summaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/TypePromotion.cpp
blob: 36e3c1245f1caf8e3a13f0abf0620cadcd33a9c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
//===----- TypePromotion.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This is an opcode based type promotion pass for small types that would
/// otherwise be promoted during legalisation. This works around the limitations
/// of selection dag for cyclic regions. The search begins from icmp
/// instructions operands where a tree, consisting of non-wrapping or safe
/// wrapping instructions, is built, checked and promoted if possible.
///
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetMachine.h"

#define DEBUG_TYPE "type-promotion"
#define PASS_NAME "Type Promotion"

using namespace llvm;

static cl::opt<bool> DisablePromotion("disable-type-promotion", cl::Hidden,
                                      cl::init(false),
                                      cl::desc("Disable type promotion pass"));

// The goal of this pass is to enable more efficient code generation for
// operations on narrow types (i.e. types with < 32-bits) and this is a
// motivating IR code example:
//
//   define hidden i32 @cmp(i8 zeroext) {
//     %2 = add i8 %0, -49
//     %3 = icmp ult i8 %2, 3
//     ..
//   }
//
// The issue here is that i8 is type-legalized to i32 because i8 is not a
// legal type. Thus, arithmetic is done in integer-precision, but then the
// byte value is masked out as follows:
//
//   t19: i32 = add t4, Constant:i32<-49>
//     t24: i32 = and t19, Constant:i32<255>
//
// Consequently, we generate code like this:
//
//   subs  r0, #49
//   uxtb  r1, r0
//   cmp r1, #3
//
// This shows that masking out the byte value results in generation of
// the UXTB instruction. This is not optimal as r0 already contains the byte
// value we need, and so instead we can just generate:
//
//   sub.w r1, r0, #49
//   cmp r1, #3
//
// We achieve this by type promoting the IR to i32 like so for this example:
//
//   define i32 @cmp(i8 zeroext %c) {
//     %0 = zext i8 %c to i32
//     %c.off = add i32 %0, -49
//     %1 = icmp ult i32 %c.off, 3
//     ..
//   }
//
// For this to be valid and legal, we need to prove that the i32 add is
// producing the same value as the i8 addition, and that e.g. no overflow
// happens.
//
// A brief sketch of the algorithm and some terminology.
// We pattern match interesting IR patterns:
// - which have "sources": instructions producing narrow values (i8, i16), and
// - they have "sinks": instructions consuming these narrow values.
//
// We collect all instruction connecting sources and sinks in a worklist, so
// that we can mutate these instruction and perform type promotion when it is
// legal to do so.

namespace {
class IRPromoter {
  LLVMContext &Ctx;
  unsigned PromotedWidth = 0;
  SetVector<Value *> &Visited;
  SetVector<Value *> &Sources;
  SetVector<Instruction *> &Sinks;
  SmallPtrSetImpl<Instruction *> &SafeWrap;
  IntegerType *ExtTy = nullptr;
  SmallPtrSet<Value *, 8> NewInsts;
  SmallPtrSet<Instruction *, 4> InstsToRemove;
  DenseMap<Value *, SmallVector<Type *, 4>> TruncTysMap;
  SmallPtrSet<Value *, 8> Promoted;

  void ReplaceAllUsersOfWith(Value *From, Value *To);
  void ExtendSources();
  void ConvertTruncs();
  void PromoteTree();
  void TruncateSinks();
  void Cleanup();

public:
  IRPromoter(LLVMContext &C, unsigned Width,
             SetVector<Value *> &visited, SetVector<Value *> &sources,
             SetVector<Instruction *> &sinks,
             SmallPtrSetImpl<Instruction *> &wrap)
      : Ctx(C), PromotedWidth(Width), Visited(visited),
        Sources(sources), Sinks(sinks), SafeWrap(wrap) {
    ExtTy = IntegerType::get(Ctx, PromotedWidth);
  }

  void Mutate();
};

class TypePromotion : public FunctionPass {
  unsigned TypeSize = 0;
  LLVMContext *Ctx = nullptr;
  unsigned RegisterBitWidth = 0;
  SmallPtrSet<Value *, 16> AllVisited;
  SmallPtrSet<Instruction *, 8> SafeToPromote;
  SmallPtrSet<Instruction *, 4> SafeWrap;

  // Does V have the same size result type as TypeSize.
  bool EqualTypeSize(Value *V);
  // Does V have the same size, or narrower, result type as TypeSize.
  bool LessOrEqualTypeSize(Value *V);
  // Does V have a result type that is wider than TypeSize.
  bool GreaterThanTypeSize(Value *V);
  // Does V have a result type that is narrower than TypeSize.
  bool LessThanTypeSize(Value *V);
  // Should V be a leaf in the promote tree?
  bool isSource(Value *V);
  // Should V be a root in the promotion tree?
  bool isSink(Value *V);
  // Should we change the result type of V? It will result in the users of V
  // being visited.
  bool shouldPromote(Value *V);
  // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
  // result won't affect the computation?
  bool isSafeWrap(Instruction *I);
  // Can V have its integer type promoted, or can the type be ignored.
  bool isSupportedType(Value *V);
  // Is V an instruction with a supported opcode or another value that we can
  // handle, such as constants and basic blocks.
  bool isSupportedValue(Value *V);
  // Is V an instruction thats result can trivially promoted, or has safe
  // wrapping.
  bool isLegalToPromote(Value *V);
  bool TryToPromote(Value *V, unsigned PromotedWidth);

public:
  static char ID;

  TypePromotion() : FunctionPass(ID) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<TargetPassConfig>();
    AU.setPreservesCFG();
  }

  StringRef getPassName() const override { return PASS_NAME; }

  bool runOnFunction(Function &F) override;
};

} // namespace

static bool GenerateSignBits(Instruction *I) {
  unsigned Opc = I->getOpcode();
  return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
         Opc == Instruction::SRem || Opc == Instruction::SExt;
}

bool TypePromotion::EqualTypeSize(Value *V) {
  return V->getType()->getScalarSizeInBits() == TypeSize;
}

bool TypePromotion::LessOrEqualTypeSize(Value *V) {
  return V->getType()->getScalarSizeInBits() <= TypeSize;
}

bool TypePromotion::GreaterThanTypeSize(Value *V) {
  return V->getType()->getScalarSizeInBits() > TypeSize;
}

bool TypePromotion::LessThanTypeSize(Value *V) {
  return V->getType()->getScalarSizeInBits() < TypeSize;
}

/// Return true if the given value is a source in the use-def chain, producing
/// a narrow 'TypeSize' value. These values will be zext to start the promotion
/// of the tree to i32. We guarantee that these won't populate the upper bits
/// of the register. ZExt on the loads will be free, and the same for call
/// return values because we only accept ones that guarantee a zeroext ret val.
/// Many arguments will have the zeroext attribute too, so those would be free
/// too.
bool TypePromotion::isSource(Value *V) {
  if (!isa<IntegerType>(V->getType()))
    return false;

  // TODO Allow zext to be sources.
  if (isa<Argument>(V))
    return true;
  else if (isa<LoadInst>(V))
    return true;
  else if (isa<BitCastInst>(V))
    return true;
  else if (auto *Call = dyn_cast<CallInst>(V))
    return Call->hasRetAttr(Attribute::AttrKind::ZExt);
  else if (auto *Trunc = dyn_cast<TruncInst>(V))
    return EqualTypeSize(Trunc);
  return false;
}

/// Return true if V will require any promoted values to be truncated for the
/// the IR to remain valid. We can't mutate the value type of these
/// instructions.
bool TypePromotion::isSink(Value *V) {
  // TODO The truncate also isn't actually necessary because we would already
  // proved that the data value is kept within the range of the original data
  // type. We currently remove any truncs inserted for handling zext sinks.

  // Sinks are:
  // - points where the value in the register is being observed, such as an
  //   icmp, switch or store.
  // - points where value types have to match, such as calls and returns.
  // - zext are included to ease the transformation and are generally removed
  //   later on.
  if (auto *Store = dyn_cast<StoreInst>(V))
    return LessOrEqualTypeSize(Store->getValueOperand());
  if (auto *Return = dyn_cast<ReturnInst>(V))
    return LessOrEqualTypeSize(Return->getReturnValue());
  if (auto *ZExt = dyn_cast<ZExtInst>(V))
    return GreaterThanTypeSize(ZExt);
  if (auto *Switch = dyn_cast<SwitchInst>(V))
    return LessThanTypeSize(Switch->getCondition());
  if (auto *ICmp = dyn_cast<ICmpInst>(V))
    return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));

  return isa<CallInst>(V);
}

/// Return whether this instruction can safely wrap.
bool TypePromotion::isSafeWrap(Instruction *I) {
  // We can support a potentially wrapping instruction (I) if:
  // - It is only used by an unsigned icmp.
  // - The icmp uses a constant.
  // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
  //   around zero to become a larger number than before.
  // - The wrapping instruction (I) also uses a constant.
  //
  // We can then use the two constants to calculate whether the result would
  // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
  // just underflows the range, the icmp would give the same result whether the
  // result has been truncated or not. We calculate this by:
  // - Zero extending both constants, if needed, to RegisterBitWidth.
  // - Take the absolute value of I's constant, adding this to the icmp const.
  // - Check that this value is not out of range for small type. If it is, it
  //   means that it has underflowed enough to wrap around the icmp constant.
  //
  // For example:
  //
  // %sub = sub i8 %a, 2
  // %cmp = icmp ule i8 %sub, 254
  //
  // If %a = 0, %sub = -2 == FE == 254
  // But if this is evalulated as a i32
  // %sub = -2 == FF FF FF FE == 4294967294
  // So the unsigned compares (i8 and i32) would not yield the same result.
  //
  // Another way to look at it is:
  // %a - 2 <= 254
  // %a + 2 <= 254 + 2
  // %a <= 256
  // And we can't represent 256 in the i8 format, so we don't support it.
  //
  // Whereas:
  //
  // %sub i8 %a, 1
  // %cmp = icmp ule i8 %sub, 254
  //
  // If %a = 0, %sub = -1 == FF == 255
  // As i32:
  // %sub = -1 == FF FF FF FF == 4294967295
  //
  // In this case, the unsigned compare results would be the same and this
  // would also be true for ult, uge and ugt:
  // - (255 < 254) == (0xFFFFFFFF < 254) == false
  // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
  // - (255 > 254) == (0xFFFFFFFF > 254) == true
  // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
  //
  // To demonstrate why we can't handle increasing values:
  //
  // %add = add i8 %a, 2
  // %cmp = icmp ult i8 %add, 127
  //
  // If %a = 254, %add = 256 == (i8 1)
  // As i32:
  // %add = 256
  //
  // (1 < 127) != (256 < 127)

  unsigned Opc = I->getOpcode();
  if (Opc != Instruction::Add && Opc != Instruction::Sub)
    return false;

  if (!I->hasOneUse() || !isa<ICmpInst>(*I->user_begin()) ||
      !isa<ConstantInt>(I->getOperand(1)))
    return false;

  // Don't support an icmp that deals with sign bits.
  auto *CI = cast<ICmpInst>(*I->user_begin());
  if (CI->isSigned() || CI->isEquality())
    return false;

  ConstantInt *ICmpConstant = nullptr;
  if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
    ICmpConstant = Const;
  else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
    ICmpConstant = Const;
  else
    return false;

  const APInt &ICmpConst = ICmpConstant->getValue();
  APInt OverflowConst = cast<ConstantInt>(I->getOperand(1))->getValue();
  if (Opc == Instruction::Sub)
    OverflowConst = -OverflowConst;
  if (!OverflowConst.isNonPositive())
    return false;

  // Using C1 = OverflowConst and C2 = ICmpConst, we can either prove that:
  //   zext(x) + sext(C1) <u zext(C2)  if C1 < 0 and C1 >s C2
  //   zext(x) + sext(C1) <u sext(C2)  if C1 < 0 and C1 <=s C2
  if (OverflowConst.sgt(ICmpConst)) {
    LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
                      << "const of " << *I << "\n");
    SafeWrap.insert(I);
    return true;
  } else {
    LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
                      << "const of " << *I << " and " << *CI << "\n");
    SafeWrap.insert(I);
    SafeWrap.insert(CI);
    return true;
  }
  return false;
}

bool TypePromotion::shouldPromote(Value *V) {
  if (!isa<IntegerType>(V->getType()) || isSink(V))
    return false;

  if (isSource(V))
    return true;

  auto *I = dyn_cast<Instruction>(V);
  if (!I)
    return false;

  if (isa<ICmpInst>(I))
    return false;

  return true;
}

/// Return whether we can safely mutate V's type to ExtTy without having to be
/// concerned with zero extending or truncation.
static bool isPromotedResultSafe(Instruction *I) {
  if (GenerateSignBits(I))
    return false;

  if (!isa<OverflowingBinaryOperator>(I))
    return true;

  return I->hasNoUnsignedWrap();
}

void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
  SmallVector<Instruction *, 4> Users;
  Instruction *InstTo = dyn_cast<Instruction>(To);
  bool ReplacedAll = true;

  LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
                    << "\n");

  for (Use &U : From->uses()) {
    auto *User = cast<Instruction>(U.getUser());
    if (InstTo && User->isIdenticalTo(InstTo)) {
      ReplacedAll = false;
      continue;
    }
    Users.push_back(User);
  }

  for (auto *U : Users)
    U->replaceUsesOfWith(From, To);

  if (ReplacedAll)
    if (auto *I = dyn_cast<Instruction>(From))
      InstsToRemove.insert(I);
}

void IRPromoter::ExtendSources() {
  IRBuilder<> Builder{Ctx};

  auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
    assert(V->getType() != ExtTy && "zext already extends to i32");
    LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
    Builder.SetInsertPoint(InsertPt);
    if (auto *I = dyn_cast<Instruction>(V))
      Builder.SetCurrentDebugLocation(I->getDebugLoc());

    Value *ZExt = Builder.CreateZExt(V, ExtTy);
    if (auto *I = dyn_cast<Instruction>(ZExt)) {
      if (isa<Argument>(V))
        I->moveBefore(InsertPt);
      else
        I->moveAfter(InsertPt);
      NewInsts.insert(I);
    }

    ReplaceAllUsersOfWith(V, ZExt);
  };

  // Now, insert extending instructions between the sources and their users.
  LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
  for (auto *V : Sources) {
    LLVM_DEBUG(dbgs() << " - " << *V << "\n");
    if (auto *I = dyn_cast<Instruction>(V))
      InsertZExt(I, I);
    else if (auto *Arg = dyn_cast<Argument>(V)) {
      BasicBlock &BB = Arg->getParent()->front();
      InsertZExt(Arg, &*BB.getFirstInsertionPt());
    } else {
      llvm_unreachable("unhandled source that needs extending");
    }
    Promoted.insert(V);
  }
}

void IRPromoter::PromoteTree() {
  LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");

  // Mutate the types of the instructions within the tree. Here we handle
  // constant operands.
  for (auto *V : Visited) {
    if (Sources.count(V))
      continue;

    auto *I = cast<Instruction>(V);
    if (Sinks.count(I))
      continue;

    for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
      Value *Op = I->getOperand(i);
      if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
        continue;

      if (auto *Const = dyn_cast<ConstantInt>(Op)) {
        // For subtract, we don't need to sext the constant. We only put it in
        // SafeWrap because SafeWrap.size() is used elsewhere.
        // For cmp, we need to sign extend a constant appearing in either
        // operand. For add, we should only sign extend the RHS.
        Constant *NewConst = (SafeWrap.contains(I) &&
                              (I->getOpcode() == Instruction::ICmp || i == 1) &&
                              I->getOpcode() != Instruction::Sub)
                                 ? ConstantExpr::getSExt(Const, ExtTy)
                                 : ConstantExpr::getZExt(Const, ExtTy);
        I->setOperand(i, NewConst);
      } else if (isa<UndefValue>(Op))
        I->setOperand(i, ConstantInt::get(ExtTy, 0));
    }

    // Mutate the result type, unless this is an icmp or switch.
    if (!isa<ICmpInst>(I) && !isa<SwitchInst>(I)) {
      I->mutateType(ExtTy);
      Promoted.insert(I);
    }
  }
}

void IRPromoter::TruncateSinks() {
  LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");

  IRBuilder<> Builder{Ctx};

  auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction * {
    if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
      return nullptr;

    if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V))
      return nullptr;

    LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
                      << *V << "\n");
    Builder.SetInsertPoint(cast<Instruction>(V));
    auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
    if (Trunc)
      NewInsts.insert(Trunc);
    return Trunc;
  };

  // Fix up any stores or returns that use the results of the promoted
  // chain.
  for (auto *I : Sinks) {
    LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");

    // Handle calls separately as we need to iterate over arg operands.
    if (auto *Call = dyn_cast<CallInst>(I)) {
      for (unsigned i = 0; i < Call->arg_size(); ++i) {
        Value *Arg = Call->getArgOperand(i);
        Type *Ty = TruncTysMap[Call][i];
        if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
          Trunc->moveBefore(Call);
          Call->setArgOperand(i, Trunc);
        }
      }
      continue;
    }

    // Special case switches because we need to truncate the condition.
    if (auto *Switch = dyn_cast<SwitchInst>(I)) {
      Type *Ty = TruncTysMap[Switch][0];
      if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
        Trunc->moveBefore(Switch);
        Switch->setCondition(Trunc);
      }
      continue;
    }

    // Don't insert a trunc for a zext which can still legally promote.
    if (auto ZExt = dyn_cast<ZExtInst>(I))
      if (ZExt->getType()->getScalarSizeInBits() > PromotedWidth)
        continue;

    // Now handle the others.
    for (unsigned i = 0; i < I->getNumOperands(); ++i) {
      Type *Ty = TruncTysMap[I][i];
      if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
        Trunc->moveBefore(I);
        I->setOperand(i, Trunc);
      }
    }
  }
}

void IRPromoter::Cleanup() {
  LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
  // Some zexts will now have become redundant, along with their trunc
  // operands, so remove them.
  for (auto *V : Visited) {
    if (!isa<ZExtInst>(V))
      continue;

    auto ZExt = cast<ZExtInst>(V);
    if (ZExt->getDestTy() != ExtTy)
      continue;

    Value *Src = ZExt->getOperand(0);
    if (ZExt->getSrcTy() == ZExt->getDestTy()) {
      LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
                        << "\n");
      ReplaceAllUsersOfWith(ZExt, Src);
      continue;
    }

    // We've inserted a trunc for a zext sink, but we already know that the
    // input is in range, negating the need for the trunc.
    if (NewInsts.count(Src) && isa<TruncInst>(Src)) {
      auto *Trunc = cast<TruncInst>(Src);
      assert(Trunc->getOperand(0)->getType() == ExtTy &&
             "expected inserted trunc to be operating on i32");
      ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
    }
  }

  for (auto *I : InstsToRemove) {
    LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
    I->dropAllReferences();
    I->eraseFromParent();
  }
}

void IRPromoter::ConvertTruncs() {
  LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
  IRBuilder<> Builder{Ctx};

  for (auto *V : Visited) {
    if (!isa<TruncInst>(V) || Sources.count(V))
      continue;

    auto *Trunc = cast<TruncInst>(V);
    Builder.SetInsertPoint(Trunc);
    IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
    IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);

    unsigned NumBits = DestTy->getScalarSizeInBits();
    ConstantInt *Mask =
        ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
    Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
    if (SrcTy != ExtTy)
      Masked = Builder.CreateTrunc(Masked, ExtTy);

    if (auto *I = dyn_cast<Instruction>(Masked))
      NewInsts.insert(I);

    ReplaceAllUsersOfWith(Trunc, Masked);
  }
}

void IRPromoter::Mutate() {
  LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains to "
                    << PromotedWidth << "-bits\n");

  // Cache original types of the values that will likely need truncating
  for (auto *I : Sinks) {
    if (auto *Call = dyn_cast<CallInst>(I)) {
      for (Value *Arg : Call->args())
        TruncTysMap[Call].push_back(Arg->getType());
    } else if (auto *Switch = dyn_cast<SwitchInst>(I))
      TruncTysMap[I].push_back(Switch->getCondition()->getType());
    else {
      for (unsigned i = 0; i < I->getNumOperands(); ++i)
        TruncTysMap[I].push_back(I->getOperand(i)->getType());
    }
  }
  for (auto *V : Visited) {
    if (!isa<TruncInst>(V) || Sources.count(V))
      continue;
    auto *Trunc = cast<TruncInst>(V);
    TruncTysMap[Trunc].push_back(Trunc->getDestTy());
  }

  // Insert zext instructions between sources and their users.
  ExtendSources();

  // Promote visited instructions, mutating their types in place.
  PromoteTree();

  // Convert any truncs, that aren't sources, into AND masks.
  ConvertTruncs();

  // Insert trunc instructions for use by calls, stores etc...
  TruncateSinks();

  // Finally, remove unecessary zexts and truncs, delete old instructions and
  // clear the data structures.
  Cleanup();

  LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
}

/// We disallow booleans to make life easier when dealing with icmps but allow
/// any other integer that fits in a scalar register. Void types are accepted
/// so we can handle switches.
bool TypePromotion::isSupportedType(Value *V) {
  Type *Ty = V->getType();

  // Allow voids and pointers, these won't be promoted.
  if (Ty->isVoidTy() || Ty->isPointerTy())
    return true;

  if (!isa<IntegerType>(Ty) || cast<IntegerType>(Ty)->getBitWidth() == 1 ||
      cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
    return false;

  return LessOrEqualTypeSize(V);
}

/// We accept most instructions, as well as Arguments and ConstantInsts. We
/// Disallow casts other than zext and truncs and only allow calls if their
/// return value is zeroext. We don't allow opcodes that can introduce sign
/// bits.
bool TypePromotion::isSupportedValue(Value *V) {
  if (auto *I = dyn_cast<Instruction>(V)) {
    switch (I->getOpcode()) {
    default:
      return isa<BinaryOperator>(I) && isSupportedType(I) &&
             !GenerateSignBits(I);
    case Instruction::GetElementPtr:
    case Instruction::Store:
    case Instruction::Br:
    case Instruction::Switch:
      return true;
    case Instruction::PHI:
    case Instruction::Select:
    case Instruction::Ret:
    case Instruction::Load:
    case Instruction::Trunc:
    case Instruction::BitCast:
      return isSupportedType(I);
    case Instruction::ZExt:
      return isSupportedType(I->getOperand(0));
    case Instruction::ICmp:
      // Now that we allow small types than TypeSize, only allow icmp of
      // TypeSize because they will require a trunc to be legalised.
      // TODO: Allow icmp of smaller types, and calculate at the end
      // whether the transform would be beneficial.
      if (isa<PointerType>(I->getOperand(0)->getType()))
        return true;
      return EqualTypeSize(I->getOperand(0));
    case Instruction::Call: {
      // Special cases for calls as we need to check for zeroext
      // TODO We should accept calls even if they don't have zeroext, as they
      // can still be sinks.
      auto *Call = cast<CallInst>(I);
      return isSupportedType(Call) &&
             Call->hasRetAttr(Attribute::AttrKind::ZExt);
    }
    }
  } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
    return isSupportedType(V);
  } else if (isa<Argument>(V))
    return isSupportedType(V);

  return isa<BasicBlock>(V);
}

/// Check that the type of V would be promoted and that the original type is
/// smaller than the targeted promoted type. Check that we're not trying to
/// promote something larger than our base 'TypeSize' type.
bool TypePromotion::isLegalToPromote(Value *V) {
  auto *I = dyn_cast<Instruction>(V);
  if (!I)
    return true;

  if (SafeToPromote.count(I))
    return true;

  if (isPromotedResultSafe(I) || isSafeWrap(I)) {
    SafeToPromote.insert(I);
    return true;
  }
  return false;
}

bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) {
  Type *OrigTy = V->getType();
  TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedSize();
  SafeToPromote.clear();
  SafeWrap.clear();

  if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
    return false;

  LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
                    << TypeSize << " bits to " << PromotedWidth << "\n");

  SetVector<Value *> WorkList;
  SetVector<Value *> Sources;
  SetVector<Instruction *> Sinks;
  SetVector<Value *> CurrentVisited;
  WorkList.insert(V);

  // Return true if V was added to the worklist as a supported instruction,
  // if it was already visited, or if we don't need to explore it (e.g.
  // pointer values and GEPs), and false otherwise.
  auto AddLegalInst = [&](Value *V) {
    if (CurrentVisited.count(V))
      return true;

    // Ignore GEPs because they don't need promoting and the constant indices
    // will prevent the transformation.
    if (isa<GetElementPtrInst>(V))
      return true;

    if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
      LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
      return false;
    }

    WorkList.insert(V);
    return true;
  };

  // Iterate through, and add to, a tree of operands and users in the use-def.
  while (!WorkList.empty()) {
    Value *V = WorkList.pop_back_val();
    if (CurrentVisited.count(V))
      continue;

    // Ignore non-instructions, other than arguments.
    if (!isa<Instruction>(V) && !isSource(V))
      continue;

    // If we've already visited this value from somewhere, bail now because
    // the tree has already been explored.
    // TODO: This could limit the transform, ie if we try to promote something
    // from an i8 and fail first, before trying an i16.
    if (AllVisited.count(V))
      return false;

    CurrentVisited.insert(V);
    AllVisited.insert(V);

    // Calls can be both sources and sinks.
    if (isSink(V))
      Sinks.insert(cast<Instruction>(V));

    if (isSource(V))
      Sources.insert(V);

    if (!isSink(V) && !isSource(V)) {
      if (auto *I = dyn_cast<Instruction>(V)) {
        // Visit operands of any instruction visited.
        for (auto &U : I->operands()) {
          if (!AddLegalInst(U))
            return false;
        }
      }
    }

    // Don't visit users of a node which isn't going to be mutated unless its a
    // source.
    if (isSource(V) || shouldPromote(V)) {
      for (Use &U : V->uses()) {
        if (!AddLegalInst(U.getUser()))
          return false;
      }
    }
  }

  LLVM_DEBUG({
    dbgs() << "IR Promotion: Visited nodes:\n";
    for (auto *I : CurrentVisited)
      I->dump();
  });

  unsigned ToPromote = 0;
  unsigned NonFreeArgs = 0;
  SmallPtrSet<BasicBlock *, 4> Blocks;
  for (auto *V : CurrentVisited) {
    if (auto *I = dyn_cast<Instruction>(V))
      Blocks.insert(I->getParent());

    if (Sources.count(V)) {
      if (auto *Arg = dyn_cast<Argument>(V))
        if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
          ++NonFreeArgs;
      continue;
    }

    if (Sinks.count(cast<Instruction>(V)))
      continue;
    ++ToPromote;
  }

  // DAG optimizations should be able to handle these cases better, especially
  // for function arguments.
  if (ToPromote < 2 || (Blocks.size() == 1 && (NonFreeArgs > SafeWrap.size())))
    return false;

  IRPromoter Promoter(*Ctx, PromotedWidth, CurrentVisited, Sources, Sinks,
                      SafeWrap);
  Promoter.Mutate();
  return true;
}

bool TypePromotion::runOnFunction(Function &F) {
  if (skipFunction(F) || DisablePromotion)
    return false;

  LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");

  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
  if (!TPC)
    return false;

  AllVisited.clear();
  SafeToPromote.clear();
  SafeWrap.clear();
  bool MadeChange = false;
  const DataLayout &DL = F.getParent()->getDataLayout();
  const TargetMachine &TM = TPC->getTM<TargetMachine>();
  const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F);
  const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
  const TargetTransformInfo &TII =
      getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  RegisterBitWidth =
      TII.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedSize();
  Ctx = &F.getParent()->getContext();

  // Search up from icmps to try to promote their operands.
  for (BasicBlock &BB : F) {
    for (Instruction &I : BB) {
      if (AllVisited.count(&I))
        continue;

      if (!isa<ICmpInst>(&I))
        continue;

      auto *ICmp = cast<ICmpInst>(&I);
      // Skip signed or pointer compares
      if (ICmp->isSigned() || !isa<IntegerType>(ICmp->getOperand(0)->getType()))
        continue;

      LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");

      for (auto &Op : ICmp->operands()) {
        if (auto *I = dyn_cast<Instruction>(Op)) {
          EVT SrcVT = TLI->getValueType(DL, I->getType());
          if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
            break;

          if (TLI->getTypeAction(*Ctx, SrcVT) !=
              TargetLowering::TypePromoteInteger)
            break;
          EVT PromotedVT = TLI->getTypeToTransformTo(*Ctx, SrcVT);
          if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) {
            LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
                              << "for promoted type\n");
            break;
          }

          MadeChange |= TryToPromote(I, PromotedVT.getFixedSizeInBits());
          break;
        }
      }
    }
  }

  AllVisited.clear();
  SafeToPromote.clear();
  SafeWrap.clear();

  return MadeChange;
}

INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)

char TypePromotion::ID = 0;

FunctionPass *llvm::createTypePromotionPass() { return new TypePromotion(); }