  BackpatchBlocksTy BackpatchBlocks;

  // A list of labels whose address has been taken (for indirect gotos).
  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
  LabelSetTy AddressTakenLabels;

  bool badCFG;
  CFG::BuildOptions BuildOpts;
  
  // State to track for building switch statements.
  bool switchExclusivelyCovered;
  Expr::EvalResult *switchCond;

public:
  explicit CFGBuilder() : cfg(new CFG()), // crew a new CFG
                          Block(NULL), Succ(NULL),
                          SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
                          TryTerminatedBlock(NULL), badCFG(false),
                          switchExclusivelyCovered(false), switchCond(0) {}

  // buildCFG - Used by external clients to construct the CFG.
  CFG* buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
      CFG::BuildOptions BO);

private:
  // Visitors to walk an AST and construct the CFG.
  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
  CFGBlock *VisitBlockExpr(BlockExpr* E, AddStmtChoice asc);
  CFGBlock *VisitBreakStmt(BreakStmt *B);
  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
      AddStmtChoice asc);
  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, 
                                      AddStmtChoice asc);
  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
                                       AddStmtChoice asc);
  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C, 
                                        AddStmtChoice asc);
  CFGBlock *VisitCXXMemberCallExpr(CXXMemberCallExpr *C, AddStmtChoice asc);
  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
  CFGBlock *VisitCaseStmt(CaseStmt *C);
  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
                                     AddStmtChoice asc);
  CFGBlock *VisitContinueStmt(ContinueStmt *C);
  CFGBlock *VisitDeclStmt(DeclStmt *DS);
  CFGBlock *VisitDeclSubExpr(DeclStmt* DS);
  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
  CFGBlock *VisitDoStmt(DoStmt *D);
  CFGBlock *VisitForStmt(ForStmt *F);
  CFGBlock *VisitGotoStmt(GotoStmt* G);
  CFGBlock *VisitIfStmt(IfStmt *I);
  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
  CFGBlock *VisitLabelStmt(LabelStmt *L);
  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
  CFGBlock *VisitReturnStmt(ReturnStmt* R);
  CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, AddStmtChoice asc);
  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
  CFGBlock *VisitWhileStmt(WhileStmt *W);

  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
  CFGBlock *VisitChildren(Stmt* S);

  // Visitors to walk an AST and generate destructors of temporaries in
  // full expression.
  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
      bool BindToTemporary);
  CFGBlock *
  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
                                            bool BindToTemporary);

  // NYS == Not Yet Supported
  CFGBlock* NYS() {
    badCFG = true;
    return Block;
  }

  void autoCreateBlock() { if (!Block) Block = createBlock(); }
  CFGBlock *createBlock(bool add_successor = true);

  CFGBlock *addStmt(Stmt *S) {
    return Visit(S, AddStmtChoice::AlwaysAdd);
  }
  CFGBlock *addInitializer(CXXCtorInitializer *I);
  void addAutomaticObjDtors(LocalScope::const_iterator B,
                            LocalScope::const_iterator E, Stmt* S);
  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);

  // Local scopes creation.
  LocalScope* createOrReuseLocalScope(LocalScope* Scope);

  void addLocalScopeForStmt(Stmt* S);
  LocalScope* addLocalScopeForDeclStmt(DeclStmt* DS, LocalScope* Scope = NULL);
  LocalScope* addLocalScopeForVarDecl(VarDecl* VD, LocalScope* Scope = NULL);

  void addLocalScopeAndDtors(Stmt* S);

  // Interface to CFGBlock - adding CFGElements.
  void appendStmt(CFGBlock *B, Stmt *S,
                  AddStmtChoice asc = AddStmtChoice::AlwaysAdd) {
    B->appendStmt(S, cfg->getBumpVectorContext());
  }
  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
    B->appendInitializer(I, cfg->getBumpVectorContext());
  }
  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
  }
  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
  }
  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
  }

  void insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S);
  void appendAutomaticObjDtors(CFGBlock* Blk, LocalScope::const_iterator B,
      LocalScope::const_iterator E, Stmt* S);
  void prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
      LocalScope::const_iterator B, LocalScope::const_iterator E);

  void addSuccessor(CFGBlock *B, CFGBlock *S) {
    B->addSuccessor(S, cfg->getBumpVectorContext());
  }

  /// Try and evaluate an expression to an integer constant.
  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
    if (!BuildOpts.PruneTriviallyFalseEdges)
      return false;
    return !S->isTypeDependent() && 
    !S->isValueDependent() &&
    S->Evaluate(outResult, *Context);
  }

  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
  /// if we can evaluate to a known value, otherwise return -1.
  TryResult tryEvaluateBool(Expr *S) {
    Expr::EvalResult Result;
    if (!tryEvaluate(S, Result))
      return TryResult();
    
    if (Result.Val.isInt())
      return Result.Val.getInt().getBoolValue();

    if (Result.Val.isLValue()) {
      Expr *e = Result.Val.getLValueBase();
      const CharUnits &c = Result.Val.getLValueOffset();        
      if (!e && c.isZero())
        return false;        
    }
    return TryResult();
  }
  
};

// FIXME: Add support for dependent-sized array types in C++?
// Does it even make sense to build a CFG for an uninstantiated template?
static const VariableArrayType *FindVA(const Type *t) {
  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
      if (vat->getSizeExpr())
        return vat;

    t = vt->getElementType().getTypePtr();
  }

  return 0;
}

/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
///  arbitrary statement.  Examples include a single expression or a function
///  body (compound statement).  The ownership of the returned CFG is
///  transferred to the caller.  If CFG construction fails, this method returns
///  NULL.
CFG* CFGBuilder::buildCFG(const Decl *D, Stmt* Statement, ASTContext* C,
    CFG::BuildOptions BO) {

  Context = C;
  assert(cfg.get());
  if (!Statement)
    return NULL;

  BuildOpts = BO;

  // Create an empty block that will serve as the exit block for the CFG.  Since
  // this is the first block added to the CFG, it will be implicitly registered
  // as the exit block.
  Succ = createBlock();
  assert(Succ == &cfg->getExit());
  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.

  if (BuildOpts.AddImplicitDtors)
    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
      addImplicitDtorsForDestructor(DD);

  // Visit the statements and create the CFG.
  CFGBlock *B = addStmt(Statement);

  if (badCFG)
    return NULL;

  // For C++ constructor add initializers to CFG.
  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
        E = CD->init_rend(); I != E; ++I) {
      B = addInitializer(*I);
      if (badCFG)
        return NULL;
    }
  }

  if (B)
    Succ = B;

  // Backpatch the gotos whose label -> block mappings we didn't know when we
  // encountered them.
  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
                                   E = BackpatchBlocks.end(); I != E; ++I ) {

    CFGBlock* B = I->block;
    GotoStmt* G = cast<GotoStmt>(B->getTerminator());
    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());

    // If there is no target for the goto, then we are looking at an
    // incomplete AST.  Handle this by not registering a successor.
    if (LI == LabelMap.end()) continue;

    JumpTarget JT = LI->second;
    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
                                           JT.scopePosition);
    addSuccessor(B, JT.block);
  }

  // Add successors to the Indirect Goto Dispatch block (if we have one).
  if (CFGBlock* B = cfg->getIndirectGotoBlock())
    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
                              E = AddressTakenLabels.end(); I != E; ++I ) {
      
      // Lookup the target block.
      LabelMapTy::iterator LI = LabelMap.find(*I);

      // If there is no target block that contains label, then we are looking
      // at an incomplete AST.  Handle this by not registering a successor.
      if (LI == LabelMap.end()) continue;
      
      addSuccessor(B, LI->second.block);
    }

  // Create an empty entry block that has no predecessors.
  cfg->setEntry(createBlock());

  return cfg.take();
}

/// createBlock - Used to lazily create blocks that are connected
///  to the current (global) succcessor.
CFGBlock* CFGBuilder::createBlock(bool add_successor) {
  CFGBlock* B = cfg->createBlock();
  if (add_successor && Succ)
    addSuccessor(B, Succ);
  return B;
}

/// addInitializer - Add C++ base or member initializer element to CFG.
CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
  if (!BuildOpts.AddInitializers)
    return Block;

  bool IsReference = false;
  bool HasTemporaries = false;

  // Destructors of temporaries in initialization expression should be called
  // after initialization finishes.
  Expr *Init = I->getInit();
  if (Init) {
    if (FieldDecl *FD = I->getAnyMember())
      IsReference = FD->getType()->isReferenceType();
    HasTemporaries = isa<ExprWithCleanups>(Init);

    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
      // Generate destructors for temporaries in initialization expression.
      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
          IsReference);
    }
  }

  autoCreateBlock();
  appendInitializer(Block, I);

  if (Init) {
    if (HasTemporaries) {
      // For expression with temporaries go directly to subexpression to omit
      // generating destructors for the second time.
      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
    }
    return Visit(Init);
  }

  return Block;
}

/// addAutomaticObjDtors - Add to current block automatic objects destructors
/// for objects in range of local scope positions. Use S as trigger statement
/// for destructors.
void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
                                      LocalScope::const_iterator E, Stmt* S) {
  if (!BuildOpts.AddImplicitDtors)
    return;

  if (B == E)
    return;

  autoCreateBlock();
  appendAutomaticObjDtors(Block, B, E, S);
}

/// addImplicitDtorsForDestructor - Add implicit destructors generated for
/// base and member objects in destructor.
void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
  assert (BuildOpts.AddImplicitDtors
      && "Can be called only when dtors should be added");
  const CXXRecordDecl *RD = DD->getParent();

  // At the end destroy virtual base objects.
  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
      VE = RD->vbases_end(); VI != VE; ++VI) {
    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
    if (!CD->hasTrivialDestructor()) {
      autoCreateBlock();
      appendBaseDtor(Block, VI);
    }
  }

  // Before virtual bases destroy direct base objects.
  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
      BE = RD->bases_end(); BI != BE; ++BI) {
    if (!BI->isVirtual()) {
      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
      if (!CD->hasTrivialDestructor()) {
        autoCreateBlock();
        appendBaseDtor(Block, BI);
      }
    }
  }

  // First destroy member objects.
  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
      FE = RD->field_end(); FI != FE; ++FI) {
    // Check for constant size array. Set type to array element type.
    QualType QT = FI->getType();
    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
      if (AT->getSize() == 0)
        continue;
      QT = AT->getElementType();
    }

    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
      if (!CD->hasTrivialDestructor()) {
        autoCreateBlock();
        appendMemberDtor(Block, *FI);
      }
  }
}

/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
/// way return valid LocalScope object.
LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
  if (!Scope) {
    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
    Scope = alloc.Allocate<LocalScope>();
    BumpVectorContext ctx(alloc);
    new (Scope) LocalScope(ctx, ScopePos);
  }
  return Scope;
}

/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
/// that should create implicit scope (e.g. if/else substatements). 
void CFGBuilder::addLocalScopeForStmt(Stmt* S) {
  if (!BuildOpts.AddImplicitDtors)
    return;

  LocalScope *Scope = 0;

  // For compound statement we will be creating explicit scope.
  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
        ; BI != BE; ++BI) {
      Stmt *SI = *BI;
      if (LabelStmt *LS = dyn_cast<LabelStmt>(SI))
        SI = LS->getSubStmt();
      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
        Scope = addLocalScopeForDeclStmt(DS, Scope);
    }
    return;
  }

  // For any other statement scope will be implicit and as such will be
  // interesting only for DeclStmt.
  if (LabelStmt *LS = dyn_cast<LabelStmt>(S))
    S = LS->getSubStmt();
  if (DeclStmt *DS = dyn_cast<DeclStmt>(S))
    addLocalScopeForDeclStmt(DS);
}

/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
/// reuse Scope if not NULL.
LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt* DS,
                                                 LocalScope* Scope) {
  if (!BuildOpts.AddImplicitDtors)
    return Scope;

  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
      ; DI != DE; ++DI) {
    if (VarDecl* VD = dyn_cast<VarDecl>(*DI))
      Scope = addLocalScopeForVarDecl(VD, Scope);
  }
  return Scope;
}

/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
/// create add scope for automatic objects and temporary objects bound to
/// const reference. Will reuse Scope if not NULL.
LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl* VD,
                                                LocalScope* Scope) {
  if (!BuildOpts.AddImplicitDtors)
    return Scope;

  // Check if variable is local.
  switch (VD->getStorageClass()) {
  case SC_None:
  case SC_Auto:
  case SC_Register:
    break;
  default: return Scope;
  }

  // Check for const references bound to temporary. Set type to pointee.
  QualType QT = VD->getType();
  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
    QT = RT->getPointeeType();
    if (!QT.isConstQualified())
      return Scope;
    if (!VD->getInit() || !VD->getInit()->Classify(*Context).isRValue())
      return Scope;
  }

  // Check for constant size array. Set type to array element type.
  if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
    if (AT->getSize() == 0)
      return Scope;
    QT = AT->getElementType();
  }

  // Check if type is a C++ class with non-trivial destructor.
  if (const CXXRecordDecl* CD = QT->getAsCXXRecordDecl())
    if (!CD->hasTrivialDestructor()) {
      // Add the variable to scope
      Scope = createOrReuseLocalScope(Scope);
      Scope->addVar(VD);
      ScopePos = Scope->begin();
    }
  return Scope;
}

/// addLocalScopeAndDtors - For given statement add local scope for it and
/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
void CFGBuilder::addLocalScopeAndDtors(Stmt* S) {
  if (!BuildOpts.AddImplicitDtors)
    return;

  LocalScope::const_iterator scopeBeginPos = ScopePos;
  addLocalScopeForStmt(S);
  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
}

/// insertAutomaticObjDtors - Insert destructor CFGElements for variables with
/// automatic storage duration to CFGBlock's elements vector. Insertion will be
/// performed in place specified with iterator.
void CFGBuilder::insertAutomaticObjDtors(CFGBlock* Blk, CFGBlock::iterator I,
    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
  BumpVectorContext& C = cfg->getBumpVectorContext();
  I = Blk->beginAutomaticObjDtorsInsert(I, B.distance(E), C);
  while (B != E)
    I = Blk->insertAutomaticObjDtor(I, *B++, S);
}

/// appendAutomaticObjDtors - Append destructor CFGElements for variables with
/// automatic storage duration to CFGBlock's elements vector. Elements will be
/// appended to physical end of the vector which happens to be logical
/// beginning.
void CFGBuilder::appendAutomaticObjDtors(CFGBlock* Blk,
    LocalScope::const_iterator B, LocalScope::const_iterator E, Stmt* S) {
  insertAutomaticObjDtors(Blk, Blk->begin(), B, E, S);
}

/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
/// variables with automatic storage duration to CFGBlock's elements vector.
/// Elements will be prepended to physical beginning of the vector which
/// happens to be logical end. Use blocks terminator as statement that specifies
/// destructors call site.
void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock* Blk,
    LocalScope::const_iterator B, LocalScope::const_iterator E) {
  insertAutomaticObjDtors(Blk, Blk->end(), B, E, Blk->getTerminator());
}

/// Visit - Walk the subtree of a statement and add extra
///   blocks for ternary operators, &&, and ||.  We also process "," and
///   DeclStmts (which may contain nested control-flow).
CFGBlock* CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
tryAgain:
  if (!S) {
    badCFG = true;
    return 0;
  }
  switch (S->getStmtClass()) {
    default:
      return VisitStmt(S, asc);

    case Stmt::AddrLabelExprClass:
      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);

    case Stmt::BinaryConditionalOperatorClass:
      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);

    case Stmt::BinaryOperatorClass:
      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);

    case Stmt::BlockExprClass:
      return VisitBlockExpr(cast<BlockExpr>(S), asc);

    case Stmt::BreakStmtClass:
      return VisitBreakStmt(cast<BreakStmt>(S));

    case Stmt::CallExprClass:
    case Stmt::CXXOperatorCallExprClass:
      return VisitCallExpr(cast<CallExpr>(S), asc);

    case Stmt::CaseStmtClass:
      return VisitCaseStmt(cast<CaseStmt>(S));

    case Stmt::ChooseExprClass:
      return VisitChooseExpr(cast<ChooseExpr>(S), asc);

    case Stmt::CompoundStmtClass:
      return VisitCompoundStmt(cast<CompoundStmt>(S));

    case Stmt::ConditionalOperatorClass:
      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);

    case Stmt::ContinueStmtClass:
      return VisitContinueStmt(cast<ContinueStmt>(S));

    case Stmt::CXXCatchStmtClass:
      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));

    case Stmt::ExprWithCleanupsClass:
      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);

    case Stmt::CXXBindTemporaryExprClass:
      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);

    case Stmt::CXXConstructExprClass:
      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);

    case Stmt::CXXFunctionalCastExprClass:
      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);

    case Stmt::CXXTemporaryObjectExprClass:
      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);

    case Stmt::CXXMemberCallExprClass:
      return VisitCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), asc);

    case Stmt::CXXThrowExprClass:
      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));

    case Stmt::CXXTryStmtClass:
      return VisitCXXTryStmt(cast<CXXTryStmt>(S));

    case Stmt::DeclStmtClass:
      return VisitDeclStmt(cast<DeclStmt>(S));

    case Stmt::DefaultStmtClass:
      return VisitDefaultStmt(cast<DefaultStmt>(S));

    case Stmt::DoStmtClass:
      return VisitDoStmt(cast<DoStmt>(S));

    case Stmt::ForStmtClass:
      return VisitForStmt(cast<ForStmt>(S));

    case Stmt::GotoStmtClass:
      return VisitGotoStmt(cast<GotoStmt>(S));

    case Stmt::IfStmtClass:
      return VisitIfStmt(cast<IfStmt>(S));

    case Stmt::ImplicitCastExprClass:
      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);

    case Stmt::IndirectGotoStmtClass:
      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));

    case Stmt::LabelStmtClass:
      return VisitLabelStmt(cast<LabelStmt>(S));

    case Stmt::MemberExprClass:
      return VisitMemberExpr(cast<MemberExpr>(S), asc);

    case Stmt::ObjCAtCatchStmtClass:
      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));

    case Stmt::ObjCAtSynchronizedStmtClass:
      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));

    case Stmt::ObjCAtThrowStmtClass:
      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));

    case Stmt::ObjCAtTryStmtClass:
      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));

    case Stmt::ObjCForCollectionStmtClass:
      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));

    case Stmt::ParenExprClass:
      S = cast<ParenExpr>(S)->getSubExpr();
      goto tryAgain;

    case Stmt::NullStmtClass:
      return Block;

    case Stmt::ReturnStmtClass:
      return VisitReturnStmt(cast<ReturnStmt>(S));

    case Stmt::SizeOfAlignOfExprClass:
      return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), asc);

    case Stmt::StmtExprClass:
      return VisitStmtExpr(cast<StmtExpr>(S), asc);

    case Stmt::SwitchStmtClass:
      return VisitSwitchStmt(cast<SwitchStmt>(S));

    case Stmt::UnaryOperatorClass:
      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);

    case Stmt::WhileStmtClass:
      return VisitWhileStmt(cast<WhileStmt>(S));
  }
}

CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
  if (asc.alwaysAdd()) {
    autoCreateBlock();
    appendStmt(Block, S, asc);
  }

  return VisitChildren(S);
}

/// VisitChildren - Visit the children of a Stmt.
CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
  CFGBlock *lastBlock = Block;  
  for (Stmt::child_range I = Terminator->children(); I; ++I)
    if (Stmt *child = *I)
      if (CFGBlock *b = Visit(child))
        lastBlock = b;

  return lastBlock;
}

CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
                                         AddStmtChoice asc) {
  AddressTakenLabels.insert(A->getLabel());

  if (asc.alwaysAdd()) {
    autoCreateBlock();
    appendStmt(Block, A, asc);
  }

  return Block;
}

CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
           AddStmtChoice asc) {
  if (asc.alwaysAdd()) {
    autoCreateBlock();
    appendStmt(Block, U, asc);
  }

  return Visit(U->getSubExpr(), AddStmtChoice());
}

CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
                                          AddStmtChoice asc) {
  if (B->isLogicalOp()) { // && or ||
    CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
    appendStmt(ConfluenceBlock, B, asc);

    if (badCFG)
      return 0;

    // create the block evaluating the LHS
    CFGBlock* LHSBlock = createBlock(false);
    LHSBlock->setTerminator(B);

    // create the block evaluating the RHS
    Succ = ConfluenceBlock;
    Block = NULL;
    CFGBlock* RHSBlock = addStmt(B->getRHS());

    if (RHSBlock) {
      if (badCFG)
        return 0;
    } else {
      // Create an empty block for cases where the RHS doesn't require
      // any explicit statements in the CFG.
      RHSBlock = createBlock();
    }

    // See if this is a known constant.
    TryResult KnownVal = tryEvaluateBool(B->getLHS());
    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
      KnownVal.negate();

    // Now link the LHSBlock with RHSBlock.
    if (B->getOpcode() == BO_LOr) {
      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
    } else {
      assert(B->getOpcode() == BO_LAnd);
      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
    }

    // Generate the blocks for evaluating the LHS.
    Block = LHSBlock;
    return addStmt(B->getLHS());
  }

  if (B->getOpcode() == BO_Comma) { // ,
    autoCreateBlock();
    appendStmt(Block, B, asc);
    addStmt(B->getRHS());
    return addStmt(B->getLHS());
  }

  if (B->isAssignmentOp()) {
    if (asc.alwaysAdd()) {
      autoCreateBlock();
      appendStmt(Block, B, asc);
    }
    Visit(B->getLHS());
    return Visit(B->getRHS());
  }

  if (asc.alwaysAdd()) {
    autoCreateBlock();
    appendStmt(Block, B, asc);
  }

  CFGBlock *RBlock = Visit(B->getRHS());
  CFGBlock *LBlock = Visit(B->getLHS());
  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
  // containing a DoStmt, and the LHS doesn't create a new block, then we should
  // return RBlock.  Otherwise we'll incorrectly return NULL.
  return (LBlock ? LBlock : RBlock);
}

CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
  if (asc.alwaysAdd()) {
    autoCreateBlock();
    appendStmt(Block, E, asc);
  }
  return Block;
}

CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
  // "break" is a control-flow statement.  Thus we stop processing the current
  // block.
  if (badCFG)
    return 0;

  // Now create a new block that ends with the break statement.
  Block = createBlock(false);
  Block->setTerminator(B);

  // If there is no target for the break, then we are looking at an incomplete
  // AST.  This means that the CFG cannot be constructed.
  if (BreakJumpTarget.block) {
    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
    addSuccessor(Block, BreakJumpTarget.block);
  } else
    badCFG = true;


  return Block;
}

static bool CanThrow(Expr *E) {
  QualType Ty = E->getType();
  if (Ty->isFunctionPointerType())
    Ty = Ty->getAs<PointerType>()->getPointeeType();
  else if (Ty->isBlockPointerType())
    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();

  const FunctionType *FT = Ty->getAs<FunctionType>();
  if (FT) {
    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
      if (Proto->hasEmptyExceptionSpec())
        return false;
  }
  return true;
}

CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
  // If this is a call to a no-return function, this stops the block here.
  bool NoReturn = false;
  if (getFunctionExtInfo(*C->getCallee()->getType()).getNoReturn()) {
    NoReturn = true;
  }

  bool AddEHEdge = false;

  // Languages without exceptions are assumed to not throw.
  if (Context->getLangOptions().Exceptions) {
    if (BuildOpts.AddEHEdges)
      AddEHEdge = true;
  }

  if (FunctionDecl *FD = C->getDirectCallee()) {
    if (FD->hasAttr<NoReturnAttr>())
      NoReturn = true;
    if (FD->hasAttr<NoThrowAttr>())
      AddEHEdge = false;
  }

  if (!CanThrow(C->getCallee()))
    AddEHEdge = false;

  if (!NoReturn && !AddEHEdge)
    return VisitStmt(C, asc.withAlwaysAdd(true));

  if (Block) {
    Succ = Block;
    if (badCFG)
      return 0;
  }

  Block = createBlock(!NoReturn);
  appendStmt(Block, C, asc);

  if (NoReturn) {
    // Wire this to the exit block directly.
    addSuccessor(Block, &cfg->getExit());
  }
  if (AddEHEdge) {
    // Add exceptional edges.
    if (TryTerminatedBlock)
      addSuccessor(Block, TryTerminatedBlock);
    else
      addSuccessor(Block, &cfg->getExit());
  }

  return VisitChildren(C);
}

CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
                                      AddStmtChoice asc) {
  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
  appendStmt(ConfluenceBlock, C, asc);
  if (badCFG)
    return 0;

  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
  Succ = ConfluenceBlock;
  Block = NULL;
  CFGBlock* LHSBlock = Visit(C->getLHS(), alwaysAdd);
  if (badCFG)
    return 0;

  Succ = ConfluenceBlock;
  Block = NULL;
  CFGBlock* RHSBlock = Visit(C->getRHS(), alwaysAdd);
  if (badCFG)
    return 0;

  Block = createBlock(false);
  // See if this is a known constant.
  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
  Block->setTerminator(C);
  return addStmt(C->getCond());
}


CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
  addLocalScopeAndDtors(C);
  CFGBlock* LastBlock = Block;

  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
       I != E; ++I ) {
    // If we hit a segment of code just containing ';' (NullStmts), we can
    // get a null block back.  In such cases, just use the LastBlock
    if (CFGBlock *newBlock = addStmt(*I))
      LastBlock = newBlock;

    if (badCFG)
      return NULL;
  }

  return LastBlock;
}

CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
                                               AddStmtChoice asc) {
  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);

  // Create the confluence block that will "merge" the results of the ternary
  // expression.
  CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
  appendStmt(ConfluenceBlock, C, asc);
  if (badCFG)
    return 0;

  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);

  // Create a block for the LHS expression if there is an LHS expression.  A
  // GCC extension allows LHS to be NULL, causing the condition to be the
  // value that is returned instead.
  //  e.g: x ?: y is shorthand for: x ? x : y;
  Succ = ConfluenceBlock;
  Block = NULL;
  CFGBlock* LHSBlock = 0;
  const Expr *trueExpr = C->getTrueExpr();
  if (trueExpr != opaqueValue) {
    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
    if (badCFG)
      return 0;
    Block = NULL;
  }
  else
    LHSBlock = ConfluenceBlock;

  // Create the block for the RHS expression.
  Succ = ConfluenceBlock;
  CFGBlock* RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
  if (badCFG)
    return 0;

  // Create the block that will contain the condition.
  Block = createBlock(false);

  // See if this is a known constant.
  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
  Block->setTerminator(C);
  Expr *condExpr = C->getCond();

  if (opaqueValue) {
    // Run the condition expression if it's not trivially expressed in
    // terms of the opaque value (or if there is no opaque value).
    if (condExpr != opaqueValue)
      addStmt(condExpr);

    // Before that, run the common subexpression if there was one.
    // At least one of this or the above will be run.
    return addStmt(BCO->getCommon());
  }
  
  return addStmt(condExpr);
}

CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
  if (DS->isSingleDecl())
    return VisitDeclSubExpr(DS);

  CFGBlock *B = 0;

  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
  typedef llvm::SmallVector<Decl*,10> BufTy;
  BufTy Buf(DS->decl_begin(), DS->decl_end());

  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;

    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
    // automatically freed with the CFG.
    DeclGroupRef DG(*I);
    Decl *D = *I;
    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));

    // Append the fake DeclStmt to block.
    B = VisitDeclSubExpr(DSNew);
  }

  return B;
}

/// VisitDeclSubExpr - Utility method to add block-level expressions for
/// DeclStmts and initializers in them.
CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt* DS) {
  assert(DS->isSingleDecl() && "Can handle single declarations only.");

  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());

  if (!VD) {
    autoCreateBlock();
    appendStmt(Block, DS);
    return Block;
  }

  bool IsReference = false;
  bool HasTemporaries = false;

  // Destructors of temporaries in initialization expression should be called
  // after initialization finishes.
  Expr *Init = VD->getInit();
  if (Init) {
    IsReference = VD->getType()->isReferenceType();
    HasTemporaries = isa<ExprWithCleanups>(Init);

    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
      // Generate destructors for temporaries in initialization expression.
      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
          IsReference);
    }
  }

  autoCreateBlock();
  appendStmt(Block, DS);

  if (Init) {
    if (HasTemporaries)
      // For expression with temporaries go directly to subexpression to omit
      // generating destructors for the second time.
      Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
    else
      Visit(Init);
  }

  // If the type of VD is a VLA, then we must process its size expressions.
  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
    Block = addStmt(VA->getSizeExpr());

  // Remove variable from local scope.
  if (ScopePos && VD == *ScopePos)
    ++ScopePos;

  return Block;
}

CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
  // We may see an if statement in the middle of a basic block, or it may be the
  // first statement we are processing.  In either case, we create a new basic
  // block.  First, we create the blocks for the then...else statements, and
  // then we create the block containing the if statement.  If we were in the
  // middle of a block, we stop processing that block.  That block is then the
  // implicit successor for the "then" and "else" clauses.

  // Save local scope position because in case of condition variable ScopePos
  // won't be restored when traversing AST.
  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);

  // Create local scope for possible condition variable.
  // Store scope position. Add implicit destructor.
  if (VarDecl* VD = I->getConditionVariable()) {
    LocalScope::const_iterator BeginScopePos = ScopePos;
    addLocalScopeForVarDecl(VD);
    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
  }

  // The block we were proccessing is now finished.  Make it the successor
  // block.
  if (Block) {
    Succ = Block;
    if (badCFG)
      return 0;
  }

  // Process the false branch.
  CFGBlock* ElseBlock = Succ;

  if (Stmt* Else = I->getElse()) {
    SaveAndRestore<CFGBlock*> sv(Succ);

    // NULL out Block so that the recursive call to Visit will
    // create a new basic block.
    Block = NULL;

    // If branch is not a compound statement create implicit scope
    // and add destructors.
    if (!isa<CompoundStmt>(Else))
      addLocalScopeAndDtors(Else);

    ElseBlock = addStmt(Else);

    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
      ElseBlock = sv.get();
    else if (Block) {
      if (badCFG)
        return 0;
    }
  }

  // Process the true branch.
  CFGBlock* ThenBlock;
  {
    Stmt* Then = I->getThen();
    assert(Then);
    SaveAndRestore<CFGBlock*> sv(Succ);
    Block = NULL;

    // If branch is not a compound statement create implicit scope
    // and add destructors.
    if (!isa<CompoundStmt>(Then))
      addLocalScopeAndDtors(Then);

    ThenBlock = addStmt(Then);

    if (!ThenBlock) {
      // We can reach here if the "then" body has all NullStmts.
      // Create an empty block so we can distinguish between true and false
      // branches in path-sensitive analyses.
      ThenBlock = createBlock(false);
      addSuccessor(ThenBlock, sv.get());
    } else if (Block) {
      if (badCFG)
        return 0;
    }
  }

  // Now create a new block containing the if statement.
  Block = createBlock(false);

  // Set the terminator of the new block to the If statement.
  Block->setTerminator(I);

  // See if this is a known constant.
  const TryResult &KnownVal = tryEvaluateBool(I->getCond());

  // Now add the successors.
  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);

  // Add the condition as the last statement in the new block.  This may create
  // new blocks as the condition may contain control-flow.  Any newly created
  // blocks will be pointed to be "Block".
  Block = addStmt(I->getCond());

  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
  // and the condition variable initialization to the CFG.
  if (VarDecl *VD = I->getConditionVariable()) {
    if (Expr *Init = VD->getInit()) {
      autoCreateBlock();
      appendStmt(Block, I, AddStmtChoice::AlwaysAdd);
      addStmt(Init);
    }
  }

  return Block;
}


CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
  // If we were in the middle of a block we stop processing that block.
  //
  // NOTE: If a "return" appears in the middle of a block, this means that the
  //       code afterwards is DEAD (unreachable).  We still keep a basic block
  //       for that code; a simple "mark-and-sweep" from the entry block will be
  //       able to report such dead blocks.

  // Create the new block.
  Block = createBlock(false);

  // The Exit block is the only successor.
  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
  addSuccessor(Block, &cfg->getExit());

  // Add the return statement to the block.  This may create new blocks if R
  // contains control-flow (short-circuit operations).
  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
}

CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt *L) {
  // Get the block of the labeled statement.  Add it to our map.
  addStmt(L->getSubStmt());
  CFGBlock *LabelBlock = Block;

  if (!LabelBlock)              // This can happen when the body is empty, i.e.
    LabelBlock = createBlock(); // scopes that only contains NullStmts.

  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
         "label already in map");
  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);

  // Labels partition blocks, so this is the end of the basic block we were
  // processing (L is the block's label).  Because this is label (and we have
  // already processed the substatement) there is no extra control-flow to worry
  // about.
  LabelBlock->setLabel(L);
  if (badCFG)
    return 0;

  // We set Block to NULL to allow lazy creation of a new block (if necessary);
  Block = NULL;

  // This block is now the implicit successor of other blocks.
  Succ = LabelBlock;

  return LabelBlock;
}

CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
  // Goto is a control-flow statement.  Thus we stop processing the current
  // block and create a new one.

  Block = createBlock(false);
  Block->setTerminator(G);

  // If we already know the mapping to the label block add the successor now.
  LabelMapTy::iterator I = LabelMap.find(G->getLabel());

  if (I == LabelMap.end())
    // We will need to backpatch this block later.
    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
  else {
    JumpTarget JT = I->second;
    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
    addSuccessor(Block, JT.block);
  }

  return Block;
}

CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
  CFGBlock* LoopSuccessor = NULL;

  // Save local scope position because in case of condition variable ScopePos
  // won't be restored when traversing AST.
  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);

  // Create local scope for init statement and possible condition variable.
  // Add destructor for init statement and condition variable.
  // Store scope position for continue statement.
  if (Stmt* Init = F->getInit())
    addLocalScopeForStmt(Init);
  LocalScope::const_iterator LoopBeginScopePos = ScopePos;

  if (VarDecl* VD = F->getConditionVariable())
    addLocalScopeForVarDecl(VD);
  LocalScope::const_iterator ContinueScopePos = ScopePos;

  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);

  // "for" is a control-flow statement.  Thus we stop processing the current
  // block.
  if (Block) {
    if (badCFG)
      return 0;
    LoopSuccessor = Block;
  } else
    LoopSuccessor = Succ;

  // Save the current value for the break targets.
  // All breaks should go to the code following the loop.
  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);

  // Because of short-circuit evaluation, the condition of the loop can span
  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
  // evaluate the condition.
  CFGBlock* ExitConditionBlock = createBlock(false);
  CFGBlock* EntryConditionBlock = ExitConditionBlock;

  // Set the terminator for the "exit" condition block.
  ExitConditionBlock->setTerminator(F);

  // Now add the actual condition to the condition block.  Because the condition
  // itself may contain control-flow, new blocks may be created.
  if (Stmt* C = F->getCond()) {
    Block = ExitConditionBlock;
    EntryConditionBlock = addStmt(C);
    if (badCFG)
      return 0;
    assert(Block == EntryConditionBlock ||
           (Block == 0 && EntryConditionBlock == Succ));

    // If this block contains a condition variable, add both the condition
    // variable and initializer to the CFG.
    if (VarDecl *VD = F->getConditionVariable()) {
      if (Expr *Init = VD->getInit()) {
        autoCreateBlock();
        appendStmt(Block, F, AddStmtChoice::AlwaysAdd);
        EntryConditionBlock = addStmt(Init);
        assert(Block == EntryConditionBlock);
      }
    }

    if (Block) {
      if (badCFG)
        return 0;
    }
  }

  // The condition block is the implicit successor for the loop body as well as
  // any code above the loop.
  Succ = EntryConditionBlock;

  // See if this is a known constant.
  TryResult KnownVal(true);

  if (F->getCond())
    KnownVal = tryEvaluateBool(F->getCond());

  // Now create the loop body.
  {
    assert(F->getBody());

   // Save the current values for Block, Succ, and continue targets.
   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);

    // Create a new block to contain the (bottom) of the loop body.
    Block = NULL;
    
    // Loop body should end with destructor of Condition variable (if any).
    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);

    if (Stmt* I = F->getInc()) {
      // Generate increment code in its own basic block.  This is the target of
      // continue statements.
      Succ = addStmt(I);
    } else {
      // No increment code.  Create a special, empty, block that is used as the
      // target block for "looping back" to the start of the loop.
      assert(Succ == EntryConditionBlock);
      Succ = Block ? Block : createBlock();
    }

    // Finish up the increment (or empty) block if it hasn't been already.
    if (Block) {
      assert(Block == Succ);
      if (badCFG)
        return 0;
      Block = 0;
    }

    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);

    // The starting block for the loop increment is the block that should
    // represent the 'loop target' for looping back to the start of the loop.
    ContinueJumpTarget.block->setLoopTarget(F);

    // If body is not a compound statement create implicit scope
    // and add destructors.
    if (!isa<CompoundStmt>(F->getBody()))
      addLocalScopeAndDtors(F->getBody());

    // Now populate the body block, and in the process create new blocks as we
    // walk the body of the loop.
    CFGBlock* BodyBlock = addStmt(F->getBody());

    if (!BodyBlock)
      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
    else if (badCFG)
      return 0;

    // This new body block is a successor to our "exit" condition block.
    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
  }

  // Link up the condition block with the code that follows the loop.  (the
  // false branch).
  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);

  // If the loop contains initialization, create a new block for those
  // statements.  This block can also contain statements that precede the loop.
  if (Stmt* I = F->getInit()) {
    Block = createBlock();
    return addStmt(I);
  }

  // There is no loop initialization.  We are thus basically a while loop.
  // NULL out Block to force lazy block construction.
  Block = NULL;
  Succ = EntryConditionBlock;
  return EntryConditionBlock;
}

CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
  if (asc.alwaysAdd()) {
    autoCreateBlock();
    appendStmt(Block, M, asc);
  }
  return Visit(M->getBase());
}

CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
  // Objective-C fast enumeration 'for' statements:
  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
  //
  //  for ( Type newVariable in collection_expression ) { statements }
  //
  //  becomes:
  //
  //   prologue:
  //     1. collection_expression
  //     T. jump to loop_entry
  //   loop_entry:
  //     1. side-effects of element expression
  //     1. ObjCForCollectionStmt [performs binding to newVariable]
  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
  //   TB:
  //     statements
  //     T. jump to loop_entry
  //   FB:
  //     what comes after
  //
  //  and
  //
  //  Type existingItem;
  //  for ( existingItem in expression ) { statements }
  //
  //  becomes:
  //
  //   the same with newVariable replaced with existingItem; the binding works
  //   the same except that for one ObjCForCollectionStmt::getElement() returns
  //   a DeclStmt and the other returns a DeclRefExpr.
  //

  CFGBlock* LoopSuccessor = 0;

  if (Block) {
    if (badCFG)
      return 0;
    LoopSuccessor = Block;
    Block = 0;
  } else
    LoopSuccessor = Succ;

  // Build the condition blocks.
  CFGBlock* ExitConditionBlock = createBlock(false);
  CFGBlock* EntryConditionBlock = ExitConditionBlock;

  // Set the terminator for the "exit" condition block.
  ExitConditionBlock->setTerminator(S);

  // The last statement in the block should be the ObjCForCollectionStmt, which
  // performs the actual binding to 'element' and determines if there are any
  // more items in the collection.
  appendStmt(ExitConditionBlock, S);
  Block = ExitConditionBlock;

  // Walk the 'element' expression to see if there are any side-effects.  We
  // generate new blocks as necesary.  We DON'T add the statement by default to
  // the CFG unless it contains control-flow.
  EntryConditionBlock = Visit(S->getElement(), AddStmtChoice::NotAlwaysAdd);
  if (Block) {
    if (badCFG)
      return 0;
    Block = 0;
  }

  // The condition block is the implicit successor for the loop body as well as
  // any code above the loop.
  Succ = EntryConditionBlock;

  // Now create the true branch.
  {
    // Save the current values for Succ, continue and break targets.
    SaveAndRestore<CFGBlock*> save_Succ(Succ);
    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
        save_break(BreakJumpTarget);

    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);

    CFGBlock* BodyBlock = addStmt(S->getBody());

    if (!BodyBlock)
      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
    else if (Block) {
      if (badCFG)
        return 0;
    }

    // This new body block is a successor to our "exit" condition block.
    addSuccessor(ExitConditionBlock, BodyBlock);
  }

  // Link up the condition block with the code that follows the loop.
  // (the false branch).
  addSuccessor(ExitConditionBlock, LoopSuccessor);

  // Now create a prologue block to contain the collection expression.
  Block = createBlock();
  return addStmt(S->getCollection());
}

CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
  // FIXME: Add locking 'primitives' to CFG for @synchronized.

  // Inline the body.
  CFGBlock *SyncBlock = addStmt(S->getSynchBody());

  // The sync body starts its own basic block.  This makes it a little easier
  // for diagnostic clients.
  if (SyncBlock) {
    if (badCFG)
      return 0;

    Block = 0;
    Succ = SyncBlock;
  }

  // Add the @synchronized to the CFG.
  autoCreateBlock();
  appendStmt(Block, S, AddStmtChoice::AlwaysAdd);

  // Inline the sync expression.
  return addStmt(S->getSynchExpr());
}

CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
  // FIXME
  return NYS();
}

CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
  CFGBlock* LoopSuccessor = NULL;

  // Save local scope position because in case of condition variable ScopePos
  // won't be restored when traversing AST.
  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);

  // Create local scope for possible condition variable.
  // Store scope position for continue statement.
  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
  if (VarDecl* VD = W->getConditionVariable()) {
    addLocalScopeForVarDecl(VD);
    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
  }

  // "while" is a control-flow statement.  Thus we stop processing the current
  // block.
  if (Block) {
    if (badCFG)
      return 0;
    LoopSuccessor = Block;
    Block = 0;
  } else
    LoopSuccessor = Succ;

  // Because of short-circuit evaluation, the condition of the loop can span
  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
  // evaluate the condition.
  CFGBlock* ExitConditionBlock = createBlock(false);
  CFGBlock* EntryConditionBlock = ExitConditionBlock;

  // Set the terminator for the "exit" condition block.
  ExitConditionBlock->setTerminator(W);

  // Now add the actual condition to the condition block.  Because the condition
  // itself may contain control-flow, new blocks may be created.  Thus we update
  // "Succ" after adding the condition.
  if (Stmt* C = W->getCond()) {
    Block = ExitConditionBlock;
    EntryConditionBlock = addStmt(C);
    // The condition might finish the current 'Block'.
    Block = EntryConditionBlock;

    // If this block contains a condition variable, add both the condition
    // variable and initializer to the CFG.
    if (VarDecl *VD = W->getConditionVariable()) {
      if (Expr *Init = VD->getInit()) {
        autoCreateBlock();
        appendStmt(Block, W, AddStmtChoice::AlwaysAdd);
        EntryConditionBlock = addStmt(Init);
        assert(Block == EntryConditionBlock);
      }
    }

    if (Block) {
      if (badCFG)
        return 0;
    }
  }

  // The condition block is the implicit successor for the loop body as well as
  // any code above the loop.
  Succ = EntryConditionBlock;

  // See if this is a known constant.
  const TryResult& KnownVal = tryEvaluateBool(W->getCond());

  // Process the loop body.
  {
    assert(W->getBody());

    // Save the current values for Block, Succ, and continue and break targets
    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
        save_break(BreakJumpTarget);

    // Create an empty block to represent the transition block for looping back
    // to the head of the loop.
    Block = 0;
    assert(Succ == EntryConditionBlock);
    Succ = createBlock();
    Succ->setLoopTarget(W);
    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);

    // All breaks should go to the code following the loop.
    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);

    // NULL out Block to force lazy instantiation of blocks for the body.
    Block = NULL;

    // Loop body should end with destructor of Condition variable (if any).
    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);

    // If body is not a compound statement create implicit scope
    // and add destructors.
    if (!isa<CompoundStmt>(W->getBody()))
      addLocalScopeAndDtors(W->getBody());

    // Create the body.  The returned block is the entry to the loop body.
    CFGBlock* BodyBlock = addStmt(W->getBody());

    if (!BodyBlock)
      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
    else if (Block) {
      if (badCFG)
        return 0;
    }

    // Add the loop body entry as a successor to the condition.
    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
  }

  // Link up the condition block with the code that follows the loop.  (the
  // false branch).
  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);

  // There can be no more statements in the condition block since we loop back
  // to this block.  NULL out Block to force lazy creation of another block.
  Block = NULL;

  // Return the condition block, which is the dominating block for the loop.
  Succ = EntryConditionBlock;
  return EntryConditionBlock;
}


CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
  // FIXME: For now we pretend that @catch and the code it contains does not
  //  exit.
  return Block;
}

CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
  // FIXME: This isn't complete.  We basically treat @throw like a return
  //  statement.

  // If we were in the middle of a block we stop processing that block.
  if (badCFG)
    return 0;

  // Create the new block.
  Block = createBlock(false);

  // The Exit block is the only successor.
  addSuccessor(Block, &cfg->getExit());

  // Add the statement to the block.  This may create new blocks if S contains
  // control-flow (short-circuit operations).
  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
}

CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
  // If we were in the middle of a block we stop processing that block.
  if (badCFG)
    return 0;

  // Create the new block.
  Block = createBlock(false);

  if (TryTerminatedBlock)
    // The current try statement is the only successor.
    addSuccessor(Block, TryTerminatedBlock);
  else
    // otherwise the Exit block is the only successor.
    addSuccessor(Block, &cfg->getExit());

  // Add the statement to the block.  This may create new blocks if S contains
  // control-flow (short-circuit operations).
  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
}

CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
  CFGBlock* LoopSuccessor = NULL;

  // "do...while" is a control-flow statement.  Thus we stop processing the
  // current block.
  if (Block) {
    if (badCFG)
      return 0;
    LoopSuccessor = Block;
  } else
    LoopSuccessor = Succ;

  // Because of short-circuit evaluation, the condition of the loop can span
  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
  // evaluate the condition.
  CFGBlock* ExitConditionBlock = createBlock(false);
  CFGBlock* EntryConditionBlock = ExitConditionBlock;

  // Set the terminator for the "exit" condition block.
  ExitConditionBlock->setTerminator(D);

  // Now add the actual condition to the condition block.  Because the condition
  // itself may contain control-flow, new blocks may be created.
  if (Stmt* C = D->getCond()) {
    Block = ExitConditionBlock;
    EntryConditionBlock = addStmt(C);
    if (Block) {
      if (badCFG)
        return 0;
    }
  }

  // The condition block is the implicit successor for the loop body.
  Succ = EntryConditionBlock;

  // See if this is a known constant.
  const TryResult &KnownVal = tryEvaluateBool(D->getCond());

  // Process the loop body.
  CFGBlock* BodyBlock = NULL;
  {
    assert(D->getBody());

    // Save the current values for Block, Succ, and continue and break targets
    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
        save_break(BreakJumpTarget);

    // All continues within this loop should go to the condition block
    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);

    // All breaks should go to the code following the loop.
    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);

    // NULL out Block to force lazy instantiation of blocks for the body.
    Block = NULL;

    // If body is not a compound statement create implicit scope
    // and add destructors.
    if (!isa<CompoundStmt>(D->getBody()))
      addLocalScopeAndDtors(D->getBody());

    // Create the body.  The returned block is the entry to the loop body.
    BodyBlock = addStmt(D->getBody());

    if (!BodyBlock)
      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
    else if (Block) {
      if (badCFG)
        return 0;
    }

    if (!KnownVal.isFalse()) {
      // Add an intermediate block between the BodyBlock and the
      // ExitConditionBlock to represent the "loop back" transition.  Create an
      // empty block to represent the transition block for looping back to the
      // head of the loop.
      // FIXME: Can we do this more efficiently without adding another block?
      Block = NULL;
      Succ = BodyBlock;
      CFGBlock *LoopBackBlock = createBlock();
      LoopBackBlock->setLoopTarget(D);

      // Add the loop body entry as a successor to the condition.
      addSuccessor(ExitConditionBlock, LoopBackBlock);
    }
    else
      addSuccessor(ExitConditionBlock, NULL);
  }

  // Link up the condition block with the code that follows the loop.
  // (the false branch).
  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);

  // There can be no more statements in the body block(s) since we loop back to
  // the body.  NULL out Block to force lazy creation of another block.
  Block = NULL;

  // Return the loop body, which is the dominating block for the loop.
  Succ = BodyBlock;
  return BodyBlock;
}

CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
  // "continue" is a control-flow statement.  Thus we stop processing the
  // current block.
  if (badCFG)
    return 0;

  // Now create a new block that ends with the continue statement.
  Block = createBlock(false);
  Block->setTerminator(C);

  // If there is no target for the continue, then we are looking at an
  // incomplete AST.  This means the CFG cannot be constructed.
  if (ContinueJumpTarget.block) {
    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
    addSuccessor(Block, ContinueJumpTarget.block);
  } else
    badCFG = true;

  return Block;
}

CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
                                             AddStmtChoice asc) {

  if (asc.alwaysAdd()) {
    autoCreateBlock();
    appendStmt(Block, E);
  }

  // VLA types have expressions that must be evaluated.
  if (E->isArgumentType()) {
    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
      addStmt(VA->getSizeExpr());
  }

  return Block;
}

/// VisitStmtExpr - Utility method to handle (nested) statement
///  expressions (a GCC extension).
CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
  if (asc.alwaysAdd()) {
    autoCreateBlock();
    appendStmt(Block, SE);
  }
  return VisitCompoundStmt(SE->getSubStmt());
}

CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
  // "switch" is a control-flow statement.  Thus we stop processing the current
  // block.
  CFGBlock* SwitchSuccessor = NULL;

  // Save local scope position because in case of condition variable ScopePos
  // won't be restored when traversing AST.
  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);

  // Create local scope for possible condition variable.
  // Store scope position. Add implicit destructor.
  if (VarDecl* VD = Terminator->getConditionVariable()) {
    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
    addLocalScopeForVarDecl(VD);
    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
  }

  if (Block) {
    if (badCFG)
      return 0;
    SwitchSuccessor = Block;
  } else SwitchSuccessor = Succ;

  // Save the current "switch" context.
  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
                            save_default(DefaultCaseBlock);
  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);

  // Set the "default" case to be the block after the switch statement.  If the
  // switch statement contains a "default:", this value will be overwritten with
  // the block for that code.
  DefaultCaseBlock = SwitchSuccessor;

  // Create a new block that will contain the switch statement.
  SwitchTerminatedBlock = createBlock(false);

  // Now process the switch body.  The code after the switch is the implicit
  // successor.
  Succ = SwitchSuccessor;
  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);

  // When visiting the body, the case statements should automatically get linked
  // up to the switch.  We also don't keep a pointer to the body, since all
  // control-flow from the switch goes to case/default statements.
  assert(Terminator->getBody() && "switch must contain a non-NULL body");
  Block = NULL;

  // For pruning unreachable case statements, save the current state
  // for tracking the condition value.
  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
                                                     false);

  // Determine if the switch condition can be explicitly evaluated.
  assert(Terminator->getCond() && "switch condition must be non-NULL");
  Expr::EvalResult result;
  bool b = tryEvaluate(Terminator->getCond(), result);
  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
                                                    b ? &result : 0);

  // If body is not a compound statement create implicit scope
  // and add destructors.
  if (!isa<CompoundStmt>(Terminator->getBody()))
    addLocalScopeAndDtors(Terminator->getBody());

  addStmt(Terminator->getBody());
  if (Block) {
    if (badCFG)
      return 0;
  }

  // If we have no "default:" case, the default transition is to the code
  // following the switch body.
  addSuccessor(SwitchTerminatedBlock,
               switchExclusivelyCovered ? 0 : DefaultCaseBlock);

  // Add the terminator and condition in the switch block.
  SwitchTerminatedBlock->setTerminator(Terminator);
  Block = SwitchTerminatedBlock;
  Block = addStmt(Terminator->getCond());

  // Finally, if the SwitchStmt contains a condition variable, add both the
  // SwitchStmt and the condition variable initialization to the CFG.
  if (VarDecl *VD = Terminator->getConditionVariable()) {
    if (Expr *Init = VD->getInit()) {
      autoCreateBlock();
      appendStmt(Block, Terminator, AddStmtChoice::AlwaysAdd);
      addStmt(Init);
    }
  }

  return Block;
}
  
static bool shouldAddCase(bool &switchExclusivelyCovered,
                          const Expr::EvalResult *switchCond,
                          const CaseStmt *CS,
                          ASTContext &Ctx) {
  if (!switchCond)
    return true;

  bool addCase = false;

  if (!switchExclusivelyCovered) {
    if (switchCond->Val.isInt()) {
      // Evaluate the LHS of the case value.
      Expr::EvalResult V1;
      CS->getLHS()->Evaluate(V1, Ctx);
      assert(V1.Val.isInt());
      const llvm::APSInt &condInt = switchCond->Val.getInt();
      const llvm::APSInt &lhsInt = V1.Val.getInt();
      
      if (condInt == lhsInt) {
        addCase = true;
        switchExclusivelyCovered = true;
      }
      else if (condInt < lhsInt) {
        if (const Expr *RHS = CS->getRHS()) {
          // Evaluate the RHS of the case value.
          Expr::EvalResult V2;
          RHS->Evaluate(V2, Ctx);
          assert(V2.Val.isInt());
          if (V2.Val.getInt() <= condInt) {
            addCase = true;
            switchExclusivelyCovered = true;
          }
        }
      }
    }
    else
      addCase = true;
  }
  return addCase;  
}

CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
  // CaseStmts are essentially labels, so they are the first statement in a
  // block.
  CFGBlock *TopBlock = 0, *LastBlock = 0;

  if (Stmt *Sub = CS->getSubStmt()) {
    // For deeply nested chains of CaseStmts, instead of doing a recursion
    // (which can blow out the stack), manually unroll and create blocks
    // along the way.
    while (isa<CaseStmt>(Sub)) {
      CFGBlock *currentBlock = createBlock(false);
      currentBlock->setLabel(CS);

      if (TopBlock)
        addSuccessor(LastBlock, currentBlock);
      else
        TopBlock = currentBlock;

      addSuccessor(SwitchTerminatedBlock,
                   shouldAddCase(switchExclusivelyCovered, switchCond,
                                 CS, *Context)
                   ? currentBlock : 0);

      LastBlock = currentBlock;
      CS = cast<CaseStmt>(Sub);
      Sub = CS->getSubStmt();
    }

    addStmt(Sub);
  }

  CFGBlock* CaseBlock = Block;
  if (!CaseBlock)
    CaseBlock = createBlock();

  // Cases statements partition blocks, so this is the top of the basic block we
  // were processing (the "case XXX:" is the label).
  CaseBlock->setLabel(CS);

  if (badCFG)
    return 0;

  // Add this block to the list of successors for the block with the switch
  // statement.
  assert(SwitchTerminatedBlock);
  addSuccessor(SwitchTerminatedBlock,
               shouldAddCase(switchExclusivelyCovered, switchCond,
                             CS, *Context)
               ? CaseBlock : 0);

  // We set Block to NULL to allow lazy creation of a new block (if necessary)
  Block = NULL;

  if (TopBlock) {
    addSuccessor(LastBlock, CaseBlock);
    Succ = TopBlock;
  } else {
    // This block is now the implicit successor of other blocks.
    Succ = CaseBlock;
  }

  return Succ;
}

CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
  if (Terminator->getSubStmt())
    addStmt(Terminator->getSubStmt());

  DefaultCaseBlock = Block;

  if (!DefaultCaseBlock)
    DefaultCaseBlock = createBlock();

  // Default statements partition blocks, so this is the top of the basic block
  // we were processing (the "default:" is the label).
  DefaultCaseBlock->setLabel(Terminator);

  if (badCFG)
    return 0;

  // Unlike case statements, we don't add the default block to the successors
  // for the switch statement immediately.  This is done when we finish
  // processing the switch statement.  This allows for the default case
  // (including a fall-through to the code after the switch statement) to always
  // be the last successor of a switch-terminated block.

  // We set Block to NULL to allow lazy creation of a new block (if necessary)
  Block = NULL;

  // This block is now the implicit successor of other blocks.
  Succ = DefaultCaseBlock;

  return DefaultCaseBlock;
}

CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
  // current block.
  CFGBlock* TrySuccessor = NULL;

  if (Block) {
    if (badCFG)
      return 0;
    TrySuccessor = Block;
  } else TrySuccessor = Succ;

  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;

  // Create a new block that will contain the try statement.
  CFGBlock *NewTryTerminatedBlock = createBlock(false);
  // Add the terminator in the try block.
  NewTryTerminatedBlock->setTerminator(Terminator);

  bool HasCatchAll = false;
  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
    // The code after the try is the implicit successor.
    Succ = TrySuccessor;
    CXXCatchStmt *CS = Terminator->getHandler(h);
    if (CS->getExceptionDecl() == 0) {
      HasCatchAll = true;
    }
    Block = NULL;
    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
    if (CatchBlock == 0)
      return 0;
    // Add this block to the list of successors for the block with the try
    // statement.
    addSuccessor(NewTryTerminatedBlock, CatchBlock);
  }
  if (!HasCatchAll) {
    if (PrevTryTerminatedBlock)
      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
    else
      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
  }

  // The code after the try is the implicit successor.
  Succ = TrySuccessor;

  // Save the current "try" context.
  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock);
  TryTerminatedBlock = NewTryTerminatedBlock;

  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
  Block = NULL;
  Block = addStmt(Terminator->getTryBlock());
  return Block;
}

CFGBlock* CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt* CS) {
  // CXXCatchStmt are treated like labels, so they are the first statement in a
  // block.

  // Save local scope position because in case of exception variable ScopePos
  // won't be restored when traversing AST.
  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);

  // Create local scope for possible exception variable.
  // Store scope position. Add implicit destructor.
  if (VarDecl* VD = CS->getExceptionDecl()) {
    LocalScope::const_iterator BeginScopePos = ScopePos;
    addLocalScopeForVarDecl(VD);
    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
  }

  if (CS->getHandlerBlock())
    addStmt(CS->getHandlerBlock());

  CFGBlock* CatchBlock = Block;
  if (!CatchBlock)
    CatchBlock = createBlock();

  CatchBlock->setLabel(CS);

  if (badCFG)
    return 0;

  // We set Block to NULL to allow lazy creation of a new block (if necessary)
  Block = NULL;

  return CatchBlock;
}

CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
    AddStmtChoice asc) {
  if (BuildOpts.AddImplicitDtors) {
    // If adding implicit destructors visit the full expression for adding
    // destructors of temporaries.
    VisitForTemporaryDtors(E->getSubExpr());

    // Full expression has to be added as CFGStmt so it will be sequenced
    // before destructors of it's temporaries.
    asc = asc.withAlwaysAdd(true);
  }
  return Visit(E->getSubExpr(), asc);
}

CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
                                                AddStmtChoice asc) {
  if (asc.alwaysAdd()) {
    autoCreateBlock();
    appendStmt(Block, E, asc);

    // We do not want to propagate the AlwaysAdd property.
    asc = asc.withAlwaysAdd(false);
  }
  return Visit(E->getSubExpr(), asc);
}

CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
                                            AddStmtChoice asc) {
  autoCreateBlock();
  if (!C->isElidable())
    appendStmt(Block, C, asc.withAlwaysAdd(true));

  return VisitChildren(C);
}

CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
                                                 AddStmtChoice asc) {
  if (asc.alwaysAdd()) {
    autoCreateBlock();
    appendStmt(Block, E, asc);
    // We do not want to propagate the AlwaysAdd property.
    asc = asc.withAlwaysAdd(false);
  }
  return Visit(E->getSubExpr(), asc);
}

CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
                                                  AddStmtChoice asc) {
  autoCreateBlock();
  appendStmt(Block, C, asc.withAlwaysAdd(true));
  return VisitChildren(C);
}

CFGBlock *CFGBuilder::VisitCXXMemberCallExpr(CXXMemberCallExpr *C,
                                             AddStmtChoice asc) {
  autoCreateBlock();
  appendStmt(Block, C, asc.withAlwaysAdd(true));
  return VisitChildren(C);
}

CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
                                            AddStmtChoice asc) {
  if (asc.alwaysAdd()) {
    autoCreateBlock();
    appendStmt(Block, E, asc);
  }
  return Visit(E->getSubExpr(), AddStmtChoice());
}

CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
  // Lazily create the indirect-goto dispatch block if there isn't one already.
  CFGBlock* IBlock = cfg->getIndirectGotoBlock();

  if (!IBlock) {
    IBlock = createBlock(false);
    cfg->setIndirectGotoBlock(IBlock);
  }

  // IndirectGoto is a control-flow statement.  Thus we stop processing the
  // current block and create a new one.
  if (badCFG)
    return 0;

  Block = createBlock(false);
  Block->setTerminator(I);
  addSuccessor(Block, IBlock);
  return addStmt(I->getTarget());
}

CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
tryAgain:
  if (!E) {
    badCFG = true;
    return NULL;
  }
  switch (E->getStmtClass()) {
    default:
      return VisitChildrenForTemporaryDtors(E);

    case Stmt::BinaryOperatorClass:
      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));

    case Stmt::CXXBindTemporaryExprClass:
      return VisitCXXBindTemporaryExprForTemporaryDtors(
          cast<CXXBindTemporaryExpr>(E), BindToTemporary);

    case Stmt::BinaryConditionalOperatorClass:
    case Stmt::ConditionalOperatorClass:
      return VisitConditionalOperatorForTemporaryDtors(
          cast<AbstractConditionalOperator>(E), BindToTemporary);

    case Stmt::ImplicitCastExprClass:
      // For implicit cast we want BindToTemporary to be passed further.
      E = cast<CastExpr>(E)->getSubExpr();
      goto tryAgain;

    case Stmt::ParenExprClass:
      E = cast<ParenExpr>(E)->getSubExpr();
      goto tryAgain;
  }
}

CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
  // When visiting children for destructors we want to visit them in reverse
  // order. Because there's no reverse iterator for children must to reverse
  // them in helper vector.
  typedef llvm::SmallVector<Stmt *, 4> ChildrenVect;
  ChildrenVect ChildrenRev;
  for (Stmt::child_range I = E->children(); I; ++I) {
    if (*I) ChildrenRev.push_back(*I);
  }

  CFGBlock *B = Block;
  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
      L = ChildrenRev.rend(); I != L; ++I) {
    if (CFGBlock *R = VisitForTemporaryDtors(*I))
      B = R;
  }
  return B;
}

CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
  if (E->isLogicalOp()) {
    // Destructors for temporaries in LHS expression should be called after
    // those for RHS expression. Even if this will unnecessarily create a block,
    // this block will be used at least by the full expression.
    autoCreateBlock();
    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
    if (badCFG)
      return NULL;

    Succ = ConfluenceBlock;
    Block = NULL;
    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());

    if (RHSBlock) {
      if (badCFG)
        return NULL;

      // If RHS expression did produce destructors we need to connect created
      // blocks to CFG in same manner as for binary operator itself.
      CFGBlock *LHSBlock = createBlock(false);
      LHSBlock->setTerminator(CFGTerminator(E, true));

      // For binary operator LHS block is before RHS in list of predecessors
      // of ConfluenceBlock.
      std::reverse(ConfluenceBlock->pred_begin(),
          ConfluenceBlock->pred_end());

      // See if this is a known constant.
      TryResult KnownVal = tryEvaluateBool(E->getLHS());
      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
        KnownVal.negate();

      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
      // itself.
      if (E->getOpcode() == BO_LOr) {
        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
      } else {
        assert (E->getOpcode() == BO_LAnd);
        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
      }

      Block = LHSBlock;
      return LHSBlock;
    }

    Block = ConfluenceBlock;
    return ConfluenceBlock;
  }

  if (E->isAssignmentOp()) {
    // For assignment operator (=) LHS expression is visited
    // before RHS expression. For destructors visit them in reverse order.
    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
    return LHSBlock ? LHSBlock : RHSBlock;
  }

  // For any other binary operator RHS expression is visited before
  // LHS expression (order of children). For destructors visit them in reverse
  // order.
  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
  return RHSBlock ? RHSBlock : LHSBlock;
}

CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
    CXXBindTemporaryExpr *E, bool BindToTemporary) {
  // First add destructors for temporaries in subexpression.
  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
  if (!BindToTemporary) {
    // If lifetime of temporary is not prolonged (by assigning to constant
    // reference) add destructor for it.
    autoCreateBlock();
    appendTemporaryDtor(Block, E);
    B = Block;
  }
  return B;
}

CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
    AbstractConditionalOperator *E, bool BindToTemporary) {
  // First add destructors for condition expression.  Even if this will
  // unnecessarily create a block, this block will be used at least by the full
  // expression.
  autoCreateBlock();
  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
  if (badCFG)
    return NULL;
  if (BinaryConditionalOperator *BCO
        = dyn_cast<BinaryConditionalOperator>(E)) {
    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
    if (badCFG)
      return NULL;
  }

  // Try to add block with destructors for LHS expression.
  CFGBlock *LHSBlock = NULL;
  Succ = ConfluenceBlock;
  Block = NULL;
  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
  if (badCFG)
    return NULL;

  // Try to add block with destructors for RHS expression;
  Succ = ConfluenceBlock;
  Block = NULL;
  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
                                              BindToTemporary);
  if (badCFG)
    return NULL;

  if (!RHSBlock && !LHSBlock) {
    // If neither LHS nor RHS expression had temporaries to destroy don't create
    // more blocks.
    Block = ConfluenceBlock;
    return Block;
  }

  Block = createBlock(false);
  Block->setTerminator(CFGTerminator(E, true));

  // See if this is a known constant.
  const TryResult &KnownVal = tryEvaluateBool(E->getCond());

  if (LHSBlock) {
    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
  } else if (KnownVal.isFalse()) {
    addSuccessor(Block, NULL);
  } else {
    addSuccessor(Block, ConfluenceBlock);
    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
  }

  if (!RHSBlock)
    RHSBlock = ConfluenceBlock;
  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);

  return Block;
}

} // end anonymous namespace

/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
///  no successors or predecessors.  If this is the first block created in the
///  CFG, it is automatically set to be the Entry and Exit of the CFG.
CFGBlock* CFG::createBlock() {
  bool first_block = begin() == end();

  // Create the block.
  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
  Blocks.push_back(Mem, BlkBVC);

  // If this is the first block, set it as the Entry and Exit.
  if (first_block)
    Entry = Exit = &back();

  // Return the block.
  return &back();
}

/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
///  CFG is returned to the caller.
CFG* CFG::buildCFG(const Decl *D, Stmt* Statement, ASTContext *C,
    BuildOptions BO) {
  CFGBuilder Builder;
  return Builder.buildCFG(D, Statement, C, BO);
}

const CXXDestructorDecl *
CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
  switch (getKind()) {
    case CFGElement::Invalid:
    case CFGElement::Statement:
    case CFGElement::Initializer:
      llvm_unreachable("getDestructorDecl should only be used with "
                       "ImplicitDtors");
    case CFGElement::AutomaticObjectDtor: {
      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
      QualType ty = var->getType();
      ty = ty.getNonReferenceType();
      if (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
        ty = arrayType->getElementType();
      }
      const RecordType *recordType = ty->getAs<RecordType>();
      const CXXRecordDecl *classDecl =
      cast<CXXRecordDecl>(recordType->getDecl());
      return classDecl->getDestructor();      
    }
    case CFGElement::TemporaryDtor: {
      const CXXBindTemporaryExpr *bindExpr =
        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
      const CXXTemporary *temp = bindExpr->getTemporary();
      return temp->getDestructor();
    }
    case CFGElement::BaseDtor:
    case CFGElement::MemberDtor:

      // Not yet supported.
      return 0;
  }
  llvm_unreachable("getKind() returned bogus value");
  return 0;
}

bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
  if (const CXXDestructorDecl *cdecl = getDestructorDecl(astContext)) {
    QualType ty = cdecl->getType();
    return cast<FunctionType>(ty)->getNoReturnAttr();
  }
  return false;
}

//===----------------------------------------------------------------------===//
// CFG: Queries for BlkExprs.
//===----------------------------------------------------------------------===//

namespace {
  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
}

static void FindSubExprAssignments(Stmt *S,
                                   llvm::SmallPtrSet<Expr*,50>& Set) {
  if (!S)
    return;

  for (Stmt::child_range I = S->children(); I; ++I) {
    Stmt *child = *I;
    if (!child)
      continue;

    if (BinaryOperator* B = dyn_cast<BinaryOperator>(child))
      if (B->isAssignmentOp()) Set.insert(B);

    FindSubExprAssignments(child, Set);
  }
}

static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
  BlkExprMapTy* M = new BlkExprMapTy();

  // Look for assignments that are used as subexpressions.  These are the only
  // assignments that we want to *possibly* register as a block-level
  // expression.  Basically, if an assignment occurs both in a subexpression and
  // at the block-level, it is a block-level expression.
  llvm::SmallPtrSet<Expr*,50> SubExprAssignments;

  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
      if (const CFGStmt *S = BI->getAs<CFGStmt>())
        FindSubExprAssignments(S->getStmt(), SubExprAssignments);

  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {

    // Iterate over the statements again on identify the Expr* and Stmt* at the
    // block-level that are block-level expressions.

    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
      const CFGStmt *CS = BI->getAs<CFGStmt>();
      if (!CS)
        continue;
      if (Expr* Exp = dyn_cast<Expr>(CS->getStmt())) {

        if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
          // Assignment expressions that are not nested within another
          // expression are really "statements" whose value is never used by
          // another expression.
          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
            continue;
        } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
          // Special handling for statement expressions.  The last statement in
          // the statement expression is also a block-level expr.
          const CompoundStmt* C = Terminator->getSubStmt();
          if (!C->body_empty()) {
            unsigned x = M->size();
            (*M)[C->body_back()] = x;
          }
        }

        unsigned x = M->size();
        (*M)[Exp] = x;
      }
    }

    // Look at terminators.  The condition is a block-level expression.

    Stmt* S = (*I)->getTerminatorCondition();

    if (S && M->find(S) == M->end()) {
        unsigned x = M->size();
        (*M)[S] = x;
    }
  }

  return M;
}

CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
  assert(S != NULL);
  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }

  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
  BlkExprMapTy::iterator I = M->find(S);
  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
}

unsigned CFG::getNumBlkExprs() {
  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
    return M->size();

  // We assume callers interested in the number of BlkExprs will want
  // the map constructed if it doesn't already exist.
  BlkExprMap = (void*) PopulateBlkExprMap(*this);
  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
}

//===----------------------------------------------------------------------===//
// Filtered walking of the CFG.
//===----------------------------------------------------------------------===//

bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
        const CFGBlock *From, const CFGBlock *To) {

  if (To && F.IgnoreDefaultsWithCoveredEnums) {
    // If the 'To' has no label or is labeled but the label isn't a
    // CaseStmt then filter this edge.
    if (const SwitchStmt *S =
        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
      if (S->isAllEnumCasesCovered()) {
        const Stmt *L = To->getLabel();
        if (!L || !isa<CaseStmt>(L))
          return true;
      }
    }
  }

  return false;
}

//===----------------------------------------------------------------------===//
// Cleanup: CFG dstor.
//===----------------------------------------------------------------------===//

CFG::~CFG() {
  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
}

//===----------------------------------------------------------------------===//
// CFG pretty printing
//===----------------------------------------------------------------------===//

namespace {

class StmtPrinterHelper : public PrinterHelper  {
  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
  StmtMapTy StmtMap;
  DeclMapTy DeclMap;
  signed currentBlock;
  unsigned currentStmt;
  const LangOptions &LangOpts;
public:

  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
    : currentBlock(0), currentStmt(0), LangOpts(LO)
  {
    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
      unsigned j = 1;
      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
           BI != BEnd; ++BI, ++j ) {        
        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
          const Stmt *stmt= SE->getStmt();
          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
          StmtMap[stmt] = P;

          switch (stmt->getStmtClass()) {
            case Stmt::DeclStmtClass:
                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
                break;
            case Stmt::IfStmtClass: {
              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
              if (var)
                DeclMap[var] = P;
              break;
            }
            case Stmt::ForStmtClass: {
              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
              if (var)
                DeclMap[var] = P;
              break;
            }
            case Stmt::WhileStmtClass: {
              const VarDecl *var =
                cast<WhileStmt>(stmt)->getConditionVariable();
              if (var)
                DeclMap[var] = P;
              break;
            }
            case Stmt::SwitchStmtClass: {
              const VarDecl *var =
                cast<SwitchStmt>(stmt)->getConditionVariable();
              if (var)
                DeclMap[var] = P;
              break;
            }
            case Stmt::CXXCatchStmtClass: {
              const VarDecl *var =
                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
              if (var)
                DeclMap[var] = P;
              break;
            }
            default:
              break;
          }
        }
      }
    }
  }
  

  virtual ~StmtPrinterHelper() {}

  const LangOptions &getLangOpts() const { return LangOpts; }
  void setBlockID(signed i) { currentBlock = i; }
  void setStmtID(unsigned i) { currentStmt = i; }

  virtual bool handledStmt(Stmt* S, llvm::raw_ostream& OS) {
    StmtMapTy::iterator I = StmtMap.find(S);

    if (I == StmtMap.end())
      return false;

    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
                          && I->second.second == currentStmt) {
      return false;
    }

    OS << "[B" << I->second.first << "." << I->second.second << "]";
    return true;
  }

  bool handleDecl(const Decl* D, llvm::raw_ostream& OS) {
    DeclMapTy::iterator I = DeclMap.find(D);

    if (I == DeclMap.end())
      return false;

    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
                          && I->second.second == currentStmt) {
      return false;
    }

    OS << "[B" << I->second.first << "." << I->second.second << "]";
    return true;
  }
};
} // end anonymous namespace


namespace {
class CFGBlockTerminatorPrint
  : public StmtVisitor<CFGBlockTerminatorPrint,void> {

  llvm::raw_ostream& OS;
  StmtPrinterHelper* Helper;
  PrintingPolicy Policy;
public:
  CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
                          const PrintingPolicy &Policy)
    : OS(os), Helper(helper), Policy(Policy) {}

  void VisitIfStmt(IfStmt* I) {
    OS << "if ";
    I->getCond()->printPretty(OS,Helper,Policy);
  }

  // Default case.
  void VisitStmt(Stmt* Terminator) {
    Terminator->printPretty(OS, Helper, Policy);
  }

  void VisitForStmt(ForStmt* F) {
    OS << "for (" ;
    if (F->getInit())
      OS << "...";
    OS << "; ";
    if (Stmt* C = F->getCond())
      C->printPretty(OS, Helper, Policy);
    OS << "; ";
    if (F->getInc())
      OS << "...";
    OS << ")";
  }

  void VisitWhileStmt(WhileStmt* W) {
    OS << "while " ;
    if (Stmt* C = W->getCond())
      C->printPretty(OS, Helper, Policy);
  }

  void VisitDoStmt(DoStmt* D) {
    OS << "do ... while ";
    if (Stmt* C = D->getCond())
      C->printPretty(OS, Helper, Policy);
  }

  void VisitSwitchStmt(SwitchStmt* Terminator) {
    OS << "switch ";
    Terminator->getCond()->printPretty(OS, Helper, Policy);
  }

  void VisitCXXTryStmt(CXXTryStmt* CS) {
    OS << "try ...";
  }

  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
    C->getCond()->printPretty(OS, Helper, Policy);
    OS << " ? ... : ...";
  }

  void VisitChooseExpr(ChooseExpr* C) {
    OS << "__builtin_choose_expr( ";
    C->getCond()->printPretty(OS, Helper, Policy);
    OS << " )";
  }

  void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
    OS << "goto *";
    I->getTarget()->printPretty(OS, Helper, Policy);
  }

  void VisitBinaryOperator(BinaryOperator* B) {
    if (!B->isLogicalOp()) {
      VisitExpr(B);
      return;
    }

    B->getLHS()->printPretty(OS, Helper, Policy);

    switch (B->getOpcode()) {
      case BO_LOr:
        OS << " || ...";
        return;
      case BO_LAnd:
        OS << " && ...";
        return;
      default:
        assert(false && "Invalid logical operator.");
    }
  }

  void VisitExpr(Expr* E) {
    E->printPretty(OS, Helper, Policy);
  }
};
} // end anonymous namespace

static void print_elem(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
                       const CFGElement &E) {
  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
    Stmt *S = CS->getStmt();
    
    if (Helper) {

      // special printing for statement-expressions.
      if (StmtExpr* SE = dyn_cast<StmtExpr>(S)) {
        CompoundStmt* Sub = SE->getSubStmt();

        if (Sub->children()) {
          OS << "({ ... ; ";
          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
          OS << " })\n";
          return;
        }
      }
      // special printing for comma expressions.
      if (BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
        if (B->getOpcode() == BO_Comma) {
          OS << "... , ";
          Helper->handledStmt(B->getRHS(),OS);
          OS << '\n';
          return;
        }
      }
    }
    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));

    if (isa<CXXOperatorCallExpr>(S)) {
      OS << " (OperatorCall)";
    } else if (isa<CXXBindTemporaryExpr>(S)) {
      OS << " (BindTemporary)";
    }

    // Expressions need a newline.
    if (isa<Expr>(S))
      OS << '\n';

  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
    const CXXCtorInitializer *I = IE->getInitializer();
    if (I->isBaseInitializer())
      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
    else OS << I->getAnyMember()->getName();

    OS << "(";
    if (Expr* IE = I->getInit())
      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
    OS << ")";

    if (I->isBaseInitializer())
      OS << " (Base initializer)\n";
    else OS << " (Member initializer)\n";

  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
    const VarDecl* VD = DE->getVarDecl();
    Helper->handleDecl(VD, OS);

    const Type* T = VD->getType().getTypePtr();
    if (const ReferenceType* RT = T->getAs<ReferenceType>())
      T = RT->getPointeeType().getTypePtr();
    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
      T = ET;

    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
    OS << " (Implicit destructor)\n";

  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
    OS << " (Base object destructor)\n";

  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
    const FieldDecl *FD = ME->getFieldDecl();

    const Type *T = FD->getType().getTypePtr();
    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
      T = ET;

    OS << "this->" << FD->getName();
    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
    OS << " (Member object destructor)\n";

  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
    OS << " (Temporary object destructor)\n";
  }
}

static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
                        const CFGBlock& B,
                        StmtPrinterHelper* Helper, bool print_edges) {

  if (Helper) Helper->setBlockID(B.getBlockID());

  // Print the header.
  OS << "\n [ B" << B.getBlockID();

  if (&B == &cfg->getEntry())
    OS << " (ENTRY) ]\n";
  else if (&B == &cfg->getExit())
    OS << " (EXIT) ]\n";
  else if (&B == cfg->getIndirectGotoBlock())
    OS << " (INDIRECT GOTO DISPATCH) ]\n";
  else
    OS << " ]\n";

  // Print the label of this block.
  if (Stmt* Label = const_cast<Stmt*>(B.getLabel())) {

    if (print_edges)
      OS << "    ";

    if (LabelStmt* L = dyn_cast<LabelStmt>(Label))
      OS << L->getName();
    else if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
      OS << "case ";
      C->getLHS()->printPretty(OS, Helper,
                               PrintingPolicy(Helper->getLangOpts()));
      if (C->getRHS()) {
        OS << " ... ";
        C->getRHS()->printPretty(OS, Helper,
                                 PrintingPolicy(Helper->getLangOpts()));
      }
    } else if (isa<DefaultStmt>(Label))
      OS << "default";
    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
      OS << "catch (";
      if (CS->getExceptionDecl())
        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
                                      0);
      else
        OS << "...";
      OS << ")";

    } else
      assert(false && "Invalid label statement in CFGBlock.");

    OS << ":\n";
  }

  // Iterate through the statements in the block and print them.
  unsigned j = 1;

  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
       I != E ; ++I, ++j ) {

    // Print the statement # in the basic block and the statement itself.
    if (print_edges)
      OS << "    ";

    OS << llvm::format("%3d", j) << ": ";

    if (Helper)
      Helper->setStmtID(j);

    print_elem(OS,Helper,*I);
  }

  // Print the terminator of this block.
  if (B.getTerminator()) {
    if (print_edges)
      OS << "    ";

    OS << "  T: ";

    if (Helper) Helper->setBlockID(-1);

    CFGBlockTerminatorPrint TPrinter(OS, Helper,
                                     PrintingPolicy(Helper->getLangOpts()));
    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
    OS << '\n';
  }

  if (print_edges) {
    // Print the predecessors of this block.
    OS << "    Predecessors (" << B.pred_size() << "):";
    unsigned i = 0;

    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
         I != E; ++I, ++i) {

      if (i == 8 || (i-8) == 0)
        OS << "\n     ";

      OS << " B" << (*I)->getBlockID();
    }

    OS << '\n';

    // Print the successors of this block.
    OS << "    Successors (" << B.succ_size() << "):";
    i = 0;

    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
         I != E; ++I, ++i) {

      if (i == 8 || (i-8) % 10 == 0)
        OS << "\n    ";

      if (*I)
        OS << " B" << (*I)->getBlockID();
      else
        OS  << " NULL";
    }

    OS << '\n';
  }
}


/// dump - A simple pretty printer of a CFG that outputs to stderr.
void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }

/// print - A simple pretty printer of a CFG that outputs to an ostream.
void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
  StmtPrinterHelper Helper(this, LO);

  // Print the entry block.
  print_block(OS, this, getEntry(), &Helper, true);

  // Iterate through the CFGBlocks and print them one by one.
  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
    // Skip the entry block, because we already printed it.
    if (&(**I) == &getEntry() || &(**I) == &getExit())
      continue;

    print_block(OS, this, **I, &Helper, true);
  }

  // Print the exit block.
  print_block(OS, this, getExit(), &Helper, true);
  OS.flush();
}

/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
  print(llvm::errs(), cfg, LO);
}

/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
///   Generally this will only be called from CFG::print.
void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
                     const LangOptions &LO) const {
  StmtPrinterHelper Helper(cfg, LO);
  print_block(OS, cfg, *this, &Helper, true);
}

/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
void CFGBlock::printTerminator(llvm::raw_ostream &OS,
                               const LangOptions &LO) const {
  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
}

Stmt* CFGBlock::getTerminatorCondition() {
  Stmt *Terminator = this->Terminator;
  if (!Terminator)
    return NULL;

  Expr* E = NULL;

  switch (Terminator->getStmtClass()) {
    default:
      break;

    case Stmt::ForStmtClass:
      E = cast<ForStmt>(Terminator)->getCond();
      break;

    case Stmt::WhileStmtClass:
      E = cast<WhileStmt>(Terminator)->getCond();
      break;

    case Stmt::DoStmtClass:
      E = cast<DoStmt>(Terminator)->getCond();
      break;

    case Stmt::IfStmtClass:
      E = cast<IfStmt>(Terminator)->getCond();
      break;

    case Stmt::ChooseExprClass:
      E = cast<ChooseExpr>(Terminator)->getCond();
      break;

    case Stmt::IndirectGotoStmtClass:
      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
      break;

    case Stmt::SwitchStmtClass:
      E = cast<SwitchStmt>(Terminator)->getCond();
      break;

    case Stmt::BinaryConditionalOperatorClass:
      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
      break;

    case Stmt::ConditionalOperatorClass:
      E = cast<ConditionalOperator>(Terminator)->getCond();
      break;

    case Stmt::BinaryOperatorClass: // '&&' and '||'
      E = cast<BinaryOperator>(Terminator)->getLHS();
      break;

    case Stmt::ObjCForCollectionStmtClass:
      return Terminator;
  }

  return E ? E->IgnoreParens() : NULL;
}

bool CFGBlock::hasBinaryBranchTerminator() const {
  const Stmt *Terminator = this->Terminator;
  if (!Terminator)
    return false;

  Expr* E = NULL;

  switch (Terminator->getStmtClass()) {
    default:
      return false;

    case Stmt::ForStmtClass:
    case Stmt::WhileStmtClass:
    case Stmt::DoStmtClass:
    case Stmt::IfStmtClass:
    case Stmt::ChooseExprClass:
    case Stmt::BinaryConditionalOperatorClass:
    case Stmt::ConditionalOperatorClass:
    case Stmt::BinaryOperatorClass:
      return true;
  }

  return E ? E->IgnoreParens() : NULL;
}


//===----------------------------------------------------------------------===//
// CFG Graphviz Visualization
//===----------------------------------------------------------------------===//


#ifndef NDEBUG
static StmtPrinterHelper* GraphHelper;
#endif

void CFG::viewCFG(const LangOptions &LO) const {
#ifndef NDEBUG
  StmtPrinterHelper H(this, LO);
  GraphHelper = &H;
  llvm::ViewGraph(this,"CFG");
  GraphHelper = NULL;
#endif
}

namespace llvm {
template<>
struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {

  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}

  static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph) {

#ifndef NDEBUG
    std::string OutSStr;
    llvm::raw_string_ostream Out(OutSStr);
    print_block(Out,Graph, *Node, GraphHelper, false);
    std::string& OutStr = Out.str();

    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());

    // Process string output to make it nicer...
    for (unsigned i = 0; i != OutStr.length(); ++i)
      if (OutStr[i] == '\n') {                            // Left justify
        OutStr[i] = '\\';
        OutStr.insert(OutStr.begin()+i+1, 'l');
      }

    return OutStr;
#else
    return "";
#endif
  }
};
} // end namespace llvm