summaryrefslogtreecommitdiff
path: root/lib/Analysis/ScalarEvolutionExpander.cpp
blob: 8c54058963128b3d131062e3c9a04180a5663a68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the scalar evolution expander,
// which is used to generate the code corresponding to a given scalar evolution
// expression.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
/// reusing an existing cast if a suitable one exists, moving an existing
/// cast if a suitable one exists but isn't in the right place, or
/// creating a new one.
Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
                                       Instruction::CastOps Op,
                                       BasicBlock::iterator IP) {
  // This function must be called with the builder having a valid insertion
  // point. It doesn't need to be the actual IP where the uses of the returned
  // cast will be added, but it must dominate such IP.
  // We use this precondition to produce a cast that will dominate all its
  // uses. In particular, this is crucial for the case where the builder's
  // insertion point *is* the point where we were asked to put the cast.
  // Since we don't know the builder's insertion point is actually
  // where the uses will be added (only that it dominates it), we are
  // not allowed to move it.
  BasicBlock::iterator BIP = Builder.GetInsertPoint();

  Instruction *Ret = NULL;

  // Check to see if there is already a cast!
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
       UI != E; ++UI) {
    User *U = *UI;
    if (U->getType() == Ty)
      if (CastInst *CI = dyn_cast<CastInst>(U))
        if (CI->getOpcode() == Op) {
          // If the cast isn't where we want it, create a new cast at IP.
          // Likewise, do not reuse a cast at BIP because it must dominate
          // instructions that might be inserted before BIP.
          if (BasicBlock::iterator(CI) != IP || BIP == IP) {
            // Create a new cast, and leave the old cast in place in case
            // it is being used as an insert point. Clear its operand
            // so that it doesn't hold anything live.
            Ret = CastInst::Create(Op, V, Ty, "", IP);
            Ret->takeName(CI);
            CI->replaceAllUsesWith(Ret);
            CI->setOperand(0, UndefValue::get(V->getType()));
            break;
          }
          Ret = CI;
          break;
        }
  }

  // Create a new cast.
  if (!Ret)
    Ret = CastInst::Create(Op, V, Ty, V->getName(), IP);

  // We assert at the end of the function since IP might point to an
  // instruction with different dominance properties than a cast
  // (an invoke for example) and not dominate BIP (but the cast does).
  assert(SE.DT->dominates(Ret, BIP));

  rememberInstruction(Ret);
  return Ret;
}

/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
/// which must be possible with a noop cast, doing what we can to share
/// the casts.
Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
  assert((Op == Instruction::BitCast ||
          Op == Instruction::PtrToInt ||
          Op == Instruction::IntToPtr) &&
         "InsertNoopCastOfTo cannot perform non-noop casts!");
  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
         "InsertNoopCastOfTo cannot change sizes!");

  // Short-circuit unnecessary bitcasts.
  if (Op == Instruction::BitCast) {
    if (V->getType() == Ty)
      return V;
    if (CastInst *CI = dyn_cast<CastInst>(V)) {
      if (CI->getOperand(0)->getType() == Ty)
        return CI->getOperand(0);
    }
  }
  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
    if (CastInst *CI = dyn_cast<CastInst>(V))
      if ((CI->getOpcode() == Instruction::PtrToInt ||
           CI->getOpcode() == Instruction::IntToPtr) &&
          SE.getTypeSizeInBits(CI->getType()) ==
          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
        return CI->getOperand(0);
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
      if ((CE->getOpcode() == Instruction::PtrToInt ||
           CE->getOpcode() == Instruction::IntToPtr) &&
          SE.getTypeSizeInBits(CE->getType()) ==
          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
        return CE->getOperand(0);
  }

  // Fold a cast of a constant.
  if (Constant *C = dyn_cast<Constant>(V))
    return ConstantExpr::getCast(Op, C, Ty);

  // Cast the argument at the beginning of the entry block, after
  // any bitcasts of other arguments.
  if (Argument *A = dyn_cast<Argument>(V)) {
    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
    while ((isa<BitCastInst>(IP) &&
            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
            cast<BitCastInst>(IP)->getOperand(0) != A) ||
           isa<DbgInfoIntrinsic>(IP) ||
           isa<LandingPadInst>(IP))
      ++IP;
    return ReuseOrCreateCast(A, Ty, Op, IP);
  }

  // Cast the instruction immediately after the instruction.
  Instruction *I = cast<Instruction>(V);
  BasicBlock::iterator IP = I; ++IP;
  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
    IP = II->getNormalDest()->begin();
  while (isa<PHINode>(IP) || isa<LandingPadInst>(IP))
    ++IP;
  return ReuseOrCreateCast(I, Ty, Op, IP);
}

/// InsertBinop - Insert the specified binary operator, doing a small amount
/// of work to avoid inserting an obviously redundant operation.
Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
                                 Value *LHS, Value *RHS) {
  // Fold a binop with constant operands.
  if (Constant *CLHS = dyn_cast<Constant>(LHS))
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
      return ConstantExpr::get(Opcode, CLHS, CRHS);

  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
  unsigned ScanLimit = 6;
  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
  // Scanning starts from the last instruction before the insertion point.
  BasicBlock::iterator IP = Builder.GetInsertPoint();
  if (IP != BlockBegin) {
    --IP;
    for (; ScanLimit; --IP, --ScanLimit) {
      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
      // generated code.
      if (isa<DbgInfoIntrinsic>(IP))
        ScanLimit++;
      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
          IP->getOperand(1) == RHS)
        return IP;
      if (IP == BlockBegin) break;
    }
  }

  // Save the original insertion point so we can restore it when we're done.
  DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
  BuilderType::InsertPointGuard Guard(Builder);

  // Move the insertion point out of as many loops as we can.
  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
    BasicBlock *Preheader = L->getLoopPreheader();
    if (!Preheader) break;

    // Ok, move up a level.
    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
  }

  // If we haven't found this binop, insert it.
  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
  BO->setDebugLoc(Loc);
  rememberInstruction(BO);

  return BO;
}

/// FactorOutConstant - Test if S is divisible by Factor, using signed
/// division. If so, update S with Factor divided out and return true.
/// S need not be evenly divisible if a reasonable remainder can be
/// computed.
/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
/// check to see if the divide was folded.
static bool FactorOutConstant(const SCEV *&S,
                              const SCEV *&Remainder,
                              const SCEV *Factor,
                              ScalarEvolution &SE,
                              const DataLayout *TD) {
  // Everything is divisible by one.
  if (Factor->isOne())
    return true;

  // x/x == 1.
  if (S == Factor) {
    S = SE.getConstant(S->getType(), 1);
    return true;
  }

  // For a Constant, check for a multiple of the given factor.
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    // 0/x == 0.
    if (C->isZero())
      return true;
    // Check for divisibility.
    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
      ConstantInt *CI =
        ConstantInt::get(SE.getContext(),
                         C->getValue()->getValue().sdiv(
                                                   FC->getValue()->getValue()));
      // If the quotient is zero and the remainder is non-zero, reject
      // the value at this scale. It will be considered for subsequent
      // smaller scales.
      if (!CI->isZero()) {
        const SCEV *Div = SE.getConstant(CI);
        S = Div;
        Remainder =
          SE.getAddExpr(Remainder,
                        SE.getConstant(C->getValue()->getValue().srem(
                                                  FC->getValue()->getValue())));
        return true;
      }
    }
  }

  // In a Mul, check if there is a constant operand which is a multiple
  // of the given factor.
  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
    if (TD) {
      // With DataLayout, the size is known. Check if there is a constant
      // operand which is a multiple of the given factor. If so, we can
      // factor it.
      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
          NewMulOps[0] =
            SE.getConstant(C->getValue()->getValue().sdiv(
                                                   FC->getValue()->getValue()));
          S = SE.getMulExpr(NewMulOps);
          return true;
        }
    } else {
      // Without DataLayout, check if Factor can be factored out of any of the
      // Mul's operands. If so, we can just remove it.
      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
        const SCEV *SOp = M->getOperand(i);
        const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
            Remainder->isZero()) {
          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
          NewMulOps[i] = SOp;
          S = SE.getMulExpr(NewMulOps);
          return true;
        }
      }
    }
  }

  // In an AddRec, check if both start and step are divisible.
  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
    const SCEV *Step = A->getStepRecurrence(SE);
    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
      return false;
    if (!StepRem->isZero())
      return false;
    const SCEV *Start = A->getStart();
    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
      return false;
    S = SE.getAddRecExpr(Start, Step, A->getLoop(),
                         A->getNoWrapFlags(SCEV::FlagNW));
    return true;
  }

  return false;
}

/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
/// is the number of SCEVAddRecExprs present, which are kept at the end of
/// the list.
///
static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
                                Type *Ty,
                                ScalarEvolution &SE) {
  unsigned NumAddRecs = 0;
  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
    ++NumAddRecs;
  // Group Ops into non-addrecs and addrecs.
  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
  // Let ScalarEvolution sort and simplify the non-addrecs list.
  const SCEV *Sum = NoAddRecs.empty() ?
                    SE.getConstant(Ty, 0) :
                    SE.getAddExpr(NoAddRecs);
  // If it returned an add, use the operands. Otherwise it simplified
  // the sum into a single value, so just use that.
  Ops.clear();
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
    Ops.append(Add->op_begin(), Add->op_end());
  else if (!Sum->isZero())
    Ops.push_back(Sum);
  // Then append the addrecs.
  Ops.append(AddRecs.begin(), AddRecs.end());
}

/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
/// This helps expose more opportunities for folding parts of the expressions
/// into GEP indices.
///
static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
                         Type *Ty,
                         ScalarEvolution &SE) {
  // Find the addrecs.
  SmallVector<const SCEV *, 8> AddRecs;
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
      const SCEV *Start = A->getStart();
      if (Start->isZero()) break;
      const SCEV *Zero = SE.getConstant(Ty, 0);
      AddRecs.push_back(SE.getAddRecExpr(Zero,
                                         A->getStepRecurrence(SE),
                                         A->getLoop(),
                                         A->getNoWrapFlags(SCEV::FlagNW)));
      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
        Ops[i] = Zero;
        Ops.append(Add->op_begin(), Add->op_end());
        e += Add->getNumOperands();
      } else {
        Ops[i] = Start;
      }
    }
  if (!AddRecs.empty()) {
    // Add the addrecs onto the end of the list.
    Ops.append(AddRecs.begin(), AddRecs.end());
    // Resort the operand list, moving any constants to the front.
    SimplifyAddOperands(Ops, Ty, SE);
  }
}

/// expandAddToGEP - Expand an addition expression with a pointer type into
/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
/// BasicAliasAnalysis and other passes analyze the result. See the rules
/// for getelementptr vs. inttoptr in
/// http://llvm.org/docs/LangRef.html#pointeraliasing
/// for details.
///
/// Design note: The correctness of using getelementptr here depends on
/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
/// they may introduce pointer arithmetic which may not be safely converted
/// into getelementptr.
///
/// Design note: It might seem desirable for this function to be more
/// loop-aware. If some of the indices are loop-invariant while others
/// aren't, it might seem desirable to emit multiple GEPs, keeping the
/// loop-invariant portions of the overall computation outside the loop.
/// However, there are a few reasons this is not done here. Hoisting simple
/// arithmetic is a low-level optimization that often isn't very
/// important until late in the optimization process. In fact, passes
/// like InstructionCombining will combine GEPs, even if it means
/// pushing loop-invariant computation down into loops, so even if the
/// GEPs were split here, the work would quickly be undone. The
/// LoopStrengthReduction pass, which is usually run quite late (and
/// after the last InstructionCombining pass), takes care of hoisting
/// loop-invariant portions of expressions, after considering what
/// can be folded using target addressing modes.
///
Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
                                    const SCEV *const *op_end,
                                    PointerType *PTy,
                                    Type *Ty,
                                    Value *V) {
  Type *ElTy = PTy->getElementType();
  SmallVector<Value *, 4> GepIndices;
  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
  bool AnyNonZeroIndices = false;

  // Split AddRecs up into parts as either of the parts may be usable
  // without the other.
  SplitAddRecs(Ops, Ty, SE);

  Type *IntPtrTy = SE.TD
                 ? SE.TD->getIntPtrType(PTy)
                 : Type::getInt64Ty(PTy->getContext());

  // Descend down the pointer's type and attempt to convert the other
  // operands into GEP indices, at each level. The first index in a GEP
  // indexes into the array implied by the pointer operand; the rest of
  // the indices index into the element or field type selected by the
  // preceding index.
  for (;;) {
    // If the scale size is not 0, attempt to factor out a scale for
    // array indexing.
    SmallVector<const SCEV *, 8> ScaledOps;
    if (ElTy->isSized()) {
      const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
      if (!ElSize->isZero()) {
        SmallVector<const SCEV *, 8> NewOps;
        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
          const SCEV *Op = Ops[i];
          const SCEV *Remainder = SE.getConstant(Ty, 0);
          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
            // Op now has ElSize factored out.
            ScaledOps.push_back(Op);
            if (!Remainder->isZero())
              NewOps.push_back(Remainder);
            AnyNonZeroIndices = true;
          } else {
            // The operand was not divisible, so add it to the list of operands
            // we'll scan next iteration.
            NewOps.push_back(Ops[i]);
          }
        }
        // If we made any changes, update Ops.
        if (!ScaledOps.empty()) {
          Ops = NewOps;
          SimplifyAddOperands(Ops, Ty, SE);
        }
      }
    }

    // Record the scaled array index for this level of the type. If
    // we didn't find any operands that could be factored, tentatively
    // assume that element zero was selected (since the zero offset
    // would obviously be folded away).
    Value *Scaled = ScaledOps.empty() ?
                    Constant::getNullValue(Ty) :
                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
    GepIndices.push_back(Scaled);

    // Collect struct field index operands.
    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
      bool FoundFieldNo = false;
      // An empty struct has no fields.
      if (STy->getNumElements() == 0) break;
      if (SE.TD) {
        // With DataLayout, field offsets are known. See if a constant offset
        // falls within any of the struct fields.
        if (Ops.empty()) break;
        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
            const StructLayout &SL = *SE.TD->getStructLayout(STy);
            uint64_t FullOffset = C->getValue()->getZExtValue();
            if (FullOffset < SL.getSizeInBytes()) {
              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
              GepIndices.push_back(
                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
              ElTy = STy->getTypeAtIndex(ElIdx);
              Ops[0] =
                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
              AnyNonZeroIndices = true;
              FoundFieldNo = true;
            }
          }
      } else {
        // Without DataLayout, just check for an offsetof expression of the
        // appropriate struct type.
        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
            Type *CTy;
            Constant *FieldNo;
            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
              GepIndices.push_back(FieldNo);
              ElTy =
                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
              Ops[i] = SE.getConstant(Ty, 0);
              AnyNonZeroIndices = true;
              FoundFieldNo = true;
              break;
            }
          }
      }
      // If no struct field offsets were found, tentatively assume that
      // field zero was selected (since the zero offset would obviously
      // be folded away).
      if (!FoundFieldNo) {
        ElTy = STy->getTypeAtIndex(0u);
        GepIndices.push_back(
          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
      }
    }

    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
      ElTy = ATy->getElementType();
    else
      break;
  }

  // If none of the operands were convertible to proper GEP indices, cast
  // the base to i8* and do an ugly getelementptr with that. It's still
  // better than ptrtoint+arithmetic+inttoptr at least.
  if (!AnyNonZeroIndices) {
    // Cast the base to i8*.
    V = InsertNoopCastOfTo(V,
       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));

    assert(!isa<Instruction>(V) ||
           SE.DT->dominates(cast<Instruction>(V), Builder.GetInsertPoint()));

    // Expand the operands for a plain byte offset.
    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);

    // Fold a GEP with constant operands.
    if (Constant *CLHS = dyn_cast<Constant>(V))
      if (Constant *CRHS = dyn_cast<Constant>(Idx))
        return ConstantExpr::getGetElementPtr(CLHS, CRHS);

    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
    unsigned ScanLimit = 6;
    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    // Scanning starts from the last instruction before the insertion point.
    BasicBlock::iterator IP = Builder.GetInsertPoint();
    if (IP != BlockBegin) {
      --IP;
      for (; ScanLimit; --IP, --ScanLimit) {
        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
        // generated code.
        if (isa<DbgInfoIntrinsic>(IP))
          ScanLimit++;
        if (IP->getOpcode() == Instruction::GetElementPtr &&
            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
          return IP;
        if (IP == BlockBegin) break;
      }
    }

    // Save the original insertion point so we can restore it when we're done.
    BuilderType::InsertPointGuard Guard(Builder);

    // Move the insertion point out of as many loops as we can.
    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
      BasicBlock *Preheader = L->getLoopPreheader();
      if (!Preheader) break;

      // Ok, move up a level.
      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    }

    // Emit a GEP.
    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
    rememberInstruction(GEP);

    return GEP;
  }

  // Save the original insertion point so we can restore it when we're done.
  BuilderType::InsertPoint SaveInsertPt = Builder.saveIP();

  // Move the insertion point out of as many loops as we can.
  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    if (!L->isLoopInvariant(V)) break;

    bool AnyIndexNotLoopInvariant = false;
    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
         E = GepIndices.end(); I != E; ++I)
      if (!L->isLoopInvariant(*I)) {
        AnyIndexNotLoopInvariant = true;
        break;
      }
    if (AnyIndexNotLoopInvariant)
      break;

    BasicBlock *Preheader = L->getLoopPreheader();
    if (!Preheader) break;

    // Ok, move up a level.
    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
  }

  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
  // because ScalarEvolution may have changed the address arithmetic to
  // compute a value which is beyond the end of the allocated object.
  Value *Casted = V;
  if (V->getType() != PTy)
    Casted = InsertNoopCastOfTo(Casted, PTy);
  Value *GEP = Builder.CreateGEP(Casted,
                                 GepIndices,
                                 "scevgep");
  Ops.push_back(SE.getUnknown(GEP));
  rememberInstruction(GEP);

  // Restore the original insert point.
  Builder.restoreIP(SaveInsertPt);

  return expand(SE.getAddExpr(Ops));
}

/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
/// SCEV expansion. If they are nested, this is the most nested. If they are
/// neighboring, pick the later.
static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
                                        DominatorTree &DT) {
  if (!A) return B;
  if (!B) return A;
  if (A->contains(B)) return B;
  if (B->contains(A)) return A;
  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
  return A; // Arbitrarily break the tie.
}

/// getRelevantLoop - Get the most relevant loop associated with the given
/// expression, according to PickMostRelevantLoop.
const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
  // Test whether we've already computed the most relevant loop for this SCEV.
  std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
    RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
  if (!Pair.second)
    return Pair.first->second;

  if (isa<SCEVConstant>(S))
    // A constant has no relevant loops.
    return 0;
  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
      return Pair.first->second = SE.LI->getLoopFor(I->getParent());
    // A non-instruction has no relevant loops.
    return 0;
  }
  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
    const Loop *L = 0;
    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
      L = AR->getLoop();
    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
         I != E; ++I)
      L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
    return RelevantLoops[N] = L;
  }
  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
    const Loop *Result = getRelevantLoop(C->getOperand());
    return RelevantLoops[C] = Result;
  }
  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
    const Loop *Result =
      PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
                           getRelevantLoop(D->getRHS()),
                           *SE.DT);
    return RelevantLoops[D] = Result;
  }
  llvm_unreachable("Unexpected SCEV type!");
}

namespace {

/// LoopCompare - Compare loops by PickMostRelevantLoop.
class LoopCompare {
  DominatorTree &DT;
public:
  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}

  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
                  std::pair<const Loop *, const SCEV *> RHS) const {
    // Keep pointer operands sorted at the end.
    if (LHS.second->getType()->isPointerTy() !=
        RHS.second->getType()->isPointerTy())
      return LHS.second->getType()->isPointerTy();

    // Compare loops with PickMostRelevantLoop.
    if (LHS.first != RHS.first)
      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;

    // If one operand is a non-constant negative and the other is not,
    // put the non-constant negative on the right so that a sub can
    // be used instead of a negate and add.
    if (LHS.second->isNonConstantNegative()) {
      if (!RHS.second->isNonConstantNegative())
        return false;
    } else if (RHS.second->isNonConstantNegative())
      return true;

    // Otherwise they are equivalent according to this comparison.
    return false;
  }
};

}

Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());

  // Collect all the add operands in a loop, along with their associated loops.
  // Iterate in reverse so that constants are emitted last, all else equal, and
  // so that pointer operands are inserted first, which the code below relies on
  // to form more involved GEPs.
  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
       E(S->op_begin()); I != E; ++I)
    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));

  // Sort by loop. Use a stable sort so that constants follow non-constants and
  // pointer operands precede non-pointer operands.
  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));

  // Emit instructions to add all the operands. Hoist as much as possible
  // out of loops, and form meaningful getelementptrs where possible.
  Value *Sum = 0;
  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
    const Loop *CurLoop = I->first;
    const SCEV *Op = I->second;
    if (!Sum) {
      // This is the first operand. Just expand it.
      Sum = expand(Op);
      ++I;
    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
      // The running sum expression is a pointer. Try to form a getelementptr
      // at this level with that as the base.
      SmallVector<const SCEV *, 4> NewOps;
      for (; I != E && I->first == CurLoop; ++I) {
        // If the operand is SCEVUnknown and not instructions, peek through
        // it, to enable more of it to be folded into the GEP.
        const SCEV *X = I->second;
        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
          if (!isa<Instruction>(U->getValue()))
            X = SE.getSCEV(U->getValue());
        NewOps.push_back(X);
      }
      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
      // The running sum is an integer, and there's a pointer at this level.
      // Try to form a getelementptr. If the running sum is instructions,
      // use a SCEVUnknown to avoid re-analyzing them.
      SmallVector<const SCEV *, 4> NewOps;
      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
                                               SE.getSCEV(Sum));
      for (++I; I != E && I->first == CurLoop; ++I)
        NewOps.push_back(I->second);
      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
    } else if (Op->isNonConstantNegative()) {
      // Instead of doing a negate and add, just do a subtract.
      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
      Sum = InsertNoopCastOfTo(Sum, Ty);
      Sum = InsertBinop(Instruction::Sub, Sum, W);
      ++I;
    } else {
      // A simple add.
      Value *W = expandCodeFor(Op, Ty);
      Sum = InsertNoopCastOfTo(Sum, Ty);
      // Canonicalize a constant to the RHS.
      if (isa<Constant>(Sum)) std::swap(Sum, W);
      Sum = InsertBinop(Instruction::Add, Sum, W);
      ++I;
    }
  }

  return Sum;
}

Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());

  // Collect all the mul operands in a loop, along with their associated loops.
  // Iterate in reverse so that constants are emitted last, all else equal.
  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
       E(S->op_begin()); I != E; ++I)
    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));

  // Sort by loop. Use a stable sort so that constants follow non-constants.
  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));

  // Emit instructions to mul all the operands. Hoist as much as possible
  // out of loops.
  Value *Prod = 0;
  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
    const SCEV *Op = I->second;
    if (!Prod) {
      // This is the first operand. Just expand it.
      Prod = expand(Op);
      ++I;
    } else if (Op->isAllOnesValue()) {
      // Instead of doing a multiply by negative one, just do a negate.
      Prod = InsertNoopCastOfTo(Prod, Ty);
      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
      ++I;
    } else {
      // A simple mul.
      Value *W = expandCodeFor(Op, Ty);
      Prod = InsertNoopCastOfTo(Prod, Ty);
      // Canonicalize a constant to the RHS.
      if (isa<Constant>(Prod)) std::swap(Prod, W);
      Prod = InsertBinop(Instruction::Mul, Prod, W);
      ++I;
    }
  }

  return Prod;
}

Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());

  Value *LHS = expandCodeFor(S->getLHS(), Ty);
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
    const APInt &RHS = SC->getValue()->getValue();
    if (RHS.isPowerOf2())
      return InsertBinop(Instruction::LShr, LHS,
                         ConstantInt::get(Ty, RHS.logBase2()));
  }

  Value *RHS = expandCodeFor(S->getRHS(), Ty);
  return InsertBinop(Instruction::UDiv, LHS, RHS);
}

/// Move parts of Base into Rest to leave Base with the minimal
/// expression that provides a pointer operand suitable for a
/// GEP expansion.
static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
                              ScalarEvolution &SE) {
  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
    Base = A->getStart();
    Rest = SE.getAddExpr(Rest,
                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
                                          A->getStepRecurrence(SE),
                                          A->getLoop(),
                                          A->getNoWrapFlags(SCEV::FlagNW)));
  }
  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
    Base = A->getOperand(A->getNumOperands()-1);
    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
    NewAddOps.back() = Rest;
    Rest = SE.getAddExpr(NewAddOps);
    ExposePointerBase(Base, Rest, SE);
  }
}

/// Determine if this is a well-behaved chain of instructions leading back to
/// the PHI. If so, it may be reused by expanded expressions.
bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
                                         const Loop *L) {
  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
    return false;
  // If any of the operands don't dominate the insert position, bail.
  // Addrec operands are always loop-invariant, so this can only happen
  // if there are instructions which haven't been hoisted.
  if (L == IVIncInsertLoop) {
    for (User::op_iterator OI = IncV->op_begin()+1,
           OE = IncV->op_end(); OI != OE; ++OI)
      if (Instruction *OInst = dyn_cast<Instruction>(OI))
        if (!SE.DT->dominates(OInst, IVIncInsertPos))
          return false;
  }
  // Advance to the next instruction.
  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
  if (!IncV)
    return false;

  if (IncV->mayHaveSideEffects())
    return false;

  if (IncV != PN)
    return true;

  return isNormalAddRecExprPHI(PN, IncV, L);
}

/// getIVIncOperand returns an induction variable increment's induction
/// variable operand.
///
/// If allowScale is set, any type of GEP is allowed as long as the nonIV
/// operands dominate InsertPos.
///
/// If allowScale is not set, ensure that a GEP increment conforms to one of the
/// simple patterns generated by getAddRecExprPHILiterally and
/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
                                           Instruction *InsertPos,
                                           bool allowScale) {
  if (IncV == InsertPos)
    return NULL;

  switch (IncV->getOpcode()) {
  default:
    return NULL;
  // Check for a simple Add/Sub or GEP of a loop invariant step.
  case Instruction::Add:
  case Instruction::Sub: {
    Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
    if (!OInst || SE.DT->dominates(OInst, InsertPos))
      return dyn_cast<Instruction>(IncV->getOperand(0));
    return NULL;
  }
  case Instruction::BitCast:
    return dyn_cast<Instruction>(IncV->getOperand(0));
  case Instruction::GetElementPtr:
    for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
         I != E; ++I) {
      if (isa<Constant>(*I))
        continue;
      if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
        if (!SE.DT->dominates(OInst, InsertPos))
          return NULL;
      }
      if (allowScale) {
        // allow any kind of GEP as long as it can be hoisted.
        continue;
      }
      // This must be a pointer addition of constants (pretty), which is already
      // handled, or some number of address-size elements (ugly). Ugly geps
      // have 2 operands. i1* is used by the expander to represent an
      // address-size element.
      if (IncV->getNumOperands() != 2)
        return NULL;
      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
        return NULL;
      break;
    }
    return dyn_cast<Instruction>(IncV->getOperand(0));
  }
}

/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
/// it available to other uses in this loop. Recursively hoist any operands,
/// until we reach a value that dominates InsertPos.
bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
  if (SE.DT->dominates(IncV, InsertPos))
      return true;

  // InsertPos must itself dominate IncV so that IncV's new position satisfies
  // its existing users.
  if (isa<PHINode>(InsertPos)
      || !SE.DT->dominates(InsertPos->getParent(), IncV->getParent()))
    return false;

  // Check that the chain of IV operands leading back to Phi can be hoisted.
  SmallVector<Instruction*, 4> IVIncs;
  for(;;) {
    Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
    if (!Oper)
      return false;
    // IncV is safe to hoist.
    IVIncs.push_back(IncV);
    IncV = Oper;
    if (SE.DT->dominates(IncV, InsertPos))
      break;
  }
  for (SmallVectorImpl<Instruction*>::reverse_iterator I = IVIncs.rbegin(),
         E = IVIncs.rend(); I != E; ++I) {
    (*I)->moveBefore(InsertPos);
  }
  return true;
}

/// Determine if this cyclic phi is in a form that would have been generated by
/// LSR. We don't care if the phi was actually expanded in this pass, as long
/// as it is in a low-cost form, for example, no implied multiplication. This
/// should match any patterns generated by getAddRecExprPHILiterally and
/// expandAddtoGEP.
bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
                                           const Loop *L) {
  for(Instruction *IVOper = IncV;
      (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
                                /*allowScale=*/false));) {
    if (IVOper == PN)
      return true;
  }
  return false;
}

/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
/// need to materialize IV increments elsewhere to handle difficult situations.
Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
                                 Type *ExpandTy, Type *IntTy,
                                 bool useSubtract) {
  Value *IncV;
  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
  if (ExpandTy->isPointerTy()) {
    PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
    // If the step isn't constant, don't use an implicitly scaled GEP, because
    // that would require a multiply inside the loop.
    if (!isa<ConstantInt>(StepV))
      GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
                                  GEPPtrTy->getAddressSpace());
    const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
    IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
    if (IncV->getType() != PN->getType()) {
      IncV = Builder.CreateBitCast(IncV, PN->getType());
      rememberInstruction(IncV);
    }
  } else {
    IncV = useSubtract ?
      Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
      Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
    rememberInstruction(IncV);
  }
  return IncV;
}

/// \brief Hoist the addrec instruction chain rooted in the loop phi above the
/// position. This routine assumes that this is possible (has been checked).
static void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
                           Instruction *Pos, PHINode *LoopPhi) {
  do {
    if (DT->dominates(InstToHoist, Pos))
      break;
    // Make sure the increment is where we want it. But don't move it
    // down past a potential existing post-inc user.
    InstToHoist->moveBefore(Pos);
    Pos = InstToHoist;
    InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
  } while (InstToHoist != LoopPhi);
}

/// \brief Check whether we can cheaply express the requested SCEV in terms of
/// the available PHI SCEV by truncation and/or invertion of the step.
static bool canBeCheaplyTransformed(ScalarEvolution &SE,
                                    const SCEVAddRecExpr *Phi,
                                    const SCEVAddRecExpr *Requested,
                                    bool &InvertStep) {
  Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
  Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());

  if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
    return false;

  // Try truncate it if necessary.
  Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
  if (!Phi)
    return false;

  // Check whether truncation will help.
  if (Phi == Requested) {
    InvertStep = false;
    return true;
  }

  // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
  if (SE.getAddExpr(Requested->getStart(),
                    SE.getNegativeSCEV(Requested)) == Phi) {
    InvertStep = true;
    return true;
  }

  return false;
}

/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
/// the base addrec, which is the addrec without any non-loop-dominating
/// values, and return the PHI.
PHINode *
SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
                                        const Loop *L,
                                        Type *ExpandTy,
                                        Type *IntTy,
                                        Type *&TruncTy,
                                        bool &InvertStep) {
  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");

  // Reuse a previously-inserted PHI, if present.
  BasicBlock *LatchBlock = L->getLoopLatch();
  if (LatchBlock) {
    PHINode *AddRecPhiMatch = 0;
    Instruction *IncV = 0;
    TruncTy = 0;
    InvertStep = false;

    // Only try partially matching scevs that need truncation and/or
    // step-inversion if we know this loop is outside the current loop.
    bool TryNonMatchingSCEV = IVIncInsertLoop &&
      SE.DT->properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());

    for (BasicBlock::iterator I = L->getHeader()->begin();
         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
      if (!SE.isSCEVable(PN->getType()))
        continue;

      const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN));
      if (!PhiSCEV)
        continue;

      bool IsMatchingSCEV = PhiSCEV == Normalized;
      // We only handle truncation and inversion of phi recurrences for the
      // expanded expression if the expanded expression's loop dominates the
      // loop we insert to. Check now, so we can bail out early.
      if (!IsMatchingSCEV && !TryNonMatchingSCEV)
          continue;

      Instruction *TempIncV =
          cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));

      // Check whether we can reuse this PHI node.
      if (LSRMode) {
        if (!isExpandedAddRecExprPHI(PN, TempIncV, L))
          continue;
        if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
          continue;
      } else {
        if (!isNormalAddRecExprPHI(PN, TempIncV, L))
          continue;
      }

      // Stop if we have found an exact match SCEV.
      if (IsMatchingSCEV) {
        IncV = TempIncV;
        TruncTy = 0;
        InvertStep = false;
        AddRecPhiMatch = PN;
        break;
      }

      // Try whether the phi can be translated into the requested form
      // (truncated and/or offset by a constant).
      if ((!TruncTy || InvertStep) &&
          canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
        // Record the phi node. But don't stop we might find an exact match
        // later.
        AddRecPhiMatch = PN;
        IncV = TempIncV;
        TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
      }
    }

    if (AddRecPhiMatch) {
      // Potentially, move the increment. We have made sure in
      // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
      if (L == IVIncInsertLoop)
        hoistBeforePos(SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);

      // Ok, the add recurrence looks usable.
      // Remember this PHI, even in post-inc mode.
      InsertedValues.insert(AddRecPhiMatch);
      // Remember the increment.
      rememberInstruction(IncV);
      return AddRecPhiMatch;
    }
  }

  // Save the original insertion point so we can restore it when we're done.
  BuilderType::InsertPointGuard Guard(Builder);

  // Another AddRec may need to be recursively expanded below. For example, if
  // this AddRec is quadratic, the StepV may itself be an AddRec in this
  // loop. Remove this loop from the PostIncLoops set before expanding such
  // AddRecs. Otherwise, we cannot find a valid position for the step
  // (i.e. StepV can never dominate its loop header).  Ideally, we could do
  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
  // so it's not worth implementing SmallPtrSet::swap.
  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
  PostIncLoops.clear();

  // Expand code for the start value.
  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
                                L->getHeader()->begin());

  // StartV must be hoisted into L's preheader to dominate the new phi.
  assert(!isa<Instruction>(StartV) ||
         SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
                                  L->getHeader()));

  // Expand code for the step value. Do this before creating the PHI so that PHI
  // reuse code doesn't see an incomplete PHI.
  const SCEV *Step = Normalized->getStepRecurrence(SE);
  // If the stride is negative, insert a sub instead of an add for the increment
  // (unless it's a constant, because subtracts of constants are canonicalized
  // to adds).
  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
  if (useSubtract)
    Step = SE.getNegativeSCEV(Step);
  // Expand the step somewhere that dominates the loop header.
  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());

  // Create the PHI.
  BasicBlock *Header = L->getHeader();
  Builder.SetInsertPoint(Header, Header->begin());
  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
                                  Twine(IVName) + ".iv");
  rememberInstruction(PN);

  // Create the step instructions and populate the PHI.
  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
    BasicBlock *Pred = *HPI;

    // Add a start value.
    if (!L->contains(Pred)) {
      PN->addIncoming(StartV, Pred);
      continue;
    }

    // Create a step value and add it to the PHI.
    // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
    // instructions at IVIncInsertPos.
    Instruction *InsertPos = L == IVIncInsertLoop ?
      IVIncInsertPos : Pred->getTerminator();
    Builder.SetInsertPoint(InsertPos);
    Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
    if (isa<OverflowingBinaryOperator>(IncV)) {
      if (Normalized->getNoWrapFlags(SCEV::FlagNUW))
        cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
      if (Normalized->getNoWrapFlags(SCEV::FlagNSW))
        cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
    }
    PN->addIncoming(IncV, Pred);
  }

  // After expanding subexpressions, restore the PostIncLoops set so the caller
  // can ensure that IVIncrement dominates the current uses.
  PostIncLoops = SavedPostIncLoops;

  // Remember this PHI, even in post-inc mode.
  InsertedValues.insert(PN);

  return PN;
}

Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
  Type *STy = S->getType();
  Type *IntTy = SE.getEffectiveSCEVType(STy);
  const Loop *L = S->getLoop();

  // Determine a normalized form of this expression, which is the expression
  // before any post-inc adjustment is made.
  const SCEVAddRecExpr *Normalized = S;
  if (PostIncLoops.count(L)) {
    PostIncLoopSet Loops;
    Loops.insert(L);
    Normalized =
      cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
                                                  Loops, SE, *SE.DT));
  }

  // Strip off any non-loop-dominating component from the addrec start.
  const SCEV *Start = Normalized->getStart();
  const SCEV *PostLoopOffset = 0;
  if (!SE.properlyDominates(Start, L->getHeader())) {
    PostLoopOffset = Start;
    Start = SE.getConstant(Normalized->getType(), 0);
    Normalized = cast<SCEVAddRecExpr>(
      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
                       Normalized->getLoop(),
                       Normalized->getNoWrapFlags(SCEV::FlagNW)));
  }

  // Strip off any non-loop-dominating component from the addrec step.
  const SCEV *Step = Normalized->getStepRecurrence(SE);
  const SCEV *PostLoopScale = 0;
  if (!SE.dominates(Step, L->getHeader())) {
    PostLoopScale = Step;
    Step = SE.getConstant(Normalized->getType(), 1);
    Normalized =
      cast<SCEVAddRecExpr>(SE.getAddRecExpr(
                             Start, Step, Normalized->getLoop(),
                             Normalized->getNoWrapFlags(SCEV::FlagNW)));
  }

  // Expand the core addrec. If we need post-loop scaling, force it to
  // expand to an integer type to avoid the need for additional casting.
  Type *ExpandTy = PostLoopScale ? IntTy : STy;
  // In some cases, we decide to reuse an existing phi node but need to truncate
  // it and/or invert the step.
  Type *TruncTy = 0;
  bool InvertStep = false;
  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy,
                                          TruncTy, InvertStep);

  // Accommodate post-inc mode, if necessary.
  Value *Result;
  if (!PostIncLoops.count(L))
    Result = PN;
  else {
    // In PostInc mode, use the post-incremented value.
    BasicBlock *LatchBlock = L->getLoopLatch();
    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
    Result = PN->getIncomingValueForBlock(LatchBlock);

    // For an expansion to use the postinc form, the client must call
    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
    // or dominated by IVIncInsertPos.
    if (isa<Instruction>(Result)
        && !SE.DT->dominates(cast<Instruction>(Result),
                             Builder.GetInsertPoint())) {
      // The induction variable's postinc expansion does not dominate this use.
      // IVUsers tries to prevent this case, so it is rare. However, it can
      // happen when an IVUser outside the loop is not dominated by the latch
      // block. Adjusting IVIncInsertPos before expansion begins cannot handle
      // all cases. Consider a phi outide whose operand is replaced during
      // expansion with the value of the postinc user. Without fundamentally
      // changing the way postinc users are tracked, the only remedy is
      // inserting an extra IV increment. StepV might fold into PostLoopOffset,
      // but hopefully expandCodeFor handles that.
      bool useSubtract =
        !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
      if (useSubtract)
        Step = SE.getNegativeSCEV(Step);
      Value *StepV;
      {
        // Expand the step somewhere that dominates the loop header.
        BuilderType::InsertPointGuard Guard(Builder);
        StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
      }
      Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
    }
  }

  // We have decided to reuse an induction variable of a dominating loop. Apply
  // truncation and/or invertion of the step.
  if (TruncTy) {
    Type *ResTy = Result->getType();
    // Normalize the result type.
    if (ResTy != SE.getEffectiveSCEVType(ResTy))
      Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
    // Truncate the result.
    if (TruncTy != Result->getType()) {
      Result = Builder.CreateTrunc(Result, TruncTy);
      rememberInstruction(Result);
    }
    // Invert the result.
    if (InvertStep) {
      Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
                                 Result);
      rememberInstruction(Result);
    }
  }

  // Re-apply any non-loop-dominating scale.
  if (PostLoopScale) {
    assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
    Result = InsertNoopCastOfTo(Result, IntTy);
    Result = Builder.CreateMul(Result,
                               expandCodeFor(PostLoopScale, IntTy));
    rememberInstruction(Result);
  }

  // Re-apply any non-loop-dominating offset.
  if (PostLoopOffset) {
    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
      const SCEV *const OffsetArray[1] = { PostLoopOffset };
      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
    } else {
      Result = InsertNoopCastOfTo(Result, IntTy);
      Result = Builder.CreateAdd(Result,
                                 expandCodeFor(PostLoopOffset, IntTy));
      rememberInstruction(Result);
    }
  }

  return Result;
}

Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
  if (!CanonicalMode) return expandAddRecExprLiterally(S);

  Type *Ty = SE.getEffectiveSCEVType(S->getType());
  const Loop *L = S->getLoop();

  // First check for an existing canonical IV in a suitable type.
  PHINode *CanonicalIV = 0;
  if (PHINode *PN = L->getCanonicalInductionVariable())
    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
      CanonicalIV = PN;

  // Rewrite an AddRec in terms of the canonical induction variable, if
  // its type is more narrow.
  if (CanonicalIV &&
      SE.getTypeSizeInBits(CanonicalIV->getType()) >
      SE.getTypeSizeInBits(Ty)) {
    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
                                       S->getNoWrapFlags(SCEV::FlagNW)));
    BasicBlock::iterator NewInsertPt =
      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
    BuilderType::InsertPointGuard Guard(Builder);
    while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
           isa<LandingPadInst>(NewInsertPt))
      ++NewInsertPt;
    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
                      NewInsertPt);
    return V;
  }

  // {X,+,F} --> X + {0,+,F}
  if (!S->getStart()->isZero()) {
    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
    NewOps[0] = SE.getConstant(Ty, 0);
    const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
                                        S->getNoWrapFlags(SCEV::FlagNW));

    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
    // comments on expandAddToGEP for details.
    const SCEV *Base = S->getStart();
    const SCEV *RestArray[1] = { Rest };
    // Dig into the expression to find the pointer base for a GEP.
    ExposePointerBase(Base, RestArray[0], SE);
    // If we found a pointer, expand the AddRec with a GEP.
    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
      // Make sure the Base isn't something exotic, such as a multiplied
      // or divided pointer value. In those cases, the result type isn't
      // actually a pointer type.
      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
        Value *StartV = expand(Base);
        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
      }
    }

    // Just do a normal add. Pre-expand the operands to suppress folding.
    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
                                SE.getUnknown(expand(Rest))));
  }

  // If we don't yet have a canonical IV, create one.
  if (!CanonicalIV) {
    // Create and insert the PHI node for the induction variable in the
    // specified loop.
    BasicBlock *Header = L->getHeader();
    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
                                  Header->begin());
    rememberInstruction(CanonicalIV);

    SmallSet<BasicBlock *, 4> PredSeen;
    Constant *One = ConstantInt::get(Ty, 1);
    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
      BasicBlock *HP = *HPI;
      if (!PredSeen.insert(HP))
        continue;

      if (L->contains(HP)) {
        // Insert a unit add instruction right before the terminator
        // corresponding to the back-edge.
        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
                                                     "indvar.next",
                                                     HP->getTerminator());
        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
        rememberInstruction(Add);
        CanonicalIV->addIncoming(Add, HP);
      } else {
        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
      }
    }
  }

  // {0,+,1} --> Insert a canonical induction variable into the loop!
  if (S->isAffine() && S->getOperand(1)->isOne()) {
    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
           "IVs with types different from the canonical IV should "
           "already have been handled!");
    return CanonicalIV;
  }

  // {0,+,F} --> {0,+,1} * F

  // If this is a simple linear addrec, emit it now as a special case.
  if (S->isAffine())    // {0,+,F} --> i*F
    return
      expand(SE.getTruncateOrNoop(
        SE.getMulExpr(SE.getUnknown(CanonicalIV),
                      SE.getNoopOrAnyExtend(S->getOperand(1),
                                            CanonicalIV->getType())),
        Ty));

  // If this is a chain of recurrences, turn it into a closed form, using the
  // folders, then expandCodeFor the closed form.  This allows the folders to
  // simplify the expression without having to build a bunch of special code
  // into this folder.
  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.

  // Promote S up to the canonical IV type, if the cast is foldable.
  const SCEV *NewS = S;
  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
  if (isa<SCEVAddRecExpr>(Ext))
    NewS = Ext;

  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";

  // Truncate the result down to the original type, if needed.
  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
  return expand(T);
}

Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());
  Value *V = expandCodeFor(S->getOperand(),
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
  Value *I = Builder.CreateTrunc(V, Ty);
  rememberInstruction(I);
  return I;
}

Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());
  Value *V = expandCodeFor(S->getOperand(),
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
  Value *I = Builder.CreateZExt(V, Ty);
  rememberInstruction(I);
  return I;
}

Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
  Type *Ty = SE.getEffectiveSCEVType(S->getType());
  Value *V = expandCodeFor(S->getOperand(),
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
  Value *I = Builder.CreateSExt(V, Ty);
  rememberInstruction(I);
  return I;
}

Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
  Type *Ty = LHS->getType();
  for (int i = S->getNumOperands()-2; i >= 0; --i) {
    // In the case of mixed integer and pointer types, do the
    // rest of the comparisons as integer.
    if (S->getOperand(i)->getType() != Ty) {
      Ty = SE.getEffectiveSCEVType(Ty);
      LHS = InsertNoopCastOfTo(LHS, Ty);
    }
    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
    rememberInstruction(ICmp);
    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
    rememberInstruction(Sel);
    LHS = Sel;
  }
  // In the case of mixed integer and pointer types, cast the
  // final result back to the pointer type.
  if (LHS->getType() != S->getType())
    LHS = InsertNoopCastOfTo(LHS, S->getType());
  return LHS;
}

Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
  Type *Ty = LHS->getType();
  for (int i = S->getNumOperands()-2; i >= 0; --i) {
    // In the case of mixed integer and pointer types, do the
    // rest of the comparisons as integer.
    if (S->getOperand(i)->getType() != Ty) {
      Ty = SE.getEffectiveSCEVType(Ty);
      LHS = InsertNoopCastOfTo(LHS, Ty);
    }
    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
    rememberInstruction(ICmp);
    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
    rememberInstruction(Sel);
    LHS = Sel;
  }
  // In the case of mixed integer and pointer types, cast the
  // final result back to the pointer type.
  if (LHS->getType() != S->getType())
    LHS = InsertNoopCastOfTo(LHS, S->getType());
  return LHS;
}

Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
                                   Instruction *IP) {
  Builder.SetInsertPoint(IP->getParent(), IP);
  return expandCodeFor(SH, Ty);
}

Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
  // Expand the code for this SCEV.
  Value *V = expand(SH);
  if (Ty) {
    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
           "non-trivial casts should be done with the SCEVs directly!");
    V = InsertNoopCastOfTo(V, Ty);
  }
  return V;
}

Value *SCEVExpander::expand(const SCEV *S) {
  // Compute an insertion point for this SCEV object. Hoist the instructions
  // as far out in the loop nest as possible.
  Instruction *InsertPt = Builder.GetInsertPoint();
  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
       L = L->getParentLoop())
    if (SE.isLoopInvariant(S, L)) {
      if (!L) break;
      if (BasicBlock *Preheader = L->getLoopPreheader())
        InsertPt = Preheader->getTerminator();
      else {
        // LSR sets the insertion point for AddRec start/step values to the
        // block start to simplify value reuse, even though it's an invalid
        // position. SCEVExpander must correct for this in all cases.
        InsertPt = L->getHeader()->getFirstInsertionPt();
      }
    } else {
      // If the SCEV is computable at this level, insert it into the header
      // after the PHIs (and after any other instructions that we've inserted
      // there) so that it is guaranteed to dominate any user inside the loop.
      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
        InsertPt = L->getHeader()->getFirstInsertionPt();
      while (InsertPt != Builder.GetInsertPoint()
             && (isInsertedInstruction(InsertPt)
                 || isa<DbgInfoIntrinsic>(InsertPt))) {
        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
      }
      break;
    }

  // Check to see if we already expanded this here.
  std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >::iterator
    I = InsertedExpressions.find(std::make_pair(S, InsertPt));
  if (I != InsertedExpressions.end())
    return I->second;

  BuilderType::InsertPointGuard Guard(Builder);
  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);

  // Expand the expression into instructions.
  Value *V = visit(S);

  // Remember the expanded value for this SCEV at this location.
  //
  // This is independent of PostIncLoops. The mapped value simply materializes
  // the expression at this insertion point. If the mapped value happened to be
  // a postinc expansion, it could be reused by a non-postinc user, but only if
  // its insertion point was already at the head of the loop.
  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
  return V;
}

void SCEVExpander::rememberInstruction(Value *I) {
  if (!PostIncLoops.empty())
    InsertedPostIncValues.insert(I);
  else
    InsertedValues.insert(I);
}

/// getOrInsertCanonicalInductionVariable - This method returns the
/// canonical induction variable of the specified type for the specified
/// loop (inserting one if there is none).  A canonical induction variable
/// starts at zero and steps by one on each iteration.
PHINode *
SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
                                                    Type *Ty) {
  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");

  // Build a SCEV for {0,+,1}<L>.
  // Conservatively use FlagAnyWrap for now.
  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);

  // Emit code for it.
  BuilderType::InsertPointGuard Guard(Builder);
  PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));

  return V;
}

/// Sort values by integer width for replaceCongruentIVs.
static bool width_descending(Value *lhs, Value *rhs) {
  // Put pointers at the back and make sure pointer < pointer = false.
  if (!lhs->getType()->isIntegerTy() || !rhs->getType()->isIntegerTy())
    return rhs->getType()->isIntegerTy() && !lhs->getType()->isIntegerTy();
  return rhs->getType()->getPrimitiveSizeInBits()
    < lhs->getType()->getPrimitiveSizeInBits();
}

/// replaceCongruentIVs - Check for congruent phis in this loop header and
/// replace them with their most canonical representative. Return the number of
/// phis eliminated.
///
/// This does not depend on any SCEVExpander state but should be used in
/// the same context that SCEVExpander is used.
unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
                                           SmallVectorImpl<WeakVH> &DeadInsts,
                                           const TargetTransformInfo *TTI) {
  // Find integer phis in order of increasing width.
  SmallVector<PHINode*, 8> Phis;
  for (BasicBlock::iterator I = L->getHeader()->begin();
       PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
    Phis.push_back(Phi);
  }
  if (TTI)
    std::sort(Phis.begin(), Phis.end(), width_descending);

  unsigned NumElim = 0;
  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
  // Process phis from wide to narrow. Mapping wide phis to the their truncation
  // so narrow phis can reuse them.
  for (SmallVectorImpl<PHINode*>::const_iterator PIter = Phis.begin(),
         PEnd = Phis.end(); PIter != PEnd; ++PIter) {
    PHINode *Phi = *PIter;

    // Fold constant phis. They may be congruent to other constant phis and
    // would confuse the logic below that expects proper IVs.
    if (Value *V = Phi->hasConstantValue()) {
      Phi->replaceAllUsesWith(V);
      DeadInsts.push_back(Phi);
      ++NumElim;
      DEBUG_WITH_TYPE(DebugType, dbgs()
                      << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
      continue;
    }

    if (!SE.isSCEVable(Phi->getType()))
      continue;

    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
    if (!OrigPhiRef) {
      OrigPhiRef = Phi;
      if (Phi->getType()->isIntegerTy() && TTI
          && TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
        // This phi can be freely truncated to the narrowest phi type. Map the
        // truncated expression to it so it will be reused for narrow types.
        const SCEV *TruncExpr =
          SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
        ExprToIVMap[TruncExpr] = Phi;
      }
      continue;
    }

    // Replacing a pointer phi with an integer phi or vice-versa doesn't make
    // sense.
    if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
      continue;

    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
      Instruction *OrigInc =
        cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
      Instruction *IsomorphicInc =
        cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));

      // If this phi has the same width but is more canonical, replace the
      // original with it. As part of the "more canonical" determination,
      // respect a prior decision to use an IV chain.
      if (OrigPhiRef->getType() == Phi->getType()
          && !(ChainedPhis.count(Phi)
               || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
          && (ChainedPhis.count(Phi)
              || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
        std::swap(OrigPhiRef, Phi);
        std::swap(OrigInc, IsomorphicInc);
      }
      // Replacing the congruent phi is sufficient because acyclic redundancy
      // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
      // that a phi is congruent, it's often the head of an IV user cycle that
      // is isomorphic with the original phi. It's worth eagerly cleaning up the
      // common case of a single IV increment so that DeleteDeadPHIs can remove
      // cycles that had postinc uses.
      const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
                                                   IsomorphicInc->getType());
      if (OrigInc != IsomorphicInc
          && TruncExpr == SE.getSCEV(IsomorphicInc)
          && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
              || hoistIVInc(OrigInc, IsomorphicInc))) {
        DEBUG_WITH_TYPE(DebugType, dbgs()
                        << "INDVARS: Eliminated congruent iv.inc: "
                        << *IsomorphicInc << '\n');
        Value *NewInc = OrigInc;
        if (OrigInc->getType() != IsomorphicInc->getType()) {
          Instruction *IP = isa<PHINode>(OrigInc)
            ? (Instruction*)L->getHeader()->getFirstInsertionPt()
            : OrigInc->getNextNode();
          IRBuilder<> Builder(IP);
          Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
          NewInc = Builder.
            CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
        }
        IsomorphicInc->replaceAllUsesWith(NewInc);
        DeadInsts.push_back(IsomorphicInc);
      }
    }
    DEBUG_WITH_TYPE(DebugType, dbgs()
                    << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
    ++NumElim;
    Value *NewIV = OrigPhiRef;
    if (OrigPhiRef->getType() != Phi->getType()) {
      IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
      Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
      NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
    }
    Phi->replaceAllUsesWith(NewIV);
    DeadInsts.push_back(Phi);
  }
  return NumElim;
}

namespace {
// Search for a SCEV subexpression that is not safe to expand.  Any expression
// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
// UDiv expressions. We don't know if the UDiv is derived from an IR divide
// instruction, but the important thing is that we prove the denominator is
// nonzero before expansion.
//
// IVUsers already checks that IV-derived expressions are safe. So this check is
// only needed when the expression includes some subexpression that is not IV
// derived.
//
// Currently, we only allow division by a nonzero constant here. If this is
// inadequate, we could easily allow division by SCEVUnknown by using
// ValueTracking to check isKnownNonZero().
//
// We cannot generally expand recurrences unless the step dominates the loop
// header. The expander handles the special case of affine recurrences by
// scaling the recurrence outside the loop, but this technique isn't generally
// applicable. Expanding a nested recurrence outside a loop requires computing
// binomial coefficients. This could be done, but the recurrence has to be in a
// perfectly reduced form, which can't be guaranteed.
struct SCEVFindUnsafe {
  ScalarEvolution &SE;
  bool IsUnsafe;

  SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}

  bool follow(const SCEV *S) {
    if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
      const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
      if (!SC || SC->getValue()->isZero()) {
        IsUnsafe = true;
        return false;
      }
    }
    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
      const SCEV *Step = AR->getStepRecurrence(SE);
      if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
        IsUnsafe = true;
        return false;
      }
    }
    return true;
  }
  bool isDone() const { return IsUnsafe; }
};
}

namespace llvm {
bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
  SCEVFindUnsafe Search(SE);
  visitAll(S, Search);
  return !Search.IsUnsafe;
}
}