summaryrefslogtreecommitdiff
path: root/llvm/include/llvm/IR/InstrTypes.h
blob: 3eedb762d12476881d92fb30b415aa6d6ed588ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
//===- llvm/InstrTypes.h - Important Instruction subclasses -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines various meta classes of instructions that exist in the VM
// representation.  Specific concrete subclasses of these may be found in the
// i*.h files...
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_INSTRTYPES_H
#define LLVM_IR_INSTRTYPES_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <string>
#include <vector>

namespace llvm {

namespace Intrinsic {
typedef unsigned ID;
}

//===----------------------------------------------------------------------===//
//                          UnaryInstruction Class
//===----------------------------------------------------------------------===//

class UnaryInstruction : public Instruction {
protected:
  UnaryInstruction(Type *Ty, unsigned iType, Value *V,
                   Instruction *IB = nullptr)
    : Instruction(Ty, iType, &Op<0>(), 1, IB) {
    Op<0>() = V;
  }
  UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
    : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
    Op<0>() = V;
  }

public:
  // allocate space for exactly one operand
  void *operator new(size_t S) { return User::operator new(S, 1); }
  void operator delete(void *Ptr) { User::operator delete(Ptr); }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->isUnaryOp() ||
           I->getOpcode() == Instruction::Alloca ||
           I->getOpcode() == Instruction::Load ||
           I->getOpcode() == Instruction::VAArg ||
           I->getOpcode() == Instruction::ExtractValue ||
           (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<UnaryInstruction> :
  public FixedNumOperandTraits<UnaryInstruction, 1> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)

//===----------------------------------------------------------------------===//
//                                UnaryOperator Class
//===----------------------------------------------------------------------===//

class UnaryOperator : public UnaryInstruction {
  void AssertOK();

protected:
  UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
                const Twine &Name, Instruction *InsertBefore);
  UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
                const Twine &Name, BasicBlock *InsertAtEnd);

  // Note: Instruction needs to be a friend here to call cloneImpl.
  friend class Instruction;

  UnaryOperator *cloneImpl() const;

public:

  /// Construct a unary instruction, given the opcode and an operand.
  /// Optionally (if InstBefore is specified) insert the instruction
  /// into a BasicBlock right before the specified instruction.  The specified
  /// Instruction is allowed to be a dereferenced end iterator.
  ///
  static UnaryOperator *Create(UnaryOps Op, Value *S,
                               const Twine &Name = Twine(),
                               Instruction *InsertBefore = nullptr);

  /// Construct a unary instruction, given the opcode and an operand.
  /// Also automatically insert this instruction to the end of the
  /// BasicBlock specified.
  ///
  static UnaryOperator *Create(UnaryOps Op, Value *S,
                               const Twine &Name,
                               BasicBlock *InsertAtEnd);

  /// These methods just forward to Create, and are useful when you
  /// statically know what type of instruction you're going to create.  These
  /// helpers just save some typing.
#define HANDLE_UNARY_INST(N, OPC, CLASS) \
  static UnaryOperator *Create##OPC(Value *V, const Twine &Name = "") {\
    return Create(Instruction::OPC, V, Name);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_UNARY_INST(N, OPC, CLASS) \
  static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
                                    BasicBlock *BB) {\
    return Create(Instruction::OPC, V, Name, BB);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_UNARY_INST(N, OPC, CLASS) \
  static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
                                    Instruction *I) {\
    return Create(Instruction::OPC, V, Name, I);\
  }
#include "llvm/IR/Instruction.def"

  static UnaryOperator *
  CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO,
                        const Twine &Name = "",
                        Instruction *InsertBefore = nullptr) {
    UnaryOperator *UO = Create(Opc, V, Name, InsertBefore);
    UO->copyIRFlags(CopyO);
    return UO;
  }

  static UnaryOperator *CreateFNegFMF(Value *Op, Instruction *FMFSource,
                                      const Twine &Name = "",
                                      Instruction *InsertBefore = nullptr) {
    return CreateWithCopiedFlags(Instruction::FNeg, Op, FMFSource, Name,
                                 InsertBefore);
  }

  UnaryOps getOpcode() const {
    return static_cast<UnaryOps>(Instruction::getOpcode());
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->isUnaryOp();
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                           BinaryOperator Class
//===----------------------------------------------------------------------===//

class BinaryOperator : public Instruction {
  void AssertOK();

protected:
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
                 const Twine &Name, Instruction *InsertBefore);
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
                 const Twine &Name, BasicBlock *InsertAtEnd);

  // Note: Instruction needs to be a friend here to call cloneImpl.
  friend class Instruction;

  BinaryOperator *cloneImpl() const;

public:
  // allocate space for exactly two operands
  void *operator new(size_t S) { return User::operator new(S, 2); }
  void operator delete(void *Ptr) { User::operator delete(Ptr); }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// Construct a binary instruction, given the opcode and the two
  /// operands.  Optionally (if InstBefore is specified) insert the instruction
  /// into a BasicBlock right before the specified instruction.  The specified
  /// Instruction is allowed to be a dereferenced end iterator.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const Twine &Name = Twine(),
                                Instruction *InsertBefore = nullptr);

  /// Construct a binary instruction, given the opcode and the two
  /// operands.  Also automatically insert this instruction to the end of the
  /// BasicBlock specified.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const Twine &Name, BasicBlock *InsertAtEnd);

  /// These methods just forward to Create, and are useful when you
  /// statically know what type of instruction you're going to create.  These
  /// helpers just save some typing.
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name = "") {\
    return Create(Instruction::OPC, V1, V2, Name);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name, BasicBlock *BB) {\
    return Create(Instruction::OPC, V1, V2, Name, BB);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name, Instruction *I) {\
    return Create(Instruction::OPC, V1, V2, Name, I);\
  }
#include "llvm/IR/Instruction.def"

  static BinaryOperator *
  CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Instruction *CopyO,
                        const Twine &Name = "",
                        Instruction *InsertBefore = nullptr) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, InsertBefore);
    BO->copyIRFlags(CopyO);
    return BO;
  }

  static BinaryOperator *CreateFAddFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FAdd, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFSubFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FSub, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFMulFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FMul, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFDivFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FDiv, V1, V2, FMFSource, Name);
  }
  static BinaryOperator *CreateFRemFMF(Value *V1, Value *V2,
                                       Instruction *FMFSource,
                                       const Twine &Name = "") {
    return CreateWithCopiedFlags(Instruction::FRem, V1, V2, FMFSource, Name);
  }

  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setHasNoSignedWrap(true);
    return BO;
  }

  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }

  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setIsExact(true);
    return BO;
  }
  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setIsExact(true);
    return BO;
  }
  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setIsExact(true);
    return BO;
  }

#define DEFINE_HELPERS(OPC, NUWNSWEXACT)                                       \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(Value *V1, Value *V2,        \
                                                  const Twine &Name = "") {    \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name);                \
  }                                                                            \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(                             \
      Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) {               \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB);            \
  }                                                                            \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(                             \
      Value *V1, Value *V2, const Twine &Name, Instruction *I) {               \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I);             \
  }

  DEFINE_HELPERS(Add, NSW) // CreateNSWAdd
  DEFINE_HELPERS(Add, NUW) // CreateNUWAdd
  DEFINE_HELPERS(Sub, NSW) // CreateNSWSub
  DEFINE_HELPERS(Sub, NUW) // CreateNUWSub
  DEFINE_HELPERS(Mul, NSW) // CreateNSWMul
  DEFINE_HELPERS(Mul, NUW) // CreateNUWMul
  DEFINE_HELPERS(Shl, NSW) // CreateNSWShl
  DEFINE_HELPERS(Shl, NUW) // CreateNUWShl

  DEFINE_HELPERS(SDiv, Exact)  // CreateExactSDiv
  DEFINE_HELPERS(UDiv, Exact)  // CreateExactUDiv
  DEFINE_HELPERS(AShr, Exact)  // CreateExactAShr
  DEFINE_HELPERS(LShr, Exact)  // CreateExactLShr

#undef DEFINE_HELPERS

  /// Helper functions to construct and inspect unary operations (NEG and NOT)
  /// via binary operators SUB and XOR:
  ///
  /// Create the NEG and NOT instructions out of SUB and XOR instructions.
  ///
  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
                                   Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
                                   BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
                                      Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
                                      BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
                                      Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
                                      BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
                                   Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
                                   BasicBlock *InsertAtEnd);

  BinaryOps getOpcode() const {
    return static_cast<BinaryOps>(Instruction::getOpcode());
  }

  /// Exchange the two operands to this instruction.
  /// This instruction is safe to use on any binary instruction and
  /// does not modify the semantics of the instruction.  If the instruction
  /// cannot be reversed (ie, it's a Div), then return true.
  ///
  bool swapOperands();

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->isBinaryOp();
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<BinaryOperator> :
  public FixedNumOperandTraits<BinaryOperator, 2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)

//===----------------------------------------------------------------------===//
//                               CastInst Class
//===----------------------------------------------------------------------===//

/// This is the base class for all instructions that perform data
/// casts. It is simply provided so that instruction category testing
/// can be performed with code like:
///
/// if (isa<CastInst>(Instr)) { ... }
/// Base class of casting instructions.
class CastInst : public UnaryInstruction {
protected:
  /// Constructor with insert-before-instruction semantics for subclasses
  CastInst(Type *Ty, unsigned iType, Value *S,
           const Twine &NameStr = "", Instruction *InsertBefore = nullptr)
    : UnaryInstruction(Ty, iType, S, InsertBefore) {
    setName(NameStr);
  }
  /// Constructor with insert-at-end-of-block semantics for subclasses
  CastInst(Type *Ty, unsigned iType, Value *S,
           const Twine &NameStr, BasicBlock *InsertAtEnd)
    : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
    setName(NameStr);
  }

public:
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category (Instruction::isCast(opcode) returns true). This
  /// constructor has insert-before-instruction semantics to automatically
  /// insert the new CastInst before InsertBefore (if it is non-null).
  /// Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode of the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category. This constructor has insert-at-end-of-block semantics
  /// to automatically insert the new CastInst at the end of InsertAtEnd (if
  /// its non-null).
  /// Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode for the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a BitCast or an AddrSpaceCast cast instruction.
  static CastInst *CreatePointerBitCastOrAddrSpaceCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a BitCast or an AddrSpaceCast cast instruction.
  static CastInst *CreatePointerBitCastOrAddrSpaceCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
  ///
  /// If the value is a pointer type and the destination an integer type,
  /// creates a PtrToInt cast. If the value is an integer type and the
  /// destination a pointer type, creates an IntToPtr cast. Otherwise, creates
  /// a bitcast.
  static CastInst *CreateBitOrPointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    bool isSigned,           ///< Whether to regard S as signed or not
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The integer value to be casted (operand 0)
    Type *Ty,          ///< The integer type to which operand is casted
    bool isSigned,           ///< Whether to regard S as signed or not
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    Type *Ty,          ///< The floating point type to cast to
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    Type *Ty,          ///< The floating point type to cast to
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// Check whether a bitcast between these types is valid
  static bool isBitCastable(
    Type *SrcTy, ///< The Type from which the value should be cast.
    Type *DestTy ///< The Type to which the value should be cast.
  );

  /// Check whether a bitcast, inttoptr, or ptrtoint cast between these
  /// types is valid and a no-op.
  ///
  /// This ensures that any pointer<->integer cast has enough bits in the
  /// integer and any other cast is a bitcast.
  static bool isBitOrNoopPointerCastable(
      Type *SrcTy,  ///< The Type from which the value should be cast.
      Type *DestTy, ///< The Type to which the value should be cast.
      const DataLayout &DL);

  /// Returns the opcode necessary to cast Val into Ty using usual casting
  /// rules.
  /// Infer the opcode for cast operand and type
  static Instruction::CastOps getCastOpcode(
    const Value *Val, ///< The value to cast
    bool SrcIsSigned, ///< Whether to treat the source as signed
    Type *Ty,   ///< The Type to which the value should be casted
    bool DstIsSigned  ///< Whether to treate the dest. as signed
  );

  /// There are several places where we need to know if a cast instruction
  /// only deals with integer source and destination types. To simplify that
  /// logic, this method is provided.
  /// @returns true iff the cast has only integral typed operand and dest type.
  /// Determine if this is an integer-only cast.
  bool isIntegerCast() const;

  /// A lossless cast is one that does not alter the basic value. It implies
  /// a no-op cast but is more stringent, preventing things like int->float,
  /// long->double, or int->ptr.
  /// @returns true iff the cast is lossless.
  /// Determine if this is a lossless cast.
  bool isLosslessCast() const;

  /// A no-op cast is one that can be effected without changing any bits.
  /// It implies that the source and destination types are the same size. The
  /// DataLayout argument is to determine the pointer size when examining casts
  /// involving Integer and Pointer types. They are no-op casts if the integer
  /// is the same size as the pointer. However, pointer size varies with
  /// platform.  Note that a precondition of this method is that the cast is
  /// legal - i.e. the instruction formed with these operands would verify.
  static bool isNoopCast(
    Instruction::CastOps Opcode, ///< Opcode of cast
    Type *SrcTy,         ///< SrcTy of cast
    Type *DstTy,         ///< DstTy of cast
    const DataLayout &DL ///< DataLayout to get the Int Ptr type from.
  );

  /// Determine if this cast is a no-op cast.
  ///
  /// \param DL is the DataLayout to determine pointer size.
  bool isNoopCast(const DataLayout &DL) const;

  /// Determine how a pair of casts can be eliminated, if they can be at all.
  /// This is a helper function for both CastInst and ConstantExpr.
  /// @returns 0 if the CastInst pair can't be eliminated, otherwise
  /// returns Instruction::CastOps value for a cast that can replace
  /// the pair, casting SrcTy to DstTy.
  /// Determine if a cast pair is eliminable
  static unsigned isEliminableCastPair(
    Instruction::CastOps firstOpcode,  ///< Opcode of first cast
    Instruction::CastOps secondOpcode, ///< Opcode of second cast
    Type *SrcTy, ///< SrcTy of 1st cast
    Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
    Type *DstTy, ///< DstTy of 2nd cast
    Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
    Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
    Type *DstIntPtrTy  ///< Integer type corresponding to Ptr DstTy, or null
  );

  /// Return the opcode of this CastInst
  Instruction::CastOps getOpcode() const {
    return Instruction::CastOps(Instruction::getOpcode());
  }

  /// Return the source type, as a convenience
  Type* getSrcTy() const { return getOperand(0)->getType(); }
  /// Return the destination type, as a convenience
  Type* getDestTy() const { return getType(); }

  /// This method can be used to determine if a cast from SrcTy to DstTy using
  /// Opcode op is valid or not.
  /// @returns true iff the proposed cast is valid.
  /// Determine if a cast is valid without creating one.
  static bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy);
  static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
    return castIsValid(op, S->getType(), DstTy);
  }

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->isCast();
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                               CmpInst Class
//===----------------------------------------------------------------------===//

/// This class is the base class for the comparison instructions.
/// Abstract base class of comparison instructions.
class CmpInst : public Instruction {
public:
  /// This enumeration lists the possible predicates for CmpInst subclasses.
  /// Values in the range 0-31 are reserved for FCmpInst, while values in the
  /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
  /// predicate values are not overlapping between the classes.
  ///
  /// Some passes (e.g. InstCombine) depend on the bit-wise characteristics of
  /// FCMP_* values. Changing the bit patterns requires a potential change to
  /// those passes.
  enum Predicate : unsigned {
    // Opcode            U L G E    Intuitive operation
    FCMP_FALSE = 0, ///< 0 0 0 0    Always false (always folded)
    FCMP_OEQ = 1,   ///< 0 0 0 1    True if ordered and equal
    FCMP_OGT = 2,   ///< 0 0 1 0    True if ordered and greater than
    FCMP_OGE = 3,   ///< 0 0 1 1    True if ordered and greater than or equal
    FCMP_OLT = 4,   ///< 0 1 0 0    True if ordered and less than
    FCMP_OLE = 5,   ///< 0 1 0 1    True if ordered and less than or equal
    FCMP_ONE = 6,   ///< 0 1 1 0    True if ordered and operands are unequal
    FCMP_ORD = 7,   ///< 0 1 1 1    True if ordered (no nans)
    FCMP_UNO = 8,   ///< 1 0 0 0    True if unordered: isnan(X) | isnan(Y)
    FCMP_UEQ = 9,   ///< 1 0 0 1    True if unordered or equal
    FCMP_UGT = 10,  ///< 1 0 1 0    True if unordered or greater than
    FCMP_UGE = 11,  ///< 1 0 1 1    True if unordered, greater than, or equal
    FCMP_ULT = 12,  ///< 1 1 0 0    True if unordered or less than
    FCMP_ULE = 13,  ///< 1 1 0 1    True if unordered, less than, or equal
    FCMP_UNE = 14,  ///< 1 1 1 0    True if unordered or not equal
    FCMP_TRUE = 15, ///< 1 1 1 1    Always true (always folded)
    FIRST_FCMP_PREDICATE = FCMP_FALSE,
    LAST_FCMP_PREDICATE = FCMP_TRUE,
    BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
    ICMP_EQ = 32,  ///< equal
    ICMP_NE = 33,  ///< not equal
    ICMP_UGT = 34, ///< unsigned greater than
    ICMP_UGE = 35, ///< unsigned greater or equal
    ICMP_ULT = 36, ///< unsigned less than
    ICMP_ULE = 37, ///< unsigned less or equal
    ICMP_SGT = 38, ///< signed greater than
    ICMP_SGE = 39, ///< signed greater or equal
    ICMP_SLT = 40, ///< signed less than
    ICMP_SLE = 41, ///< signed less or equal
    FIRST_ICMP_PREDICATE = ICMP_EQ,
    LAST_ICMP_PREDICATE = ICMP_SLE,
    BAD_ICMP_PREDICATE = ICMP_SLE + 1
  };
  using PredicateField =
      Bitfield::Element<Predicate, 0, 6, LAST_ICMP_PREDICATE>;

  /// Returns the sequence of all FCmp predicates.
  static auto FCmpPredicates() {
    return enum_seq_inclusive(Predicate::FIRST_FCMP_PREDICATE,
                              Predicate::LAST_FCMP_PREDICATE,
                              force_iteration_on_noniterable_enum);
  }

  /// Returns the sequence of all ICmp predicates.
  static auto ICmpPredicates() {
    return enum_seq_inclusive(Predicate::FIRST_ICMP_PREDICATE,
                              Predicate::LAST_ICMP_PREDICATE,
                              force_iteration_on_noniterable_enum);
  }

protected:
  CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
          Value *LHS, Value *RHS, const Twine &Name = "",
          Instruction *InsertBefore = nullptr,
          Instruction *FlagsSource = nullptr);

  CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
          Value *LHS, Value *RHS, const Twine &Name,
          BasicBlock *InsertAtEnd);

public:
  // allocate space for exactly two operands
  void *operator new(size_t S) { return User::operator new(S, 2); }
  void operator delete(void *Ptr) { User::operator delete(Ptr); }

  /// Construct a compare instruction, given the opcode, the predicate and
  /// the two operands.  Optionally (if InstBefore is specified) insert the
  /// instruction into a BasicBlock right before the specified instruction.
  /// The specified Instruction is allowed to be a dereferenced end iterator.
  /// Create a CmpInst
  static CmpInst *Create(OtherOps Op,
                         Predicate predicate, Value *S1,
                         Value *S2, const Twine &Name = "",
                         Instruction *InsertBefore = nullptr);

  /// Construct a compare instruction, given the opcode, the predicate and the
  /// two operands.  Also automatically insert this instruction to the end of
  /// the BasicBlock specified.
  /// Create a CmpInst
  static CmpInst *Create(OtherOps Op, Predicate predicate, Value *S1,
                         Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);

  /// Get the opcode casted to the right type
  OtherOps getOpcode() const {
    return static_cast<OtherOps>(Instruction::getOpcode());
  }

  /// Return the predicate for this instruction.
  Predicate getPredicate() const { return getSubclassData<PredicateField>(); }

  /// Set the predicate for this instruction to the specified value.
  void setPredicate(Predicate P) { setSubclassData<PredicateField>(P); }

  static bool isFPPredicate(Predicate P) {
    static_assert(FIRST_FCMP_PREDICATE == 0,
                  "FIRST_FCMP_PREDICATE is required to be 0");
    return P <= LAST_FCMP_PREDICATE;
  }

  static bool isIntPredicate(Predicate P) {
    return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
  }

  static StringRef getPredicateName(Predicate P);

  bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
  bool isIntPredicate() const { return isIntPredicate(getPredicate()); }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for the instruction's current predicate.
  /// Return the inverse of the instruction's predicate.
  Predicate getInversePredicate() const {
    return getInversePredicate(getPredicate());
  }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for predicate provided in \p pred.
  /// Return the inverse of a given predicate
  static Predicate getInversePredicate(Predicate pred);

  /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
  ///              OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
  /// @returns the predicate that would be the result of exchanging the two
  /// operands of the CmpInst instruction without changing the result
  /// produced.
  /// Return the predicate as if the operands were swapped
  Predicate getSwappedPredicate() const {
    return getSwappedPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction
  /// available.
  /// Return the predicate as if the operands were swapped.
  static Predicate getSwappedPredicate(Predicate pred);

  /// This is a static version that you can use without an instruction
  /// available.
  /// @returns true if the comparison predicate is strict, false otherwise.
  static bool isStrictPredicate(Predicate predicate);

  /// @returns true if the comparison predicate is strict, false otherwise.
  /// Determine if this instruction is using an strict comparison predicate.
  bool isStrictPredicate() const { return isStrictPredicate(getPredicate()); }

  /// This is a static version that you can use without an instruction
  /// available.
  /// @returns true if the comparison predicate is non-strict, false otherwise.
  static bool isNonStrictPredicate(Predicate predicate);

  /// @returns true if the comparison predicate is non-strict, false otherwise.
  /// Determine if this instruction is using an non-strict comparison predicate.
  bool isNonStrictPredicate() const {
    return isNonStrictPredicate(getPredicate());
  }

  /// For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
  /// Returns the strict version of non-strict comparisons.
  Predicate getStrictPredicate() const {
    return getStrictPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction
  /// available.
  /// @returns the strict version of comparison provided in \p pred.
  /// If \p pred is not a strict comparison predicate, returns \p pred.
  /// Returns the strict version of non-strict comparisons.
  static Predicate getStrictPredicate(Predicate pred);

  /// For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
  /// Returns the non-strict version of strict comparisons.
  Predicate getNonStrictPredicate() const {
    return getNonStrictPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction
  /// available.
  /// @returns the non-strict version of comparison provided in \p pred.
  /// If \p pred is not a strict comparison predicate, returns \p pred.
  /// Returns the non-strict version of strict comparisons.
  static Predicate getNonStrictPredicate(Predicate pred);

  /// This is a static version that you can use without an instruction
  /// available.
  /// Return the flipped strictness of predicate
  static Predicate getFlippedStrictnessPredicate(Predicate pred);

  /// For predicate of kind "is X or equal to 0" returns the predicate "is X".
  /// For predicate of kind "is X" returns the predicate "is X or equal to 0".
  /// does not support other kind of predicates.
  /// @returns the predicate that does not contains is equal to zero if
  /// it had and vice versa.
  /// Return the flipped strictness of predicate
  Predicate getFlippedStrictnessPredicate() const {
    return getFlippedStrictnessPredicate(getPredicate());
  }

  /// Provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// This is just a convenience that dispatches to the subclasses.
  /// Swap the operands and adjust predicate accordingly to retain
  /// the same comparison.
  void swapOperands();

  /// This is just a convenience that dispatches to the subclasses.
  /// Determine if this CmpInst is commutative.
  bool isCommutative() const;

  /// Determine if this is an equals/not equals predicate.
  /// This is a static version that you can use without an instruction
  /// available.
  static bool isEquality(Predicate pred);

  /// Determine if this is an equals/not equals predicate.
  bool isEquality() const { return isEquality(getPredicate()); }

  /// Return true if the predicate is relational (not EQ or NE).
  static bool isRelational(Predicate P) { return !isEquality(P); }

  /// Return true if the predicate is relational (not EQ or NE).
  bool isRelational() const { return !isEquality(); }

  /// @returns true if the comparison is signed, false otherwise.
  /// Determine if this instruction is using a signed comparison.
  bool isSigned() const {
    return isSigned(getPredicate());
  }

  /// @returns true if the comparison is unsigned, false otherwise.
  /// Determine if this instruction is using an unsigned comparison.
  bool isUnsigned() const {
    return isUnsigned(getPredicate());
  }

  /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
  /// @returns the signed version of the unsigned predicate pred.
  /// return the signed version of a predicate
  static Predicate getSignedPredicate(Predicate pred);

  /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
  /// @returns the signed version of the predicate for this instruction (which
  /// has to be an unsigned predicate).
  /// return the signed version of a predicate
  Predicate getSignedPredicate() {
    return getSignedPredicate(getPredicate());
  }

  /// For example, SLT->ULT, SLE->ULE, SGT->UGT, SGE->UGE, ULT->Failed assert
  /// @returns the unsigned version of the signed predicate pred.
  static Predicate getUnsignedPredicate(Predicate pred);

  /// For example, SLT->ULT, SLE->ULE, SGT->UGT, SGE->UGE, ULT->Failed assert
  /// @returns the unsigned version of the predicate for this instruction (which
  /// has to be an signed predicate).
  /// return the unsigned version of a predicate
  Predicate getUnsignedPredicate() {
    return getUnsignedPredicate(getPredicate());
  }

  /// For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->Failed assert
  /// @returns the unsigned version of the signed predicate pred or
  ///          the signed version of the signed predicate pred.
  static Predicate getFlippedSignednessPredicate(Predicate pred);

  /// For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->Failed assert
  /// @returns the unsigned version of the signed predicate pred or
  ///          the signed version of the signed predicate pred.
  Predicate getFlippedSignednessPredicate() {
    return getFlippedSignednessPredicate(getPredicate());
  }

  /// This is just a convenience.
  /// Determine if this is true when both operands are the same.
  bool isTrueWhenEqual() const {
    return isTrueWhenEqual(getPredicate());
  }

  /// This is just a convenience.
  /// Determine if this is false when both operands are the same.
  bool isFalseWhenEqual() const {
    return isFalseWhenEqual(getPredicate());
  }

  /// @returns true if the predicate is unsigned, false otherwise.
  /// Determine if the predicate is an unsigned operation.
  static bool isUnsigned(Predicate predicate);

  /// @returns true if the predicate is signed, false otherwise.
  /// Determine if the predicate is an signed operation.
  static bool isSigned(Predicate predicate);

  /// Determine if the predicate is an ordered operation.
  static bool isOrdered(Predicate predicate);

  /// Determine if the predicate is an unordered operation.
  static bool isUnordered(Predicate predicate);

  /// Determine if the predicate is true when comparing a value with itself.
  static bool isTrueWhenEqual(Predicate predicate);

  /// Determine if the predicate is false when comparing a value with itself.
  static bool isFalseWhenEqual(Predicate predicate);

  /// Determine if Pred1 implies Pred2 is true when two compares have matching
  /// operands.
  static bool isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2);

  /// Determine if Pred1 implies Pred2 is false when two compares have matching
  /// operands.
  static bool isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2);

  /// Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ICmp ||
           I->getOpcode() == Instruction::FCmp;
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }

  /// Create a result type for fcmp/icmp
  static Type* makeCmpResultType(Type* opnd_type) {
    if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
      return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
                             vt->getElementCount());
    }
    return Type::getInt1Ty(opnd_type->getContext());
  }

private:
  // Shadow Value::setValueSubclassData with a private forwarding method so that
  // subclasses cannot accidentally use it.
  void setValueSubclassData(unsigned short D) {
    Value::setValueSubclassData(D);
  }
};

// FIXME: these are redundant if CmpInst < BinaryOperator
template <>
struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)

/// A lightweight accessor for an operand bundle meant to be passed
/// around by value.
struct OperandBundleUse {
  ArrayRef<Use> Inputs;

  OperandBundleUse() = default;
  explicit OperandBundleUse(StringMapEntry<uint32_t> *Tag, ArrayRef<Use> Inputs)
      : Inputs(Inputs), Tag(Tag) {}

  /// Return true if the operand at index \p Idx in this operand bundle
  /// has the attribute A.
  bool operandHasAttr(unsigned Idx, Attribute::AttrKind A) const {
    if (isDeoptOperandBundle())
      if (A == Attribute::ReadOnly || A == Attribute::NoCapture)
        return Inputs[Idx]->getType()->isPointerTy();

    // Conservative answer:  no operands have any attributes.
    return false;
  }

  /// Return the tag of this operand bundle as a string.
  StringRef getTagName() const {
    return Tag->getKey();
  }

  /// Return the tag of this operand bundle as an integer.
  ///
  /// Operand bundle tags are interned by LLVMContextImpl::getOrInsertBundleTag,
  /// and this function returns the unique integer getOrInsertBundleTag
  /// associated the tag of this operand bundle to.
  uint32_t getTagID() const {
    return Tag->getValue();
  }

  /// Return true if this is a "deopt" operand bundle.
  bool isDeoptOperandBundle() const {
    return getTagID() == LLVMContext::OB_deopt;
  }

  /// Return true if this is a "funclet" operand bundle.
  bool isFuncletOperandBundle() const {
    return getTagID() == LLVMContext::OB_funclet;
  }

  /// Return true if this is a "cfguardtarget" operand bundle.
  bool isCFGuardTargetOperandBundle() const {
    return getTagID() == LLVMContext::OB_cfguardtarget;
  }

private:
  /// Pointer to an entry in LLVMContextImpl::getOrInsertBundleTag.
  StringMapEntry<uint32_t> *Tag;
};

/// A container for an operand bundle being viewed as a set of values
/// rather than a set of uses.
///
/// Unlike OperandBundleUse, OperandBundleDefT owns the memory it carries, and
/// so it is possible to create and pass around "self-contained" instances of
/// OperandBundleDef and ConstOperandBundleDef.
template <typename InputTy> class OperandBundleDefT {
  std::string Tag;
  std::vector<InputTy> Inputs;

public:
  explicit OperandBundleDefT(std::string Tag, std::vector<InputTy> Inputs)
      : Tag(std::move(Tag)), Inputs(std::move(Inputs)) {}
  explicit OperandBundleDefT(std::string Tag, ArrayRef<InputTy> Inputs)
      : Tag(std::move(Tag)), Inputs(Inputs) {}

  explicit OperandBundleDefT(const OperandBundleUse &OBU) {
    Tag = std::string(OBU.getTagName());
    llvm::append_range(Inputs, OBU.Inputs);
  }

  ArrayRef<InputTy> inputs() const { return Inputs; }

  using input_iterator = typename std::vector<InputTy>::const_iterator;

  size_t input_size() const { return Inputs.size(); }
  input_iterator input_begin() const { return Inputs.begin(); }
  input_iterator input_end() const { return Inputs.end(); }

  StringRef getTag() const { return Tag; }
};

using OperandBundleDef = OperandBundleDefT<Value *>;
using ConstOperandBundleDef = OperandBundleDefT<const Value *>;

//===----------------------------------------------------------------------===//
//                               CallBase Class
//===----------------------------------------------------------------------===//

/// Base class for all callable instructions (InvokeInst and CallInst)
/// Holds everything related to calling a function.
///
/// All call-like instructions are required to use a common operand layout:
/// - Zero or more arguments to the call,
/// - Zero or more operand bundles with zero or more operand inputs each
///   bundle,
/// - Zero or more subclass controlled operands
/// - The called function.
///
/// This allows this base class to easily access the called function and the
/// start of the arguments without knowing how many other operands a particular
/// subclass requires. Note that accessing the end of the argument list isn't
/// as cheap as most other operations on the base class.
class CallBase : public Instruction {
protected:
  // The first two bits are reserved by CallInst for fast retrieval,
  using CallInstReservedField = Bitfield::Element<unsigned, 0, 2>;
  using CallingConvField =
      Bitfield::Element<CallingConv::ID, CallInstReservedField::NextBit, 10,
                        CallingConv::MaxID>;
  static_assert(
      Bitfield::areContiguous<CallInstReservedField, CallingConvField>(),
      "Bitfields must be contiguous");

  /// The last operand is the called operand.
  static constexpr int CalledOperandOpEndIdx = -1;

  AttributeList Attrs; ///< parameter attributes for callable
  FunctionType *FTy;

  template <class... ArgsTy>
  CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
      : Instruction(std::forward<ArgsTy>(Args)...), Attrs(A), FTy(FT) {}

  using Instruction::Instruction;

  bool hasDescriptor() const { return Value::HasDescriptor; }

  unsigned getNumSubclassExtraOperands() const {
    switch (getOpcode()) {
    case Instruction::Call:
      return 0;
    case Instruction::Invoke:
      return 2;
    case Instruction::CallBr:
      return getNumSubclassExtraOperandsDynamic();
    }
    llvm_unreachable("Invalid opcode!");
  }

  /// Get the number of extra operands for instructions that don't have a fixed
  /// number of extra operands.
  unsigned getNumSubclassExtraOperandsDynamic() const;

public:
  using Instruction::getContext;

  /// Create a clone of \p CB with a different set of operand bundles and
  /// insert it before \p InsertPt.
  ///
  /// The returned call instruction is identical \p CB in every way except that
  /// the operand bundles for the new instruction are set to the operand bundles
  /// in \p Bundles.
  static CallBase *Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
                          Instruction *InsertPt = nullptr);

  /// Create a clone of \p CB with the operand bundle with the tag matching
  /// \p Bundle's tag replaced with Bundle, and insert it before \p InsertPt.
  ///
  /// The returned call instruction is identical \p CI in every way except that
  /// the specified operand bundle has been replaced.
  static CallBase *Create(CallBase *CB,
                          OperandBundleDef Bundle,
                          Instruction *InsertPt = nullptr);

  /// Create a clone of \p CB with operand bundle \p OB added.
  static CallBase *addOperandBundle(CallBase *CB, uint32_t ID,
                                    OperandBundleDef OB,
                                    Instruction *InsertPt = nullptr);

  /// Create a clone of \p CB with operand bundle \p ID removed.
  static CallBase *removeOperandBundle(CallBase *CB, uint32_t ID,
                                       Instruction *InsertPt = nullptr);

  static bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Call ||
           I->getOpcode() == Instruction::Invoke ||
           I->getOpcode() == Instruction::CallBr;
  }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }

  FunctionType *getFunctionType() const { return FTy; }

  void mutateFunctionType(FunctionType *FTy) {
    Value::mutateType(FTy->getReturnType());
    this->FTy = FTy;
  }

  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// data_operands_begin/data_operands_end - Return iterators iterating over
  /// the call / invoke argument list and bundle operands.  For invokes, this is
  /// the set of instruction operands except the invoke target and the two
  /// successor blocks; and for calls this is the set of instruction operands
  /// except the call target.
  User::op_iterator data_operands_begin() { return op_begin(); }
  User::const_op_iterator data_operands_begin() const {
    return const_cast<CallBase *>(this)->data_operands_begin();
  }
  User::op_iterator data_operands_end() {
    // Walk from the end of the operands over the called operand and any
    // subclass operands.
    return op_end() - getNumSubclassExtraOperands() - 1;
  }
  User::const_op_iterator data_operands_end() const {
    return const_cast<CallBase *>(this)->data_operands_end();
  }
  iterator_range<User::op_iterator> data_ops() {
    return make_range(data_operands_begin(), data_operands_end());
  }
  iterator_range<User::const_op_iterator> data_ops() const {
    return make_range(data_operands_begin(), data_operands_end());
  }
  bool data_operands_empty() const {
    return data_operands_end() == data_operands_begin();
  }
  unsigned data_operands_size() const {
    return std::distance(data_operands_begin(), data_operands_end());
  }

  bool isDataOperand(const Use *U) const {
    assert(this == U->getUser() &&
           "Only valid to query with a use of this instruction!");
    return data_operands_begin() <= U && U < data_operands_end();
  }
  bool isDataOperand(Value::const_user_iterator UI) const {
    return isDataOperand(&UI.getUse());
  }

  /// Given a value use iterator, return the data operand corresponding to it.
  /// Iterator must actually correspond to a data operand.
  unsigned getDataOperandNo(Value::const_user_iterator UI) const {
    return getDataOperandNo(&UI.getUse());
  }

  /// Given a use for a data operand, get the data operand number that
  /// corresponds to it.
  unsigned getDataOperandNo(const Use *U) const {
    assert(isDataOperand(U) && "Data operand # out of range!");
    return U - data_operands_begin();
  }

  /// Return the iterator pointing to the beginning of the argument list.
  User::op_iterator arg_begin() { return op_begin(); }
  User::const_op_iterator arg_begin() const {
    return const_cast<CallBase *>(this)->arg_begin();
  }

  /// Return the iterator pointing to the end of the argument list.
  User::op_iterator arg_end() {
    // From the end of the data operands, walk backwards past the bundle
    // operands.
    return data_operands_end() - getNumTotalBundleOperands();
  }
  User::const_op_iterator arg_end() const {
    return const_cast<CallBase *>(this)->arg_end();
  }

  /// Iteration adapter for range-for loops.
  iterator_range<User::op_iterator> args() {
    return make_range(arg_begin(), arg_end());
  }
  iterator_range<User::const_op_iterator> args() const {
    return make_range(arg_begin(), arg_end());
  }
  bool arg_empty() const { return arg_end() == arg_begin(); }
  unsigned arg_size() const { return arg_end() - arg_begin(); }

  Value *getArgOperand(unsigned i) const {
    assert(i < arg_size() && "Out of bounds!");
    return getOperand(i);
  }

  void setArgOperand(unsigned i, Value *v) {
    assert(i < arg_size() && "Out of bounds!");
    setOperand(i, v);
  }

  /// Wrappers for getting the \c Use of a call argument.
  const Use &getArgOperandUse(unsigned i) const {
    assert(i < arg_size() && "Out of bounds!");
    return User::getOperandUse(i);
  }
  Use &getArgOperandUse(unsigned i) {
    assert(i < arg_size() && "Out of bounds!");
    return User::getOperandUse(i);
  }

  bool isArgOperand(const Use *U) const {
    assert(this == U->getUser() &&
           "Only valid to query with a use of this instruction!");
    return arg_begin() <= U && U < arg_end();
  }
  bool isArgOperand(Value::const_user_iterator UI) const {
    return isArgOperand(&UI.getUse());
  }

  /// Given a use for a arg operand, get the arg operand number that
  /// corresponds to it.
  unsigned getArgOperandNo(const Use *U) const {
    assert(isArgOperand(U) && "Arg operand # out of range!");
    return U - arg_begin();
  }

  /// Given a value use iterator, return the arg operand number corresponding to
  /// it. Iterator must actually correspond to a data operand.
  unsigned getArgOperandNo(Value::const_user_iterator UI) const {
    return getArgOperandNo(&UI.getUse());
  }

  /// Returns true if this CallSite passes the given Value* as an argument to
  /// the called function.
  bool hasArgument(const Value *V) const {
    return llvm::is_contained(args(), V);
  }

  Value *getCalledOperand() const { return Op<CalledOperandOpEndIdx>(); }

  const Use &getCalledOperandUse() const { return Op<CalledOperandOpEndIdx>(); }
  Use &getCalledOperandUse() { return Op<CalledOperandOpEndIdx>(); }

  /// Returns the function called, or null if this is an
  /// indirect function invocation.
  Function *getCalledFunction() const {
    return dyn_cast_or_null<Function>(getCalledOperand());
  }

  /// Return true if the callsite is an indirect call.
  bool isIndirectCall() const;

  /// Determine whether the passed iterator points to the callee operand's Use.
  bool isCallee(Value::const_user_iterator UI) const {
    return isCallee(&UI.getUse());
  }

  /// Determine whether this Use is the callee operand's Use.
  bool isCallee(const Use *U) const { return &getCalledOperandUse() == U; }

  /// Helper to get the caller (the parent function).
  Function *getCaller();
  const Function *getCaller() const {
    return const_cast<CallBase *>(this)->getCaller();
  }

  /// Tests if this call site must be tail call optimized. Only a CallInst can
  /// be tail call optimized.
  bool isMustTailCall() const;

  /// Tests if this call site is marked as a tail call.
  bool isTailCall() const;

  /// Returns the intrinsic ID of the intrinsic called or
  /// Intrinsic::not_intrinsic if the called function is not an intrinsic, or if
  /// this is an indirect call.
  Intrinsic::ID getIntrinsicID() const;

  void setCalledOperand(Value *V) { Op<CalledOperandOpEndIdx>() = V; }

  /// Sets the function called, including updating the function type.
  void setCalledFunction(Function *Fn) {
    setCalledFunction(Fn->getFunctionType(), Fn);
  }

  /// Sets the function called, including updating the function type.
  void setCalledFunction(FunctionCallee Fn) {
    setCalledFunction(Fn.getFunctionType(), Fn.getCallee());
  }

  /// Sets the function called, including updating to the specified function
  /// type.
  void setCalledFunction(FunctionType *FTy, Value *Fn) {
    this->FTy = FTy;
    assert(cast<PointerType>(Fn->getType())->isOpaqueOrPointeeTypeMatches(FTy));
    // This function doesn't mutate the return type, only the function
    // type. Seems broken, but I'm just gonna stick an assert in for now.
    assert(getType() == FTy->getReturnType());
    setCalledOperand(Fn);
  }

  CallingConv::ID getCallingConv() const {
    return getSubclassData<CallingConvField>();
  }

  void setCallingConv(CallingConv::ID CC) {
    setSubclassData<CallingConvField>(CC);
  }

  /// Check if this call is an inline asm statement.
  bool isInlineAsm() const { return isa<InlineAsm>(getCalledOperand()); }

  /// \name Attribute API
  ///
  /// These methods access and modify attributes on this call (including
  /// looking through to the attributes on the called function when necessary).
  ///@{

  /// Return the parameter attributes for this call.
  ///
  AttributeList getAttributes() const { return Attrs; }

  /// Set the parameter attributes for this call.
  ///
  void setAttributes(AttributeList A) { Attrs = A; }

  /// Determine whether this call has the given attribute. If it does not
  /// then determine if the called function has the attribute, but only if
  /// the attribute is allowed for the call.
  bool hasFnAttr(Attribute::AttrKind Kind) const {
    assert(Kind != Attribute::NoBuiltin &&
           "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin");
    return hasFnAttrImpl(Kind);
  }

  /// Determine whether this call has the given attribute. If it does not
  /// then determine if the called function has the attribute, but only if
  /// the attribute is allowed for the call.
  bool hasFnAttr(StringRef Kind) const { return hasFnAttrImpl(Kind); }

  // TODO: remove non-AtIndex versions of these methods.
  /// adds the attribute to the list of attributes.
  void addAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
    Attrs = Attrs.addAttributeAtIndex(getContext(), i, Kind);
  }

  /// adds the attribute to the list of attributes.
  void addAttributeAtIndex(unsigned i, Attribute Attr) {
    Attrs = Attrs.addAttributeAtIndex(getContext(), i, Attr);
  }

  /// Adds the attribute to the function.
  void addFnAttr(Attribute::AttrKind Kind) {
    Attrs = Attrs.addFnAttribute(getContext(), Kind);
  }

  /// Adds the attribute to the function.
  void addFnAttr(Attribute Attr) {
    Attrs = Attrs.addFnAttribute(getContext(), Attr);
  }

  /// Adds the attribute to the return value.
  void addRetAttr(Attribute::AttrKind Kind) {
    Attrs = Attrs.addRetAttribute(getContext(), Kind);
  }

  /// Adds the attribute to the return value.
  void addRetAttr(Attribute Attr) {
    Attrs = Attrs.addRetAttribute(getContext(), Attr);
  }

  /// Adds the attribute to the indicated argument
  void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
    assert(ArgNo < arg_size() && "Out of bounds");
    Attrs = Attrs.addParamAttribute(getContext(), ArgNo, Kind);
  }

  /// Adds the attribute to the indicated argument
  void addParamAttr(unsigned ArgNo, Attribute Attr) {
    assert(ArgNo < arg_size() && "Out of bounds");
    Attrs = Attrs.addParamAttribute(getContext(), ArgNo, Attr);
  }

  /// removes the attribute from the list of attributes.
  void removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
    Attrs = Attrs.removeAttributeAtIndex(getContext(), i, Kind);
  }

  /// removes the attribute from the list of attributes.
  void removeAttributeAtIndex(unsigned i, StringRef Kind) {
    Attrs = Attrs.removeAttributeAtIndex(getContext(), i, Kind);
  }

  /// Removes the attributes from the function
  void removeFnAttrs(const AttributeMask &AttrsToRemove) {
    Attrs = Attrs.removeFnAttributes(getContext(), AttrsToRemove);
  }

  /// Removes the attribute from the function
  void removeFnAttr(Attribute::AttrKind Kind) {
    Attrs = Attrs.removeFnAttribute(getContext(), Kind);
  }

  /// Removes the attribute from the return value
  void removeRetAttr(Attribute::AttrKind Kind) {
    Attrs = Attrs.removeRetAttribute(getContext(), Kind);
  }

  /// Removes the attributes from the return value
  void removeRetAttrs(const AttributeMask &AttrsToRemove) {
    Attrs = Attrs.removeRetAttributes(getContext(), AttrsToRemove);
  }

  /// Removes the attribute from the given argument
  void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
    assert(ArgNo < arg_size() && "Out of bounds");
    Attrs = Attrs.removeParamAttribute(getContext(), ArgNo, Kind);
  }

  /// Removes the attribute from the given argument
  void removeParamAttr(unsigned ArgNo, StringRef Kind) {
    assert(ArgNo < arg_size() && "Out of bounds");
    Attrs = Attrs.removeParamAttribute(getContext(), ArgNo, Kind);
  }

  /// Removes the attributes from the given argument
  void removeParamAttrs(unsigned ArgNo, const AttributeMask &AttrsToRemove) {
    Attrs = Attrs.removeParamAttributes(getContext(), ArgNo, AttrsToRemove);
  }

  /// adds the dereferenceable attribute to the list of attributes.
  void addDereferenceableParamAttr(unsigned i, uint64_t Bytes) {
    Attrs = Attrs.addDereferenceableParamAttr(getContext(), i, Bytes);
  }

  /// adds the dereferenceable attribute to the list of attributes.
  void addDereferenceableRetAttr(uint64_t Bytes) {
    Attrs = Attrs.addDereferenceableRetAttr(getContext(), Bytes);
  }

  /// Determine whether the return value has the given attribute.
  bool hasRetAttr(Attribute::AttrKind Kind) const {
    return hasRetAttrImpl(Kind);
  }
  /// Determine whether the return value has the given attribute.
  bool hasRetAttr(StringRef Kind) const { return hasRetAttrImpl(Kind); }

  /// Determine whether the argument or parameter has the given attribute.
  bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const;

  /// Get the attribute of a given kind at a position.
  Attribute getAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) const {
    return getAttributes().getAttributeAtIndex(i, Kind);
  }

  /// Get the attribute of a given kind at a position.
  Attribute getAttributeAtIndex(unsigned i, StringRef Kind) const {
    return getAttributes().getAttributeAtIndex(i, Kind);
  }

  /// Get the attribute of a given kind for the function.
  Attribute getFnAttr(StringRef Kind) const {
    return getAttributes().getFnAttr(Kind);
  }

  /// Get the attribute of a given kind for the function.
  Attribute getFnAttr(Attribute::AttrKind Kind) const {
    return getAttributes().getFnAttr(Kind);
  }

  /// Get the attribute of a given kind from a given arg
  Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
    assert(ArgNo < arg_size() && "Out of bounds");
    return getAttributes().getParamAttr(ArgNo, Kind);
  }

  /// Get the attribute of a given kind from a given arg
  Attribute getParamAttr(unsigned ArgNo, StringRef Kind) const {
    assert(ArgNo < arg_size() && "Out of bounds");
    return getAttributes().getParamAttr(ArgNo, Kind);
  }

  /// Return true if the data operand at index \p i has the attribute \p
  /// A.
  ///
  /// Data operands include call arguments and values used in operand bundles,
  /// but does not include the callee operand.
  ///
  /// The index \p i is interpreted as
  ///
  ///  \p i in [0, arg_size)  -> argument number (\p i)
  ///  \p i in [arg_size, data_operand_size) -> bundle operand at index
  ///     (\p i) in the operand list.
  bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
    // Note that we have to add one because `i` isn't zero-indexed.
    assert(i < arg_size() + getNumTotalBundleOperands() &&
           "Data operand index out of bounds!");

    // The attribute A can either be directly specified, if the operand in
    // question is a call argument; or be indirectly implied by the kind of its
    // containing operand bundle, if the operand is a bundle operand.

    if (i < arg_size())
      return paramHasAttr(i, Kind);

    assert(hasOperandBundles() && i >= getBundleOperandsStartIndex() &&
           "Must be either a call argument or an operand bundle!");
    return bundleOperandHasAttr(i, Kind);
  }

  /// Determine whether this data operand is not captured.
  // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
  // better indicate that this may return a conservative answer.
  bool doesNotCapture(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo, Attribute::NoCapture);
  }

  /// Determine whether this argument is passed by value.
  bool isByValArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::ByVal);
  }

  /// Determine whether this argument is passed in an alloca.
  bool isInAllocaArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::InAlloca);
  }

  /// Determine whether this argument is passed by value, in an alloca, or is
  /// preallocated.
  bool isPassPointeeByValueArgument(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::ByVal) ||
           paramHasAttr(ArgNo, Attribute::InAlloca) ||
           paramHasAttr(ArgNo, Attribute::Preallocated);
  }

  /// Determine whether passing undef to this argument is undefined behavior.
  /// If passing undef to this argument is UB, passing poison is UB as well
  /// because poison is more undefined than undef.
  bool isPassingUndefUB(unsigned ArgNo) const {
    return paramHasAttr(ArgNo, Attribute::NoUndef) ||
           // dereferenceable implies noundef.
           paramHasAttr(ArgNo, Attribute::Dereferenceable) ||
           // dereferenceable implies noundef, and null is a well-defined value.
           paramHasAttr(ArgNo, Attribute::DereferenceableOrNull);
  }

  /// Determine if there are is an inalloca argument. Only the last argument can
  /// have the inalloca attribute.
  bool hasInAllocaArgument() const {
    return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
  }

  // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
  // better indicate that this may return a conservative answer.
  bool doesNotAccessMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo, Attribute::ReadNone);
  }

  // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
  // better indicate that this may return a conservative answer.
  bool onlyReadsMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo, Attribute::ReadOnly) ||
           dataOperandHasImpliedAttr(OpNo, Attribute::ReadNone);
  }

  // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
  // better indicate that this may return a conservative answer.
  bool doesNotReadMemory(unsigned OpNo) const {
    return dataOperandHasImpliedAttr(OpNo, Attribute::WriteOnly) ||
           dataOperandHasImpliedAttr(OpNo, Attribute::ReadNone);
  }

  /// Extract the alignment of the return value.
  MaybeAlign getRetAlign() const { return Attrs.getRetAlignment(); }

  /// Extract the alignment for a call or parameter (0=unknown).
  MaybeAlign getParamAlign(unsigned ArgNo) const {
    return Attrs.getParamAlignment(ArgNo);
  }

  MaybeAlign getParamStackAlign(unsigned ArgNo) const {
    return Attrs.getParamStackAlignment(ArgNo);
  }

  /// Extract the byval type for a call or parameter.
  Type *getParamByValType(unsigned ArgNo) const {
    if (auto *Ty = Attrs.getParamByValType(ArgNo))
      return Ty;
    if (const Function *F = getCalledFunction())
      return F->getAttributes().getParamByValType(ArgNo);
    return nullptr;
  }

  /// Extract the preallocated type for a call or parameter.
  Type *getParamPreallocatedType(unsigned ArgNo) const {
    if (auto *Ty = Attrs.getParamPreallocatedType(ArgNo))
      return Ty;
    if (const Function *F = getCalledFunction())
      return F->getAttributes().getParamPreallocatedType(ArgNo);
    return nullptr;
  }

  /// Extract the preallocated type for a call or parameter.
  Type *getParamInAllocaType(unsigned ArgNo) const {
    if (auto *Ty = Attrs.getParamInAllocaType(ArgNo))
      return Ty;
    if (const Function *F = getCalledFunction())
      return F->getAttributes().getParamInAllocaType(ArgNo);
    return nullptr;
  }

  /// Extract the number of dereferenceable bytes for a call or
  /// parameter (0=unknown).
  uint64_t getRetDereferenceableBytes() const {
    return Attrs.getRetDereferenceableBytes();
  }

  /// Extract the number of dereferenceable bytes for a call or
  /// parameter (0=unknown).
  uint64_t getParamDereferenceableBytes(unsigned i) const {
    return Attrs.getParamDereferenceableBytes(i);
  }

  /// Extract the number of dereferenceable_or_null bytes for a call
  /// (0=unknown).
  uint64_t getRetDereferenceableOrNullBytes() const {
    return Attrs.getRetDereferenceableOrNullBytes();
  }

  /// Extract the number of dereferenceable_or_null bytes for a
  /// parameter (0=unknown).
  uint64_t getParamDereferenceableOrNullBytes(unsigned i) const {
    return Attrs.getParamDereferenceableOrNullBytes(i);
  }

  /// Return true if the return value is known to be not null.
  /// This may be because it has the nonnull attribute, or because at least
  /// one byte is dereferenceable and the pointer is in addrspace(0).
  bool isReturnNonNull() const;

  /// Determine if the return value is marked with NoAlias attribute.
  bool returnDoesNotAlias() const {
    return Attrs.hasRetAttr(Attribute::NoAlias);
  }

  /// If one of the arguments has the 'returned' attribute, returns its
  /// operand value. Otherwise, return nullptr.
  Value *getReturnedArgOperand() const;

  /// Return true if the call should not be treated as a call to a
  /// builtin.
  bool isNoBuiltin() const {
    return hasFnAttrImpl(Attribute::NoBuiltin) &&
           !hasFnAttrImpl(Attribute::Builtin);
  }

  /// Determine if the call requires strict floating point semantics.
  bool isStrictFP() const { return hasFnAttr(Attribute::StrictFP); }

  /// Return true if the call should not be inlined.
  bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
  void setIsNoInline() { addFnAttr(Attribute::NoInline); }
  /// Determine if the call does not access memory.
  bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); }
  void setDoesNotAccessMemory() { addFnAttr(Attribute::ReadNone); }

  /// Determine if the call does not access or only reads memory.
  bool onlyReadsMemory() const {
    return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
  }

  void setOnlyReadsMemory() { addFnAttr(Attribute::ReadOnly); }

  /// Determine if the call does not access or only writes memory.
  bool doesNotReadMemory() const {
    return doesNotAccessMemory() || hasFnAttr(Attribute::WriteOnly);
  }
  void setDoesNotReadMemory() { addFnAttr(Attribute::WriteOnly); }

  /// Determine if the call can access memmory only using pointers based
  /// on its arguments.
  bool onlyAccessesArgMemory() const {
    return hasFnAttr(Attribute::ArgMemOnly);
  }
  void setOnlyAccessesArgMemory() { addFnAttr(Attribute::ArgMemOnly); }

  /// Determine if the function may only access memory that is
  /// inaccessible from the IR.
  bool onlyAccessesInaccessibleMemory() const {
    return hasFnAttr(Attribute::InaccessibleMemOnly);
  }
  void setOnlyAccessesInaccessibleMemory() {
    addFnAttr(Attribute::InaccessibleMemOnly);
  }

  /// Determine if the function may only access memory that is
  /// either inaccessible from the IR or pointed to by its arguments.
  bool onlyAccessesInaccessibleMemOrArgMem() const {
    return hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
  }
  void setOnlyAccessesInaccessibleMemOrArgMem() {
    addFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
  }
  /// Determine if the call cannot return.
  bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
  void setDoesNotReturn() { addFnAttr(Attribute::NoReturn); }

  /// Determine if the call should not perform indirect branch tracking.
  bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }

  /// Determine if the call cannot unwind.
  bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
  void setDoesNotThrow() { addFnAttr(Attribute::NoUnwind); }

  /// Determine if the invoke cannot be duplicated.
  bool cannotDuplicate() const { return hasFnAttr(Attribute::NoDuplicate); }
  void setCannotDuplicate() { addFnAttr(Attribute::NoDuplicate); }

  /// Determine if the call cannot be tail merged.
  bool cannotMerge() const { return hasFnAttr(Attribute::NoMerge); }
  void setCannotMerge() { addFnAttr(Attribute::NoMerge); }

  /// Determine if the invoke is convergent
  bool isConvergent() const { return hasFnAttr(Attribute::Convergent); }
  void setConvergent() { addFnAttr(Attribute::Convergent); }
  void setNotConvergent() { removeFnAttr(Attribute::Convergent); }

  /// Determine if the call returns a structure through first
  /// pointer argument.
  bool hasStructRetAttr() const {
    if (arg_empty())
      return false;

    // Be friendly and also check the callee.
    return paramHasAttr(0, Attribute::StructRet);
  }

  /// Determine if any call argument is an aggregate passed by value.
  bool hasByValArgument() const {
    return Attrs.hasAttrSomewhere(Attribute::ByVal);
  }

  ///@{
  // End of attribute API.

  /// \name Operand Bundle API
  ///
  /// This group of methods provides the API to access and manipulate operand
  /// bundles on this call.
  /// @{

  /// Return the number of operand bundles associated with this User.
  unsigned getNumOperandBundles() const {
    return std::distance(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// Return true if this User has any operand bundles.
  bool hasOperandBundles() const { return getNumOperandBundles() != 0; }

  /// Return the index of the first bundle operand in the Use array.
  unsigned getBundleOperandsStartIndex() const {
    assert(hasOperandBundles() && "Don't call otherwise!");
    return bundle_op_info_begin()->Begin;
  }

  /// Return the index of the last bundle operand in the Use array.
  unsigned getBundleOperandsEndIndex() const {
    assert(hasOperandBundles() && "Don't call otherwise!");
    return bundle_op_info_end()[-1].End;
  }

  /// Return true if the operand at index \p Idx is a bundle operand.
  bool isBundleOperand(unsigned Idx) const {
    return hasOperandBundles() && Idx >= getBundleOperandsStartIndex() &&
           Idx < getBundleOperandsEndIndex();
  }

  /// Return true if the operand at index \p Idx is a bundle operand that has
  /// tag ID \p ID.
  bool isOperandBundleOfType(uint32_t ID, unsigned Idx) const {
    return isBundleOperand(Idx) &&
           getOperandBundleForOperand(Idx).getTagID() == ID;
  }

  /// Returns true if the use is a bundle operand.
  bool isBundleOperand(const Use *U) const {
    assert(this == U->getUser() &&
           "Only valid to query with a use of this instruction!");
    return hasOperandBundles() && isBundleOperand(U - op_begin());
  }
  bool isBundleOperand(Value::const_user_iterator UI) const {
    return isBundleOperand(&UI.getUse());
  }

  /// Return the total number operands (not operand bundles) used by
  /// every operand bundle in this OperandBundleUser.
  unsigned getNumTotalBundleOperands() const {
    if (!hasOperandBundles())
      return 0;

    unsigned Begin = getBundleOperandsStartIndex();
    unsigned End = getBundleOperandsEndIndex();

    assert(Begin <= End && "Should be!");
    return End - Begin;
  }

  /// Return the operand bundle at a specific index.
  OperandBundleUse getOperandBundleAt(unsigned Index) const {
    assert(Index < getNumOperandBundles() && "Index out of bounds!");
    return operandBundleFromBundleOpInfo(*(bundle_op_info_begin() + Index));
  }

  /// Return the number of operand bundles with the tag Name attached to
  /// this instruction.
  unsigned countOperandBundlesOfType(StringRef Name) const {
    unsigned Count = 0;
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      if (getOperandBundleAt(i).getTagName() == Name)
        Count++;

    return Count;
  }

  /// Return the number of operand bundles with the tag ID attached to
  /// this instruction.
  unsigned countOperandBundlesOfType(uint32_t ID) const {
    unsigned Count = 0;
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      if (getOperandBundleAt(i).getTagID() == ID)
        Count++;

    return Count;
  }

  /// Return an operand bundle by name, if present.
  ///
  /// It is an error to call this for operand bundle types that may have
  /// multiple instances of them on the same instruction.
  Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
    assert(countOperandBundlesOfType(Name) < 2 && "Precondition violated!");

    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      OperandBundleUse U = getOperandBundleAt(i);
      if (U.getTagName() == Name)
        return U;
    }

    return None;
  }

  /// Return an operand bundle by tag ID, if present.
  ///
  /// It is an error to call this for operand bundle types that may have
  /// multiple instances of them on the same instruction.
  Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
    assert(countOperandBundlesOfType(ID) < 2 && "Precondition violated!");

    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      OperandBundleUse U = getOperandBundleAt(i);
      if (U.getTagID() == ID)
        return U;
    }

    return None;
  }

  /// Return the list of operand bundles attached to this instruction as
  /// a vector of OperandBundleDefs.
  ///
  /// This function copies the OperandBundeUse instances associated with this
  /// OperandBundleUser to a vector of OperandBundleDefs.  Note:
  /// OperandBundeUses and OperandBundleDefs are non-trivially *different*
  /// representations of operand bundles (see documentation above).
  void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const;

  /// Return the operand bundle for the operand at index OpIdx.
  ///
  /// It is an error to call this with an OpIdx that does not correspond to an
  /// bundle operand.
  OperandBundleUse getOperandBundleForOperand(unsigned OpIdx) const {
    return operandBundleFromBundleOpInfo(getBundleOpInfoForOperand(OpIdx));
  }

  /// Return true if this operand bundle user has operand bundles that
  /// may read from the heap.
  bool hasReadingOperandBundles() const;

  /// Return true if this operand bundle user has operand bundles that
  /// may write to the heap.
  bool hasClobberingOperandBundles() const {
    for (auto &BOI : bundle_op_infos()) {
      if (BOI.Tag->second == LLVMContext::OB_deopt ||
          BOI.Tag->second == LLVMContext::OB_funclet)
        continue;

      // This instruction has an operand bundle that is not known to us.
      // Assume the worst.
      return true;
    }

    return false;
  }

  /// Return true if the bundle operand at index \p OpIdx has the
  /// attribute \p A.
  bool bundleOperandHasAttr(unsigned OpIdx,  Attribute::AttrKind A) const {
    auto &BOI = getBundleOpInfoForOperand(OpIdx);
    auto OBU = operandBundleFromBundleOpInfo(BOI);
    return OBU.operandHasAttr(OpIdx - BOI.Begin, A);
  }

  /// Return true if \p Other has the same sequence of operand bundle
  /// tags with the same number of operands on each one of them as this
  /// OperandBundleUser.
  bool hasIdenticalOperandBundleSchema(const CallBase &Other) const {
    if (getNumOperandBundles() != Other.getNumOperandBundles())
      return false;

    return std::equal(bundle_op_info_begin(), bundle_op_info_end(),
                      Other.bundle_op_info_begin());
  }

  /// Return true if this operand bundle user contains operand bundles
  /// with tags other than those specified in \p IDs.
  bool hasOperandBundlesOtherThan(ArrayRef<uint32_t> IDs) const {
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      uint32_t ID = getOperandBundleAt(i).getTagID();
      if (!is_contained(IDs, ID))
        return true;
    }
    return false;
  }

  /// Is the function attribute S disallowed by some operand bundle on
  /// this operand bundle user?
  bool isFnAttrDisallowedByOpBundle(StringRef S) const {
    // Operand bundles only possibly disallow readnone, readonly and argmemonly
    // attributes.  All String attributes are fine.
    return false;
  }

  /// Is the function attribute A disallowed by some operand bundle on
  /// this operand bundle user?
  bool isFnAttrDisallowedByOpBundle(Attribute::AttrKind A) const {
    switch (A) {
    default:
      return false;

    case Attribute::InaccessibleMemOrArgMemOnly:
      return hasReadingOperandBundles();

    case Attribute::InaccessibleMemOnly:
      return hasReadingOperandBundles();

    case Attribute::ArgMemOnly:
      return hasReadingOperandBundles();

    case Attribute::ReadNone:
      return hasReadingOperandBundles();

    case Attribute::ReadOnly:
      return hasClobberingOperandBundles();
    }

    llvm_unreachable("switch has a default case!");
  }

  /// Used to keep track of an operand bundle.  See the main comment on
  /// OperandBundleUser above.
  struct BundleOpInfo {
    /// The operand bundle tag, interned by
    /// LLVMContextImpl::getOrInsertBundleTag.
    StringMapEntry<uint32_t> *Tag;

    /// The index in the Use& vector where operands for this operand
    /// bundle starts.
    uint32_t Begin;

    /// The index in the Use& vector where operands for this operand
    /// bundle ends.
    uint32_t End;

    bool operator==(const BundleOpInfo &Other) const {
      return Tag == Other.Tag && Begin == Other.Begin && End == Other.End;
    }
  };

  /// Simple helper function to map a BundleOpInfo to an
  /// OperandBundleUse.
  OperandBundleUse
  operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const {
    auto begin = op_begin();
    ArrayRef<Use> Inputs(begin + BOI.Begin, begin + BOI.End);
    return OperandBundleUse(BOI.Tag, Inputs);
  }

  using bundle_op_iterator = BundleOpInfo *;
  using const_bundle_op_iterator = const BundleOpInfo *;

  /// Return the start of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  ///
  /// OperandBundleUser uses the descriptor area co-allocated with the host User
  /// to store some meta information about which operands are "normal" operands,
  /// and which ones belong to some operand bundle.
  ///
  /// The layout of an operand bundle user is
  ///
  ///          +-----------uint32_t End-------------------------------------+
  ///          |                                                            |
  ///          |  +--------uint32_t Begin--------------------+              |
  ///          |  |                                          |              |
  ///          ^  ^                                          v              v
  ///  |------|------|----|----|----|----|----|---------|----|---------|----|-----
  ///  | BOI0 | BOI1 | .. | DU | U0 | U1 | .. | BOI0_U0 | .. | BOI1_U0 | .. | Un
  ///  |------|------|----|----|----|----|----|---------|----|---------|----|-----
  ///   v  v                                  ^              ^
  ///   |  |                                  |              |
  ///   |  +--------uint32_t Begin------------+              |
  ///   |                                                    |
  ///   +-----------uint32_t End-----------------------------+
  ///
  ///
  /// BOI0, BOI1 ... are descriptions of operand bundles in this User's use
  /// list. These descriptions are installed and managed by this class, and
  /// they're all instances of OperandBundleUser<T>::BundleOpInfo.
  ///
  /// DU is an additional descriptor installed by User's 'operator new' to keep
  /// track of the 'BOI0 ... BOIN' co-allocation.  OperandBundleUser does not
  /// access or modify DU in any way, it's an implementation detail private to
  /// User.
  ///
  /// The regular Use& vector for the User starts at U0.  The operand bundle
  /// uses are part of the Use& vector, just like normal uses.  In the diagram
  /// above, the operand bundle uses start at BOI0_U0.  Each instance of
  /// BundleOpInfo has information about a contiguous set of uses constituting
  /// an operand bundle, and the total set of operand bundle uses themselves
  /// form a contiguous set of uses (i.e. there are no gaps between uses
  /// corresponding to individual operand bundles).
  ///
  /// This class does not know the location of the set of operand bundle uses
  /// within the use list -- that is decided by the User using this class via
  /// the BeginIdx argument in populateBundleOperandInfos.
  ///
  /// Currently operand bundle users with hung-off operands are not supported.
  bundle_op_iterator bundle_op_info_begin() {
    if (!hasDescriptor())
      return nullptr;

    uint8_t *BytesBegin = getDescriptor().begin();
    return reinterpret_cast<bundle_op_iterator>(BytesBegin);
  }

  /// Return the start of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  const_bundle_op_iterator bundle_op_info_begin() const {
    auto *NonConstThis = const_cast<CallBase *>(this);
    return NonConstThis->bundle_op_info_begin();
  }

  /// Return the end of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  bundle_op_iterator bundle_op_info_end() {
    if (!hasDescriptor())
      return nullptr;

    uint8_t *BytesEnd = getDescriptor().end();
    return reinterpret_cast<bundle_op_iterator>(BytesEnd);
  }

  /// Return the end of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  const_bundle_op_iterator bundle_op_info_end() const {
    auto *NonConstThis = const_cast<CallBase *>(this);
    return NonConstThis->bundle_op_info_end();
  }

  /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
  iterator_range<bundle_op_iterator> bundle_op_infos() {
    return make_range(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
  iterator_range<const_bundle_op_iterator> bundle_op_infos() const {
    return make_range(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// Populate the BundleOpInfo instances and the Use& vector from \p
  /// Bundles.  Return the op_iterator pointing to the Use& one past the last
  /// last bundle operand use.
  ///
  /// Each \p OperandBundleDef instance is tracked by a OperandBundleInfo
  /// instance allocated in this User's descriptor.
  op_iterator populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
                                         const unsigned BeginIndex);

public:
  /// Return the BundleOpInfo for the operand at index OpIdx.
  ///
  /// It is an error to call this with an OpIdx that does not correspond to an
  /// bundle operand.
  BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx);
  const BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx) const {
    return const_cast<CallBase *>(this)->getBundleOpInfoForOperand(OpIdx);
  }

protected:
  /// Return the total number of values used in \p Bundles.
  static unsigned CountBundleInputs(ArrayRef<OperandBundleDef> Bundles) {
    unsigned Total = 0;
    for (auto &B : Bundles)
      Total += B.input_size();
    return Total;
  }

  /// @}
  // End of operand bundle API.

private:
  bool hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
  bool hasFnAttrOnCalledFunction(StringRef Kind) const;

  template <typename AttrKind> bool hasFnAttrImpl(AttrKind Kind) const {
    if (Attrs.hasFnAttr(Kind))
      return true;

    // Operand bundles override attributes on the called function, but don't
    // override attributes directly present on the call instruction.
    if (isFnAttrDisallowedByOpBundle(Kind))
      return false;

    return hasFnAttrOnCalledFunction(Kind);
  }

  /// Determine whether the return value has the given attribute. Supports
  /// Attribute::AttrKind and StringRef as \p AttrKind types.
  template <typename AttrKind> bool hasRetAttrImpl(AttrKind Kind) const {
    if (Attrs.hasRetAttr(Kind))
      return true;

    // Look at the callee, if available.
    if (const Function *F = getCalledFunction())
      return F->getAttributes().hasRetAttr(Kind);
    return false;
  }
};

template <>
struct OperandTraits<CallBase> : public VariadicOperandTraits<CallBase, 1> {};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallBase, Value)

//===----------------------------------------------------------------------===//
//                           FuncletPadInst Class
//===----------------------------------------------------------------------===//
class FuncletPadInst : public Instruction {
private:
  FuncletPadInst(const FuncletPadInst &CPI);

  explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
                          ArrayRef<Value *> Args, unsigned Values,
                          const Twine &NameStr, Instruction *InsertBefore);
  explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
                          ArrayRef<Value *> Args, unsigned Values,
                          const Twine &NameStr, BasicBlock *InsertAtEnd);

  void init(Value *ParentPad, ArrayRef<Value *> Args, const Twine &NameStr);

protected:
  // Note: Instruction needs to be a friend here to call cloneImpl.
  friend class Instruction;
  friend class CatchPadInst;
  friend class CleanupPadInst;

  FuncletPadInst *cloneImpl() const;

public:
  /// Provide fast operand accessors
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// getNumArgOperands - Return the number of funcletpad arguments.
  ///
  unsigned getNumArgOperands() const { return getNumOperands() - 1; }

  /// Convenience accessors

  /// Return the outer EH-pad this funclet is nested within.
  ///
  /// Note: This returns the associated CatchSwitchInst if this FuncletPadInst
  /// is a CatchPadInst.
  Value *getParentPad() const { return Op<-1>(); }
  void setParentPad(Value *ParentPad) {
    assert(ParentPad);
    Op<-1>() = ParentPad;
  }

  /// getArgOperand/setArgOperand - Return/set the i-th funcletpad argument.
  ///
  Value *getArgOperand(unsigned i) const { return getOperand(i); }
  void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }

  /// arg_operands - iteration adapter for range-for loops.
  op_range arg_operands() { return op_range(op_begin(), op_end() - 1); }

  /// arg_operands - iteration adapter for range-for loops.
  const_op_range arg_operands() const {
    return const_op_range(op_begin(), op_end() - 1);
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static bool classof(const Instruction *I) { return I->isFuncletPad(); }
  static bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<FuncletPadInst>
    : public VariadicOperandTraits<FuncletPadInst, /*MINARITY=*/1> {};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(FuncletPadInst, Value)

} // end namespace llvm

#endif // LLVM_IR_INSTRTYPES_H