summaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64SchedKryo.td
blob: ce2afd499afb88b9d92593dbb604f63190ffb750 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
//==- AArch64SchedKryo.td - Qualcomm Kryo Scheduling Defs ---*- tablegen -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for Qualcomm Kryo to support
// instruction scheduling and other instruction cost heuristics.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// The issue width is set to five, matching the five issue queues for expanded
// uops. Now, the latency spreadsheet has information based on fragmented uops,
// but these do not actually take up an issue queue.

def KryoModel : SchedMachineModel {
  let IssueWidth        =   5; // 5-wide issue for expanded uops
  let MicroOpBufferSize = 128; // Out-of-order with temporary unified issue buffer
  let LoadLatency       =   4; // Optimistic load latency
  let MispredictPenalty =  14; // Fetch + Decode/Rename/Dispatch + Branch

  // Enable partial & runtime unrolling. The magic number is chosen based on
  // experiments and benchmarking data.
  let LoopMicroOpBufferSize = 16;
  let CompleteModel = 1;

  list<Predicate> UnsupportedFeatures = [HasSVE];
}

//===----------------------------------------------------------------------===//
// Define each kind of processor resource and number available on Kryo.

let SchedModel = KryoModel in {
  def KryoUnitXA : ProcResource<1>;                   // Type X(A) micro-ops
  def KryoUnitXB : ProcResource<1>;                   // Type X(B) micro-ops
  def KryoUnitYA : ProcResource<1>;                   // Type Y(A) micro-ops
  def KryoUnitYB : ProcResource<1>;                   // Type Y(B) micro-ops
  def KryoUnitX : ProcResGroup<[KryoUnitXA,          // Type X micro-ops
                                KryoUnitXB]>;
  def KryoUnitY : ProcResGroup<[KryoUnitYA,          // Type Y micro-ops
                                KryoUnitYB]>;
  def KryoUnitXY : ProcResGroup<[KryoUnitXA,         // Type XY micro-ops
                                 KryoUnitXB,
                                 KryoUnitYA,
                                 KryoUnitYB]>;
  def KryoUnitLSA : ProcResource<1>;                  // Type LS(A) micro-ops
  def KryoUnitLSB : ProcResource<1>;                  // Type LS(B) micro-ops
  def KryoUnitLS : ProcResGroup<[KryoUnitLSA,        // Type LS micro-ops
                                 KryoUnitLSB]>;
}

let SchedModel = KryoModel in {

//===----------------------------------------------------------------------===//
// Map the target-defined scheduler read/write resources and latency for
// Kryo.

def : WriteRes<WriteImm,   [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteI,     [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteISReg, [KryoUnitXY, KryoUnitXY]>
      { let Latency = 2; let NumMicroOps = 2; }
def : WriteRes<WriteIEReg, [KryoUnitXY, KryoUnitXY]>
      { let Latency = 2; let NumMicroOps = 2; }
def : WriteRes<WriteExtr,  [KryoUnitXY, KryoUnitX]>
      { let Latency = 2; let NumMicroOps = 2; }
def : WriteRes<WriteIS,    [KryoUnitXY]> { let Latency = 2; }
def : WriteRes<WriteID32,  [KryoUnitXA, KryoUnitY]>
      { let Latency = 8; let NumMicroOps = 1; } // Fragent -1
def : WriteRes<WriteID64,  [KryoUnitXA, KryoUnitY]>
      { let Latency = 8; let NumMicroOps = 1; } // Fragent -1
def : WriteRes<WriteIM32,  [KryoUnitX]> { let Latency = 5; }
def : WriteRes<WriteIM64,  [KryoUnitX]> { let Latency = 5; }
def : WriteRes<WriteBr,    [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteBrReg, [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteLD,    [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteST,    [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteSTP,   [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteAdr,   [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteLDIdx, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteSTIdx, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteF,     [KryoUnitXY, KryoUnitXY]>
      { let Latency = 3; let NumMicroOps = 2; }
def : WriteRes<WriteFCmp,  [KryoUnitXY]> { let Latency = 2; }
def : WriteRes<WriteFCvt,  [KryoUnitX]> { let Latency = 4; }
def : WriteRes<WriteFCopy, [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteFImm,  [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteFMul,  [KryoUnitX, KryoUnitX]>
      { let Latency = 6; let NumMicroOps = 2; }
def : WriteRes<WriteFDiv,  [KryoUnitXA, KryoUnitY]>
      { let Latency = 12; let NumMicroOps = 2; } // Fragent -1 / NoRSV +1
def : WriteRes<WriteV,     [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteVLD,   [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteVST,   [KryoUnitLS]> { let Latency = 4; }

def : WriteRes<WriteSys,     []> { let Latency = 1; }
def : WriteRes<WriteBarrier, []> { let Latency = 1; }
def : WriteRes<WriteHint,    []> { let Latency = 1; }

def : WriteRes<WriteLDHi,    []> { let Latency = 4; }

def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }

// No forwarding logic is modelled yet.
def : ReadAdvance<ReadI,       0>;
def : ReadAdvance<ReadISReg,   0>;
def : ReadAdvance<ReadIEReg,   0>;
def : ReadAdvance<ReadIM,      0>;
def : ReadAdvance<ReadIMA,     0>;
def : ReadAdvance<ReadID,      0>;
def : ReadAdvance<ReadExtrHi,  0>;
def : ReadAdvance<ReadAdrBase, 0>;
def : ReadAdvance<ReadVLD,     0>;


//===----------------------------------------------------------------------===//
// Specialize the coarse model by associating instruction groups with the
// subtarget-defined types. As the modeled is refined, this will override most
// of the above SchedWriteRes and SchedAlias mappings.

// Miscellaneous
// -----------------------------------------------------------------------------

def : InstRW<[WriteI], (instrs COPY)>;


// Detailed Refinedments
// -----------------------------------------------------------------------------
include "AArch64SchedKryoDetails.td"


} // SchedModel = KryoModel