1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
|
// Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef FORTRAN_EVALUATE_REAL_H_
#define FORTRAN_EVALUATE_REAL_H_
#include "common.h"
#include "integer.h"
#include "rounding-bits.h"
#include <cinttypes>
#include <limits>
#include <string>
// Some environments, viz. clang on Darwin, allow the macro HUGE
// to leak out of <math.h> even when it is never directly included.
#undef HUGE
namespace Fortran::evaluate::value {
// Models IEEE binary floating-point numbers (IEEE 754-2008,
// ISO/IEC/IEEE 60559.2011). The first argument to this
// class template must be (or look like) an instance of Integer<>;
// the second specifies the number of effective bits in the fraction;
// the third, if true, indicates that the most significant position of the
// fraction is an implicit bit whose value is assumed to be 1 in a finite
// normal number.
template<typename WORD, int PRECISION, bool IMPLICIT_MSB = true> class Real {
public:
using Word = WORD;
static constexpr int bits{Word::bits};
static constexpr int precision{PRECISION};
static constexpr bool implicitMSB{IMPLICIT_MSB};
static constexpr int significandBits{precision - implicitMSB};
static constexpr int exponentBits{bits - significandBits - 1 /*sign*/};
static_assert(precision > 0);
static_assert(exponentBits > 1);
static constexpr std::uint64_t maxExponent{(1 << exponentBits) - 1};
static constexpr std::uint64_t exponentBias{maxExponent / 2};
template<typename W, int P, bool I> friend class Real;
constexpr Real() {} // +0.0
constexpr Real(const Real &) = default;
constexpr Real(const Word &bits) : word_{bits} {}
constexpr Real &operator=(const Real &) = default;
constexpr Real &operator=(Real &&) = default;
// TODO AINT/ANINT, CEILING, FLOOR, DIM, MAX, MIN, DPROD, FRACTION
// HUGE, INT/NINT, MAXEXPONENT, MINEXPONENT, NEAREST, OUT_OF_RANGE,
// PRECISION, HUGE, TINY, RRSPACING/SPACING, SCALE, SET_EXPONENT, SIGN
constexpr bool IsNegative() const {
return !IsNotANumber() && word_.BTEST(bits - 1);
}
constexpr bool IsNotANumber() const {
return Exponent() == maxExponent && !GetSignificand().IsZero();
}
constexpr bool IsQuietNaN() const {
return Exponent() == maxExponent &&
GetSignificand().BTEST(significandBits - 1);
}
constexpr bool IsSignalingNaN() const {
return IsNotANumber() && !GetSignificand().BTEST(significandBits - 1);
}
constexpr bool IsInfinite() const {
return Exponent() == maxExponent && GetSignificand().IsZero();
}
constexpr bool IsZero() const {
return Exponent() == 0 && GetSignificand().IsZero();
}
constexpr bool IsDenormal() const {
return Exponent() == 0 && !GetSignificand().IsZero();
}
constexpr Real ABS() const { // non-arithmetic, no flags returned
return {word_.IBCLR(bits - 1)};
}
constexpr Real Negate() const { return {word_.IEOR(word_.MASKL(1))}; }
Relation Compare(const Real &) const;
ValueWithRealFlags<Real> Add(
const Real &, Rounding rounding = defaultRounding) const;
ValueWithRealFlags<Real> Subtract(
const Real &y, Rounding rounding = defaultRounding) const {
return Add(y.Negate(), rounding);
}
ValueWithRealFlags<Real> Multiply(
const Real &, Rounding rounding = defaultRounding) const;
ValueWithRealFlags<Real> Divide(
const Real &, Rounding rounding = defaultRounding) const;
// SQRT(x**2 + y**2) but computed so as to avoid spurious overflow
// TODO: needed for CABS
ValueWithRealFlags<Real> HYPOT(
const Real &, Rounding rounding = defaultRounding) const;
template<typename INT> constexpr INT EXPONENT() const {
std::uint64_t exponent{Exponent()};
if (exponent == maxExponent) {
return INT::HUGE();
} else {
return {static_cast<std::int64_t>(exponent - exponentBias)};
}
}
static constexpr Real EPSILON() {
Real epsilon;
epsilon.Normalize(false, exponentBias - precision, Fraction::MASKL(1));
return epsilon;
}
constexpr Real FlushDenormalToZero() const {
if (IsDenormal()) {
return Real{};
}
return *this;
}
// TODO: Configurable NotANumber representations
static constexpr Real NotANumber() {
return {Word{maxExponent}
.SHIFTL(significandBits)
.IBSET(significandBits - 1)
.IBSET(significandBits - 2)};
}
static constexpr Real Infinity(bool negative) {
Word infinity{maxExponent};
infinity = infinity.SHIFTL(significandBits);
if (negative) {
infinity = infinity.IBSET(infinity.bits - 1);
}
return {infinity};
}
template<typename INT>
static ValueWithRealFlags<Real> FromInteger(
const INT &n, Rounding rounding = defaultRounding) {
bool isNegative{n.IsNegative()};
INT absN{n};
if (isNegative) {
absN = n.Negate().value; // overflow is safe to ignore
}
int leadz{absN.LEADZ()};
if (leadz >= absN.bits) {
return {}; // all bits zero -> +0.0
}
ValueWithRealFlags<Real> result;
std::uint64_t exponent{exponentBias + absN.bits - leadz - 1};
int bitsNeeded{absN.bits - (leadz + implicitMSB)};
int bitsLost{bitsNeeded - significandBits};
if (bitsLost <= 0) {
Fraction fraction{Fraction::ConvertUnsigned(absN).value};
result.flags |= result.value.Normalize(
isNegative, exponent, fraction.SHIFTL(-bitsLost));
} else {
Fraction fraction{Fraction::ConvertUnsigned(absN.SHIFTR(bitsLost)).value};
result.flags |= result.value.Normalize(isNegative, exponent, fraction);
RoundingBits roundingBits{absN, bitsLost};
result.flags |= result.value.Round(rounding, roundingBits);
}
return result;
}
template<typename INT> constexpr ValueWithRealFlags<INT> ToInteger() const {
bool isNegative{IsNegative()};
std::uint64_t exponent{Exponent()};
Fraction fraction{GetFraction()};
ValueWithRealFlags<INT> result;
if (exponent == maxExponent && !fraction.IsZero()) { // NaN
result.flags.set(RealFlag::InvalidArgument);
result.value = result.value.HUGE();
} else if (exponent >= maxExponent || // +/-Inf
exponent >= exponentBias + result.value.bits) { // too big
if (isNegative) {
result.value = result.value.MASKL(1);
} else {
result.value = result.value.HUGE();
}
result.flags.set(RealFlag::Overflow);
} else if (exponent < exponentBias) { // |x| < 1.0 -> 0
if (!fraction.IsZero()) {
result.flags.set(RealFlag::Underflow);
result.flags.set(RealFlag::Inexact);
}
} else {
// finite number |x| >= 1.0
constexpr std::uint64_t noShiftExponent{exponentBias + precision - 1};
if (exponent < noShiftExponent) {
int rshift = noShiftExponent - exponent;
if (!fraction.IBITS(0, rshift).IsZero()) {
result.flags.set(RealFlag::Inexact);
}
auto truncated{result.value.ConvertUnsigned(fraction.SHIFTR(rshift))};
if (truncated.overflow) {
result.flags.set(RealFlag::Overflow);
} else {
result.value = truncated.value;
}
} else {
int lshift = exponent - noShiftExponent;
if (lshift + precision >= result.value.bits) {
result.flags.set(RealFlag::Overflow);
} else {
result.value =
result.value.ConvertUnsigned(fraction).value.SHIFTL(lshift);
}
}
if (result.flags.test(RealFlag::Overflow)) {
result.value = result.value.HUGE();
} else if (isNegative) {
auto negated{result.value.Negate()};
if (negated.overflow) {
result.flags.set(RealFlag::Overflow);
result.value = result.value.HUGE();
} else {
result.value = negated.value;
}
}
}
return result;
}
template<typename A>
static ValueWithRealFlags<Real> Convert(
const A &x, Rounding rounding = defaultRounding) {
bool isNegative{x.IsNegative()};
A absX{x};
if (isNegative) {
absX = x.Negate();
}
ValueWithRealFlags<Real> result;
std::uint64_t exponent{exponentBias + x.Exponent() - A::exponentBias};
int bitsLost{A::precision - precision};
typename A::Fraction xFraction{x.GetFraction()};
if (bitsLost <= 0) {
Fraction fraction{Fraction::ConvertUnsigned(xFraction).value};
result.flags |= result.value.Normalize(isNegative, exponent, fraction);
} else {
Fraction fraction{
Fraction::ConvertUnsigned(xFraction.SHIFTR(bitsLost)).value};
result.flags |= result.value.Normalize(isNegative, exponent, fraction);
RoundingBits roundingBits{xFraction, bitsLost};
result.flags |= result.value.Round(rounding, roundingBits);
}
return result;
}
constexpr Word RawBits() const { return word_; }
constexpr std::uint64_t Exponent() const {
return word_.IBITS(significandBits, exponentBits).ToUInt64();
}
static ValueWithRealFlags<Real> Read(
const char *&, Rounding rounding = defaultRounding);
std::string DumpHexadecimal() const;
private:
using Fraction = Integer<precision>; // all bits made explicit
using Significand = Integer<significandBits>; // no implicit bit
constexpr Significand GetSignificand() const {
return Significand::ConvertUnsigned(word_).value;
}
constexpr Fraction GetFraction() const {
Fraction result{Fraction::ConvertUnsigned(word_).value};
if constexpr (!implicitMSB) {
return result;
} else {
std::uint64_t exponent{Exponent()};
if (exponent > 0 && exponent < maxExponent) {
return result.IBSET(significandBits);
} else {
return result.IBCLR(significandBits);
}
}
}
constexpr std::int64_t CombineExponents(const Real &y, bool forDivide) const {
std::int64_t exponent = Exponent(), yExponent = y.Exponent();
// A zero exponent field value has the same weight as 1.
exponent += !exponent;
yExponent += !yExponent;
if (forDivide) {
exponent += exponentBias - yExponent;
} else {
exponent += yExponent - exponentBias + 1;
}
return exponent;
}
static constexpr bool NextQuotientBit(
Fraction &top, bool &msb, const Fraction &divisor) {
bool greaterOrEqual{msb || top.CompareUnsigned(divisor) != Ordering::Less};
if (greaterOrEqual) {
top = top.SubtractSigned(divisor).value;
}
auto doubled{top.AddUnsigned(top)};
top = doubled.value;
msb = doubled.carry;
return greaterOrEqual;
}
// Normalizes and marshals the fields of a floating-point number in place.
// The value is a number, and a zero fraction means a zero value (i.e.,
// a maximal exponent and zero fraction doesn't signify infinity, although
// this member function will detect overflow and encode infinities).
RealFlags Normalize(bool negative, std::uint64_t exponent,
const Fraction &fraction, Rounding rounding = defaultRounding,
RoundingBits *roundingBits = nullptr);
// Rounds a result, if necessary, in place.
RealFlags Round(Rounding, const RoundingBits &, bool multiply = false);
static void NormalizeAndRound(ValueWithRealFlags<Real> &result,
bool isNegative, std::uint64_t exponent, const Fraction &, Rounding,
RoundingBits, bool multiply = false);
Word word_{}; // an Integer<>
};
extern template class Real<Integer<16>, 11>;
extern template class Real<Integer<32>, 24>;
extern template class Real<Integer<64>, 53>;
extern template class Real<Integer<80>, 64, false>; // 80387 extended precision
extern template class Real<Integer<128>, 112>;
// N.B. No "double-double" support.
} // namespace Fortran::evaluate::value
#endif // FORTRAN_EVALUATE_REAL_H_
|