summaryrefslogtreecommitdiff
path: root/llvm/lib/Target/RISCV/RISCVInstrInfo.cpp
blob: 7dab7a52ac53bece0c0eb622cbb0b3f9ef50f799 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
//===-- RISCVInstrInfo.cpp - RISCV Instruction Information ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISCV implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "RISCVInstrInfo.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "RISCV.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "RISCVTargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"

using namespace llvm;

#define GEN_CHECK_COMPRESS_INSTR
#include "RISCVGenCompressInstEmitter.inc"

#define GET_INSTRINFO_CTOR_DTOR
#include "RISCVGenInstrInfo.inc"

namespace llvm {
namespace RISCVVPseudosTable {

using namespace RISCV;

#define GET_RISCVVPseudosTable_IMPL
#include "RISCVGenSearchableTables.inc"

} // namespace RISCVVPseudosTable
} // namespace llvm

RISCVInstrInfo::RISCVInstrInfo(RISCVSubtarget &STI)
    : RISCVGenInstrInfo(RISCV::ADJCALLSTACKDOWN, RISCV::ADJCALLSTACKUP),
      STI(STI) {}

MCInst RISCVInstrInfo::getNop() const {
  if (STI.getFeatureBits()[RISCV::FeatureStdExtC])
    return MCInstBuilder(RISCV::C_NOP);
  return MCInstBuilder(RISCV::ADDI)
      .addReg(RISCV::X0)
      .addReg(RISCV::X0)
      .addImm(0);
}

unsigned RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
                                             int &FrameIndex) const {
  switch (MI.getOpcode()) {
  default:
    return 0;
  case RISCV::LB:
  case RISCV::LBU:
  case RISCV::LH:
  case RISCV::LHU:
  case RISCV::FLH:
  case RISCV::LW:
  case RISCV::FLW:
  case RISCV::LWU:
  case RISCV::LD:
  case RISCV::FLD:
    break;
  }

  if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
      MI.getOperand(2).getImm() == 0) {
    FrameIndex = MI.getOperand(1).getIndex();
    return MI.getOperand(0).getReg();
  }

  return 0;
}

unsigned RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
                                            int &FrameIndex) const {
  switch (MI.getOpcode()) {
  default:
    return 0;
  case RISCV::SB:
  case RISCV::SH:
  case RISCV::SW:
  case RISCV::FSH:
  case RISCV::FSW:
  case RISCV::SD:
  case RISCV::FSD:
    break;
  }

  if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
      MI.getOperand(2).getImm() == 0) {
    FrameIndex = MI.getOperand(1).getIndex();
    return MI.getOperand(0).getReg();
  }

  return 0;
}

static bool forwardCopyWillClobberTuple(unsigned DstReg, unsigned SrcReg,
                                        unsigned NumRegs) {
  // We really want the positive remainder mod 32 here, that happens to be
  // easily obtainable with a mask.
  return ((DstReg - SrcReg) & 0x1f) < NumRegs;
}

void RISCVInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator MBBI,
                                 const DebugLoc &DL, MCRegister DstReg,
                                 MCRegister SrcReg, bool KillSrc) const {
  if (RISCV::GPRRegClass.contains(DstReg, SrcReg)) {
    BuildMI(MBB, MBBI, DL, get(RISCV::ADDI), DstReg)
        .addReg(SrcReg, getKillRegState(KillSrc))
        .addImm(0);
    return;
  }

  // FPR->FPR copies and VR->VR copies.
  unsigned Opc;
  bool IsScalableVector = true;
  unsigned NF = 1;
  unsigned LMul = 1;
  unsigned SubRegIdx = RISCV::sub_vrm1_0;
  if (RISCV::FPR16RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::FSGNJ_H;
    IsScalableVector = false;
  } else if (RISCV::FPR32RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::FSGNJ_S;
    IsScalableVector = false;
  } else if (RISCV::FPR64RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::FSGNJ_D;
    IsScalableVector = false;
  } else if (RISCV::VRRegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV1R_V;
  } else if (RISCV::VRM2RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV2R_V;
  } else if (RISCV::VRM4RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV4R_V;
  } else if (RISCV::VRM8RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV8R_V;
  } else if (RISCV::VRN2M1RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV1R_V;
    SubRegIdx = RISCV::sub_vrm1_0;
    NF = 2;
    LMul = 1;
  } else if (RISCV::VRN2M2RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV2R_V;
    SubRegIdx = RISCV::sub_vrm2_0;
    NF = 2;
    LMul = 2;
  } else if (RISCV::VRN2M4RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV4R_V;
    SubRegIdx = RISCV::sub_vrm4_0;
    NF = 2;
    LMul = 4;
  } else if (RISCV::VRN3M1RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV1R_V;
    SubRegIdx = RISCV::sub_vrm1_0;
    NF = 3;
    LMul = 1;
  } else if (RISCV::VRN3M2RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV2R_V;
    SubRegIdx = RISCV::sub_vrm2_0;
    NF = 3;
    LMul = 2;
  } else if (RISCV::VRN4M1RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV1R_V;
    SubRegIdx = RISCV::sub_vrm1_0;
    NF = 4;
    LMul = 1;
  } else if (RISCV::VRN4M2RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV2R_V;
    SubRegIdx = RISCV::sub_vrm2_0;
    NF = 4;
    LMul = 2;
  } else if (RISCV::VRN5M1RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV1R_V;
    SubRegIdx = RISCV::sub_vrm1_0;
    NF = 5;
    LMul = 1;
  } else if (RISCV::VRN6M1RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV1R_V;
    SubRegIdx = RISCV::sub_vrm1_0;
    NF = 6;
    LMul = 1;
  } else if (RISCV::VRN7M1RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV1R_V;
    SubRegIdx = RISCV::sub_vrm1_0;
    NF = 7;
    LMul = 1;
  } else if (RISCV::VRN8M1RegClass.contains(DstReg, SrcReg)) {
    Opc = RISCV::PseudoVMV1R_V;
    SubRegIdx = RISCV::sub_vrm1_0;
    NF = 8;
    LMul = 1;
  } else {
    llvm_unreachable("Impossible reg-to-reg copy");
  }

  if (IsScalableVector) {
    if (NF == 1) {
      BuildMI(MBB, MBBI, DL, get(Opc), DstReg)
          .addReg(SrcReg, getKillRegState(KillSrc));
    } else {
      const TargetRegisterInfo *TRI = STI.getRegisterInfo();

      int I = 0, End = NF, Incr = 1;
      unsigned SrcEncoding = TRI->getEncodingValue(SrcReg);
      unsigned DstEncoding = TRI->getEncodingValue(DstReg);
      if (forwardCopyWillClobberTuple(DstEncoding, SrcEncoding, NF * LMul)) {
        I = NF - 1;
        End = -1;
        Incr = -1;
      }

      for (; I != End; I += Incr) {
        BuildMI(MBB, MBBI, DL, get(Opc), TRI->getSubReg(DstReg, SubRegIdx + I))
            .addReg(TRI->getSubReg(SrcReg, SubRegIdx + I),
                    getKillRegState(KillSrc));
      }
    }
  } else {
    BuildMI(MBB, MBBI, DL, get(Opc), DstReg)
        .addReg(SrcReg, getKillRegState(KillSrc))
        .addReg(SrcReg, getKillRegState(KillSrc));
  }
}

void RISCVInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
                                         MachineBasicBlock::iterator I,
                                         Register SrcReg, bool IsKill, int FI,
                                         const TargetRegisterClass *RC,
                                         const TargetRegisterInfo *TRI) const {
  DebugLoc DL;
  if (I != MBB.end())
    DL = I->getDebugLoc();

  MachineFunction *MF = MBB.getParent();
  MachineFrameInfo &MFI = MF->getFrameInfo();

  unsigned Opcode;
  bool IsScalableVector = true;
  bool IsZvlsseg = true;
  if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
    Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
             RISCV::SW : RISCV::SD;
    IsScalableVector = false;
  } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::FSH;
    IsScalableVector = false;
  } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::FSW;
    IsScalableVector = false;
  } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::FSD;
    IsScalableVector = false;
  } else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::PseudoVSPILL_M1;
    IsZvlsseg = false;
  } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::PseudoVSPILL_M2;
    IsZvlsseg = false;
  } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::PseudoVSPILL_M4;
    IsZvlsseg = false;
  } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::PseudoVSPILL_M8;
    IsZvlsseg = false;
  } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVSPILL2_M1;
  else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVSPILL2_M2;
  else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVSPILL2_M4;
  else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVSPILL3_M1;
  else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVSPILL3_M2;
  else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVSPILL4_M1;
  else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVSPILL4_M2;
  else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVSPILL5_M1;
  else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVSPILL6_M1;
  else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVSPILL7_M1;
  else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVSPILL8_M1;
  else
    llvm_unreachable("Can't store this register to stack slot");

  if (IsScalableVector) {
    MachineMemOperand *MMO = MF->getMachineMemOperand(
        MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
        MemoryLocation::UnknownSize, MFI.getObjectAlign(FI));

    MFI.setStackID(FI, TargetStackID::ScalableVector);
    auto MIB = BuildMI(MBB, I, DL, get(Opcode))
                   .addReg(SrcReg, getKillRegState(IsKill))
                   .addFrameIndex(FI)
                   .addMemOperand(MMO);
    if (IsZvlsseg) {
      // For spilling/reloading Zvlsseg registers, append the dummy field for
      // the scaled vector length. The argument will be used when expanding
      // these pseudo instructions.
      MIB.addReg(RISCV::X0);
    }
  } else {
    MachineMemOperand *MMO = MF->getMachineMemOperand(
        MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
        MFI.getObjectSize(FI), MFI.getObjectAlign(FI));

    BuildMI(MBB, I, DL, get(Opcode))
        .addReg(SrcReg, getKillRegState(IsKill))
        .addFrameIndex(FI)
        .addImm(0)
        .addMemOperand(MMO);
  }
}

void RISCVInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                          MachineBasicBlock::iterator I,
                                          Register DstReg, int FI,
                                          const TargetRegisterClass *RC,
                                          const TargetRegisterInfo *TRI) const {
  DebugLoc DL;
  if (I != MBB.end())
    DL = I->getDebugLoc();

  MachineFunction *MF = MBB.getParent();
  MachineFrameInfo &MFI = MF->getFrameInfo();

  unsigned Opcode;
  bool IsScalableVector = true;
  bool IsZvlsseg = true;
  if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
    Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
             RISCV::LW : RISCV::LD;
    IsScalableVector = false;
  } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::FLH;
    IsScalableVector = false;
  } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::FLW;
    IsScalableVector = false;
  } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::FLD;
    IsScalableVector = false;
  } else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::PseudoVRELOAD_M1;
    IsZvlsseg = false;
  } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::PseudoVRELOAD_M2;
    IsZvlsseg = false;
  } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::PseudoVRELOAD_M4;
    IsZvlsseg = false;
  } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
    Opcode = RISCV::PseudoVRELOAD_M8;
    IsZvlsseg = false;
  } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVRELOAD2_M1;
  else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVRELOAD2_M2;
  else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVRELOAD2_M4;
  else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVRELOAD3_M1;
  else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVRELOAD3_M2;
  else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVRELOAD4_M1;
  else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVRELOAD4_M2;
  else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVRELOAD5_M1;
  else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVRELOAD6_M1;
  else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVRELOAD7_M1;
  else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
    Opcode = RISCV::PseudoVRELOAD8_M1;
  else
    llvm_unreachable("Can't load this register from stack slot");

  if (IsScalableVector) {
    MachineMemOperand *MMO = MF->getMachineMemOperand(
        MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
        MemoryLocation::UnknownSize, MFI.getObjectAlign(FI));

    MFI.setStackID(FI, TargetStackID::ScalableVector);
    auto MIB = BuildMI(MBB, I, DL, get(Opcode), DstReg)
                   .addFrameIndex(FI)
                   .addMemOperand(MMO);
    if (IsZvlsseg) {
      // For spilling/reloading Zvlsseg registers, append the dummy field for
      // the scaled vector length. The argument will be used when expanding
      // these pseudo instructions.
      MIB.addReg(RISCV::X0);
    }
  } else {
    MachineMemOperand *MMO = MF->getMachineMemOperand(
        MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
        MFI.getObjectSize(FI), MFI.getObjectAlign(FI));

    BuildMI(MBB, I, DL, get(Opcode), DstReg)
        .addFrameIndex(FI)
        .addImm(0)
        .addMemOperand(MMO);
  }
}

void RISCVInstrInfo::movImm(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MBBI,
                            const DebugLoc &DL, Register DstReg, uint64_t Val,
                            MachineInstr::MIFlag Flag) const {
  MachineFunction *MF = MBB.getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  Register SrcReg = RISCV::X0;
  Register Result = MRI.createVirtualRegister(&RISCV::GPRRegClass);
  unsigned Num = 0;

  if (!STI.is64Bit() && !isInt<32>(Val))
    report_fatal_error("Should only materialize 32-bit constants for RV32");

  RISCVMatInt::InstSeq Seq =
      RISCVMatInt::generateInstSeq(Val, STI.getFeatureBits());
  assert(!Seq.empty());

  for (RISCVMatInt::Inst &Inst : Seq) {
    // Write the final result to DstReg if it's the last instruction in the Seq.
    // Otherwise, write the result to the temp register.
    if (++Num == Seq.size())
      Result = DstReg;

    if (Inst.Opc == RISCV::LUI) {
      BuildMI(MBB, MBBI, DL, get(RISCV::LUI), Result)
          .addImm(Inst.Imm)
          .setMIFlag(Flag);
    } else if (Inst.Opc == RISCV::ADDUW) {
      BuildMI(MBB, MBBI, DL, get(RISCV::ADDUW), Result)
          .addReg(SrcReg, RegState::Kill)
          .addReg(RISCV::X0)
          .setMIFlag(Flag);
    } else {
      BuildMI(MBB, MBBI, DL, get(Inst.Opc), Result)
          .addReg(SrcReg, RegState::Kill)
          .addImm(Inst.Imm)
          .setMIFlag(Flag);
    }
    // Only the first instruction has X0 as its source.
    SrcReg = Result;
  }
}

// The contents of values added to Cond are not examined outside of
// RISCVInstrInfo, giving us flexibility in what to push to it. For RISCV, we
// push BranchOpcode, Reg1, Reg2.
static void parseCondBranch(MachineInstr &LastInst, MachineBasicBlock *&Target,
                            SmallVectorImpl<MachineOperand> &Cond) {
  // Block ends with fall-through condbranch.
  assert(LastInst.getDesc().isConditionalBranch() &&
         "Unknown conditional branch");
  Target = LastInst.getOperand(2).getMBB();
  Cond.push_back(MachineOperand::CreateImm(LastInst.getOpcode()));
  Cond.push_back(LastInst.getOperand(0));
  Cond.push_back(LastInst.getOperand(1));
}

static unsigned getOppositeBranchOpcode(int Opc) {
  switch (Opc) {
  default:
    llvm_unreachable("Unrecognized conditional branch");
  case RISCV::BEQ:
    return RISCV::BNE;
  case RISCV::BNE:
    return RISCV::BEQ;
  case RISCV::BLT:
    return RISCV::BGE;
  case RISCV::BGE:
    return RISCV::BLT;
  case RISCV::BLTU:
    return RISCV::BGEU;
  case RISCV::BGEU:
    return RISCV::BLTU;
  }
}

bool RISCVInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                   MachineBasicBlock *&TBB,
                                   MachineBasicBlock *&FBB,
                                   SmallVectorImpl<MachineOperand> &Cond,
                                   bool AllowModify) const {
  TBB = FBB = nullptr;
  Cond.clear();

  // If the block has no terminators, it just falls into the block after it.
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end() || !isUnpredicatedTerminator(*I))
    return false;

  // Count the number of terminators and find the first unconditional or
  // indirect branch.
  MachineBasicBlock::iterator FirstUncondOrIndirectBr = MBB.end();
  int NumTerminators = 0;
  for (auto J = I.getReverse(); J != MBB.rend() && isUnpredicatedTerminator(*J);
       J++) {
    NumTerminators++;
    if (J->getDesc().isUnconditionalBranch() ||
        J->getDesc().isIndirectBranch()) {
      FirstUncondOrIndirectBr = J.getReverse();
    }
  }

  // If AllowModify is true, we can erase any terminators after
  // FirstUncondOrIndirectBR.
  if (AllowModify && FirstUncondOrIndirectBr != MBB.end()) {
    while (std::next(FirstUncondOrIndirectBr) != MBB.end()) {
      std::next(FirstUncondOrIndirectBr)->eraseFromParent();
      NumTerminators--;
    }
    I = FirstUncondOrIndirectBr;
  }

  // We can't handle blocks that end in an indirect branch.
  if (I->getDesc().isIndirectBranch())
    return true;

  // We can't handle blocks with more than 2 terminators.
  if (NumTerminators > 2)
    return true;

  // Handle a single unconditional branch.
  if (NumTerminators == 1 && I->getDesc().isUnconditionalBranch()) {
    TBB = getBranchDestBlock(*I);
    return false;
  }

  // Handle a single conditional branch.
  if (NumTerminators == 1 && I->getDesc().isConditionalBranch()) {
    parseCondBranch(*I, TBB, Cond);
    return false;
  }

  // Handle a conditional branch followed by an unconditional branch.
  if (NumTerminators == 2 && std::prev(I)->getDesc().isConditionalBranch() &&
      I->getDesc().isUnconditionalBranch()) {
    parseCondBranch(*std::prev(I), TBB, Cond);
    FBB = getBranchDestBlock(*I);
    return false;
  }

  // Otherwise, we can't handle this.
  return true;
}

unsigned RISCVInstrInfo::removeBranch(MachineBasicBlock &MBB,
                                      int *BytesRemoved) const {
  if (BytesRemoved)
    *BytesRemoved = 0;
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return 0;

  if (!I->getDesc().isUnconditionalBranch() &&
      !I->getDesc().isConditionalBranch())
    return 0;

  // Remove the branch.
  if (BytesRemoved)
    *BytesRemoved += getInstSizeInBytes(*I);
  I->eraseFromParent();

  I = MBB.end();

  if (I == MBB.begin())
    return 1;
  --I;
  if (!I->getDesc().isConditionalBranch())
    return 1;

  // Remove the branch.
  if (BytesRemoved)
    *BytesRemoved += getInstSizeInBytes(*I);
  I->eraseFromParent();
  return 2;
}

// Inserts a branch into the end of the specific MachineBasicBlock, returning
// the number of instructions inserted.
unsigned RISCVInstrInfo::insertBranch(
    MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
    ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
  if (BytesAdded)
    *BytesAdded = 0;

  // Shouldn't be a fall through.
  assert(TBB && "insertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 3 || Cond.size() == 0) &&
         "RISCV branch conditions have two components!");

  // Unconditional branch.
  if (Cond.empty()) {
    MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(TBB);
    if (BytesAdded)
      *BytesAdded += getInstSizeInBytes(MI);
    return 1;
  }

  // Either a one or two-way conditional branch.
  unsigned Opc = Cond[0].getImm();
  MachineInstr &CondMI =
      *BuildMI(&MBB, DL, get(Opc)).add(Cond[1]).add(Cond[2]).addMBB(TBB);
  if (BytesAdded)
    *BytesAdded += getInstSizeInBytes(CondMI);

  // One-way conditional branch.
  if (!FBB)
    return 1;

  // Two-way conditional branch.
  MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(FBB);
  if (BytesAdded)
    *BytesAdded += getInstSizeInBytes(MI);
  return 2;
}

unsigned RISCVInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
                                              MachineBasicBlock &DestBB,
                                              const DebugLoc &DL,
                                              int64_t BrOffset,
                                              RegScavenger *RS) const {
  assert(RS && "RegScavenger required for long branching");
  assert(MBB.empty() &&
         "new block should be inserted for expanding unconditional branch");
  assert(MBB.pred_size() == 1);

  MachineFunction *MF = MBB.getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();

  if (!isInt<32>(BrOffset))
    report_fatal_error(
        "Branch offsets outside of the signed 32-bit range not supported");

  // FIXME: A virtual register must be used initially, as the register
  // scavenger won't work with empty blocks (SIInstrInfo::insertIndirectBranch
  // uses the same workaround).
  Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
  auto II = MBB.end();

  MachineInstr &MI = *BuildMI(MBB, II, DL, get(RISCV::PseudoJump))
                          .addReg(ScratchReg, RegState::Define | RegState::Dead)
                          .addMBB(&DestBB, RISCVII::MO_CALL);

  RS->enterBasicBlockEnd(MBB);
  unsigned Scav = RS->scavengeRegisterBackwards(RISCV::GPRRegClass,
                                                MI.getIterator(), false, 0);
  MRI.replaceRegWith(ScratchReg, Scav);
  MRI.clearVirtRegs();
  RS->setRegUsed(Scav);
  return 8;
}

bool RISCVInstrInfo::reverseBranchCondition(
    SmallVectorImpl<MachineOperand> &Cond) const {
  assert((Cond.size() == 3) && "Invalid branch condition!");
  Cond[0].setImm(getOppositeBranchOpcode(Cond[0].getImm()));
  return false;
}

MachineBasicBlock *
RISCVInstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
  assert(MI.getDesc().isBranch() && "Unexpected opcode!");
  // The branch target is always the last operand.
  int NumOp = MI.getNumExplicitOperands();
  return MI.getOperand(NumOp - 1).getMBB();
}

bool RISCVInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
                                           int64_t BrOffset) const {
  unsigned XLen = STI.getXLen();
  // Ideally we could determine the supported branch offset from the
  // RISCVII::FormMask, but this can't be used for Pseudo instructions like
  // PseudoBR.
  switch (BranchOp) {
  default:
    llvm_unreachable("Unexpected opcode!");
  case RISCV::BEQ:
  case RISCV::BNE:
  case RISCV::BLT:
  case RISCV::BGE:
  case RISCV::BLTU:
  case RISCV::BGEU:
    return isIntN(13, BrOffset);
  case RISCV::JAL:
  case RISCV::PseudoBR:
    return isIntN(21, BrOffset);
  case RISCV::PseudoJump:
    return isIntN(32, SignExtend64(BrOffset + 0x800, XLen));
  }
}

unsigned RISCVInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
  unsigned Opcode = MI.getOpcode();

  switch (Opcode) {
  default: {
    if (MI.getParent() && MI.getParent()->getParent()) {
      const auto MF = MI.getMF();
      const auto &TM = static_cast<const RISCVTargetMachine &>(MF->getTarget());
      const MCRegisterInfo &MRI = *TM.getMCRegisterInfo();
      const MCSubtargetInfo &STI = *TM.getMCSubtargetInfo();
      const RISCVSubtarget &ST = MF->getSubtarget<RISCVSubtarget>();
      if (isCompressibleInst(MI, &ST, MRI, STI))
        return 2;
    }
    return get(Opcode).getSize();
  }
  case TargetOpcode::EH_LABEL:
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::KILL:
  case TargetOpcode::DBG_VALUE:
    return 0;
  // These values are determined based on RISCVExpandAtomicPseudoInsts,
  // RISCVExpandPseudoInsts and RISCVMCCodeEmitter, depending on where the
  // pseudos are expanded.
  case RISCV::PseudoCALLReg:
  case RISCV::PseudoCALL:
  case RISCV::PseudoJump:
  case RISCV::PseudoTAIL:
  case RISCV::PseudoLLA:
  case RISCV::PseudoLA:
  case RISCV::PseudoLA_TLS_IE:
  case RISCV::PseudoLA_TLS_GD:
    return 8;
  case RISCV::PseudoAtomicLoadNand32:
  case RISCV::PseudoAtomicLoadNand64:
    return 20;
  case RISCV::PseudoMaskedAtomicSwap32:
  case RISCV::PseudoMaskedAtomicLoadAdd32:
  case RISCV::PseudoMaskedAtomicLoadSub32:
    return 28;
  case RISCV::PseudoMaskedAtomicLoadNand32:
    return 32;
  case RISCV::PseudoMaskedAtomicLoadMax32:
  case RISCV::PseudoMaskedAtomicLoadMin32:
    return 44;
  case RISCV::PseudoMaskedAtomicLoadUMax32:
  case RISCV::PseudoMaskedAtomicLoadUMin32:
    return 36;
  case RISCV::PseudoCmpXchg32:
  case RISCV::PseudoCmpXchg64:
    return 16;
  case RISCV::PseudoMaskedCmpXchg32:
    return 32;
  case TargetOpcode::INLINEASM:
  case TargetOpcode::INLINEASM_BR: {
    const MachineFunction &MF = *MI.getParent()->getParent();
    const auto &TM = static_cast<const RISCVTargetMachine &>(MF.getTarget());
    return getInlineAsmLength(MI.getOperand(0).getSymbolName(),
                              *TM.getMCAsmInfo());
  }
  case RISCV::PseudoVSPILL2_M1:
  case RISCV::PseudoVSPILL2_M2:
  case RISCV::PseudoVSPILL2_M4:
  case RISCV::PseudoVSPILL3_M1:
  case RISCV::PseudoVSPILL3_M2:
  case RISCV::PseudoVSPILL4_M1:
  case RISCV::PseudoVSPILL4_M2:
  case RISCV::PseudoVSPILL5_M1:
  case RISCV::PseudoVSPILL6_M1:
  case RISCV::PseudoVSPILL7_M1:
  case RISCV::PseudoVSPILL8_M1:
  case RISCV::PseudoVRELOAD2_M1:
  case RISCV::PseudoVRELOAD2_M2:
  case RISCV::PseudoVRELOAD2_M4:
  case RISCV::PseudoVRELOAD3_M1:
  case RISCV::PseudoVRELOAD3_M2:
  case RISCV::PseudoVRELOAD4_M1:
  case RISCV::PseudoVRELOAD4_M2:
  case RISCV::PseudoVRELOAD5_M1:
  case RISCV::PseudoVRELOAD6_M1:
  case RISCV::PseudoVRELOAD7_M1:
  case RISCV::PseudoVRELOAD8_M1: {
    // The values are determined based on expandVSPILL and expandVRELOAD that
    // expand the pseudos depending on NF.
    unsigned NF = isRVVSpillForZvlsseg(Opcode)->first;
    return 4 * (2 * NF - 1);
  }
  }
}

bool RISCVInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
  const unsigned Opcode = MI.getOpcode();
  switch (Opcode) {
  default:
    break;
  case RISCV::FSGNJ_D:
  case RISCV::FSGNJ_S:
    // The canonical floating-point move is fsgnj rd, rs, rs.
    return MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
           MI.getOperand(1).getReg() == MI.getOperand(2).getReg();
  case RISCV::ADDI:
  case RISCV::ORI:
  case RISCV::XORI:
    return (MI.getOperand(1).isReg() &&
            MI.getOperand(1).getReg() == RISCV::X0) ||
           (MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0);
  }
  return MI.isAsCheapAsAMove();
}

Optional<DestSourcePair>
RISCVInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
  if (MI.isMoveReg())
    return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
  switch (MI.getOpcode()) {
  default:
    break;
  case RISCV::ADDI:
    // Operand 1 can be a frameindex but callers expect registers
    if (MI.getOperand(1).isReg() && MI.getOperand(2).isImm() &&
        MI.getOperand(2).getImm() == 0)
      return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
    break;
  case RISCV::FSGNJ_D:
  case RISCV::FSGNJ_S:
    // The canonical floating-point move is fsgnj rd, rs, rs.
    if (MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
        MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
      return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
    break;
  }
  return None;
}

bool RISCVInstrInfo::verifyInstruction(const MachineInstr &MI,
                                       StringRef &ErrInfo) const {
  const MCInstrInfo *MCII = STI.getInstrInfo();
  MCInstrDesc const &Desc = MCII->get(MI.getOpcode());

  for (auto &OI : enumerate(Desc.operands())) {
    unsigned OpType = OI.value().OperandType;
    if (OpType >= RISCVOp::OPERAND_FIRST_RISCV_IMM &&
        OpType <= RISCVOp::OPERAND_LAST_RISCV_IMM) {
      const MachineOperand &MO = MI.getOperand(OI.index());
      if (MO.isImm()) {
        int64_t Imm = MO.getImm();
        bool Ok;
        switch (OpType) {
        default:
          llvm_unreachable("Unexpected operand type");
        case RISCVOp::OPERAND_UIMM4:
          Ok = isUInt<4>(Imm);
          break;
        case RISCVOp::OPERAND_UIMM5:
          Ok = isUInt<5>(Imm);
          break;
        case RISCVOp::OPERAND_UIMM12:
          Ok = isUInt<12>(Imm);
          break;
        case RISCVOp::OPERAND_SIMM12:
          Ok = isInt<12>(Imm);
          break;
        case RISCVOp::OPERAND_UIMM20:
          Ok = isUInt<20>(Imm);
          break;
        case RISCVOp::OPERAND_UIMMLOG2XLEN:
          if (STI.getTargetTriple().isArch64Bit())
            Ok = isUInt<6>(Imm);
          else
            Ok = isUInt<5>(Imm);
          break;
        }
        if (!Ok) {
          ErrInfo = "Invalid immediate";
          return false;
        }
      }
    }
  }

  return true;
}

// Return true if get the base operand, byte offset of an instruction and the
// memory width. Width is the size of memory that is being loaded/stored.
bool RISCVInstrInfo::getMemOperandWithOffsetWidth(
    const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
    unsigned &Width, const TargetRegisterInfo *TRI) const {
  if (!LdSt.mayLoadOrStore())
    return false;

  // Here we assume the standard RISC-V ISA, which uses a base+offset
  // addressing mode. You'll need to relax these conditions to support custom
  // load/stores instructions.
  if (LdSt.getNumExplicitOperands() != 3)
    return false;
  if (!LdSt.getOperand(1).isReg() || !LdSt.getOperand(2).isImm())
    return false;

  if (!LdSt.hasOneMemOperand())
    return false;

  Width = (*LdSt.memoperands_begin())->getSize();
  BaseReg = &LdSt.getOperand(1);
  Offset = LdSt.getOperand(2).getImm();
  return true;
}

bool RISCVInstrInfo::areMemAccessesTriviallyDisjoint(
    const MachineInstr &MIa, const MachineInstr &MIb) const {
  assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
  assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");

  if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
      MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
    return false;

  // Retrieve the base register, offset from the base register and width. Width
  // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
  // base registers are identical, and the offset of a lower memory access +
  // the width doesn't overlap the offset of a higher memory access,
  // then the memory accesses are different.
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();
  const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
  int64_t OffsetA = 0, OffsetB = 0;
  unsigned int WidthA = 0, WidthB = 0;
  if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
      getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
    if (BaseOpA->isIdenticalTo(*BaseOpB)) {
      int LowOffset = std::min(OffsetA, OffsetB);
      int HighOffset = std::max(OffsetA, OffsetB);
      int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
      if (LowOffset + LowWidth <= HighOffset)
        return true;
    }
  }
  return false;
}

std::pair<unsigned, unsigned>
RISCVInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
  const unsigned Mask = RISCVII::MO_DIRECT_FLAG_MASK;
  return std::make_pair(TF & Mask, TF & ~Mask);
}

ArrayRef<std::pair<unsigned, const char *>>
RISCVInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
  using namespace RISCVII;
  static const std::pair<unsigned, const char *> TargetFlags[] = {
      {MO_CALL, "riscv-call"},
      {MO_PLT, "riscv-plt"},
      {MO_LO, "riscv-lo"},
      {MO_HI, "riscv-hi"},
      {MO_PCREL_LO, "riscv-pcrel-lo"},
      {MO_PCREL_HI, "riscv-pcrel-hi"},
      {MO_GOT_HI, "riscv-got-hi"},
      {MO_TPREL_LO, "riscv-tprel-lo"},
      {MO_TPREL_HI, "riscv-tprel-hi"},
      {MO_TPREL_ADD, "riscv-tprel-add"},
      {MO_TLS_GOT_HI, "riscv-tls-got-hi"},
      {MO_TLS_GD_HI, "riscv-tls-gd-hi"}};
  return makeArrayRef(TargetFlags);
}
bool RISCVInstrInfo::isFunctionSafeToOutlineFrom(
    MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
  const Function &F = MF.getFunction();

  // Can F be deduplicated by the linker? If it can, don't outline from it.
  if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
    return false;

  // Don't outline from functions with section markings; the program could
  // expect that all the code is in the named section.
  if (F.hasSection())
    return false;

  // It's safe to outline from MF.
  return true;
}

bool RISCVInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
                                            unsigned &Flags) const {
  // More accurate safety checking is done in getOutliningCandidateInfo.
  return TargetInstrInfo::isMBBSafeToOutlineFrom(MBB, Flags);
}

// Enum values indicating how an outlined call should be constructed.
enum MachineOutlinerConstructionID {
  MachineOutlinerDefault
};

outliner::OutlinedFunction RISCVInstrInfo::getOutliningCandidateInfo(
    std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {

  // First we need to filter out candidates where the X5 register (IE t0) can't
  // be used to setup the function call.
  auto CannotInsertCall = [](outliner::Candidate &C) {
    const TargetRegisterInfo *TRI = C.getMF()->getSubtarget().getRegisterInfo();

    C.initLRU(*TRI);
    LiveRegUnits LRU = C.LRU;
    return !LRU.available(RISCV::X5);
  };

  llvm::erase_if(RepeatedSequenceLocs, CannotInsertCall);

  // If the sequence doesn't have enough candidates left, then we're done.
  if (RepeatedSequenceLocs.size() < 2)
    return outliner::OutlinedFunction();

  unsigned SequenceSize = 0;

  auto I = RepeatedSequenceLocs[0].front();
  auto E = std::next(RepeatedSequenceLocs[0].back());
  for (; I != E; ++I)
    SequenceSize += getInstSizeInBytes(*I);

  // call t0, function = 8 bytes.
  unsigned CallOverhead = 8;
  for (auto &C : RepeatedSequenceLocs)
    C.setCallInfo(MachineOutlinerDefault, CallOverhead);

  // jr t0 = 4 bytes, 2 bytes if compressed instructions are enabled.
  unsigned FrameOverhead = 4;
  if (RepeatedSequenceLocs[0].getMF()->getSubtarget()
          .getFeatureBits()[RISCV::FeatureStdExtC])
    FrameOverhead = 2;

  return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
                                    FrameOverhead, MachineOutlinerDefault);
}

outliner::InstrType
RISCVInstrInfo::getOutliningType(MachineBasicBlock::iterator &MBBI,
                                 unsigned Flags) const {
  MachineInstr &MI = *MBBI;
  MachineBasicBlock *MBB = MI.getParent();
  const TargetRegisterInfo *TRI =
      MBB->getParent()->getSubtarget().getRegisterInfo();

  // Positions generally can't safely be outlined.
  if (MI.isPosition()) {
    // We can manually strip out CFI instructions later.
    if (MI.isCFIInstruction())
      return outliner::InstrType::Invisible;

    return outliner::InstrType::Illegal;
  }

  // Don't trust the user to write safe inline assembly.
  if (MI.isInlineAsm())
    return outliner::InstrType::Illegal;

  // We can't outline branches to other basic blocks.
  if (MI.isTerminator() && !MBB->succ_empty())
    return outliner::InstrType::Illegal;

  // We need support for tail calls to outlined functions before return
  // statements can be allowed.
  if (MI.isReturn())
    return outliner::InstrType::Illegal;

  // Don't allow modifying the X5 register which we use for return addresses for
  // these outlined functions.
  if (MI.modifiesRegister(RISCV::X5, TRI) ||
      MI.getDesc().hasImplicitDefOfPhysReg(RISCV::X5))
    return outliner::InstrType::Illegal;

  // Make sure the operands don't reference something unsafe.
  for (const auto &MO : MI.operands())
    if (MO.isMBB() || MO.isBlockAddress() || MO.isCPI())
      return outliner::InstrType::Illegal;

  // Don't allow instructions which won't be materialized to impact outlining
  // analysis.
  if (MI.isMetaInstruction())
    return outliner::InstrType::Invisible;

  return outliner::InstrType::Legal;
}

void RISCVInstrInfo::buildOutlinedFrame(
    MachineBasicBlock &MBB, MachineFunction &MF,
    const outliner::OutlinedFunction &OF) const {

  // Strip out any CFI instructions
  bool Changed = true;
  while (Changed) {
    Changed = false;
    auto I = MBB.begin();
    auto E = MBB.end();
    for (; I != E; ++I) {
      if (I->isCFIInstruction()) {
        I->removeFromParent();
        Changed = true;
        break;
      }
    }
  }

  MBB.addLiveIn(RISCV::X5);

  // Add in a return instruction to the end of the outlined frame.
  MBB.insert(MBB.end(), BuildMI(MF, DebugLoc(), get(RISCV::JALR))
      .addReg(RISCV::X0, RegState::Define)
      .addReg(RISCV::X5)
      .addImm(0));
}

MachineBasicBlock::iterator RISCVInstrInfo::insertOutlinedCall(
    Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
    MachineFunction &MF, const outliner::Candidate &C) const {

  // Add in a call instruction to the outlined function at the given location.
  It = MBB.insert(It,
                  BuildMI(MF, DebugLoc(), get(RISCV::PseudoCALLReg), RISCV::X5)
                      .addGlobalAddress(M.getNamedValue(MF.getName()), 0,
                                        RISCVII::MO_CALL));
  return It;
}

// clang-format off
#define CASE_VFMA_OPCODE_COMMON(OP, TYPE, LMUL)                                \
  RISCV::PseudoV##OP##_##TYPE##_##LMUL##_COMMUTABLE

#define CASE_VFMA_OPCODE_LMULS(OP, TYPE)                                       \
  CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF8):                                      \
  case CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF4):                                 \
  case CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF2):                                 \
  case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M1):                                  \
  case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M2):                                  \
  case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M4):                                  \
  case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M8)

#define CASE_VFMA_SPLATS(OP)                                                   \
  CASE_VFMA_OPCODE_LMULS(OP, VF16):                                            \
  case CASE_VFMA_OPCODE_LMULS(OP, VF32):                                       \
  case CASE_VFMA_OPCODE_LMULS(OP, VF64)
// clang-format on

bool RISCVInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
                                           unsigned &SrcOpIdx1,
                                           unsigned &SrcOpIdx2) const {
  const MCInstrDesc &Desc = MI.getDesc();
  if (!Desc.isCommutable())
    return false;

  switch (MI.getOpcode()) {
  case CASE_VFMA_SPLATS(FMADD):
  case CASE_VFMA_SPLATS(FMSUB):
  case CASE_VFMA_SPLATS(FMACC):
  case CASE_VFMA_SPLATS(FMSAC):
  case CASE_VFMA_SPLATS(FNMADD):
  case CASE_VFMA_SPLATS(FNMSUB):
  case CASE_VFMA_SPLATS(FNMACC):
  case CASE_VFMA_SPLATS(FNMSAC):
  case CASE_VFMA_OPCODE_LMULS(FMACC, VV):
  case CASE_VFMA_OPCODE_LMULS(FMSAC, VV):
  case CASE_VFMA_OPCODE_LMULS(FNMACC, VV):
  case CASE_VFMA_OPCODE_LMULS(FNMSAC, VV):
  case CASE_VFMA_OPCODE_LMULS(MADD, VX):
  case CASE_VFMA_OPCODE_LMULS(NMSUB, VX):
  case CASE_VFMA_OPCODE_LMULS(MACC, VX):
  case CASE_VFMA_OPCODE_LMULS(NMSAC, VX):
  case CASE_VFMA_OPCODE_LMULS(MACC, VV):
  case CASE_VFMA_OPCODE_LMULS(NMSAC, VV): {
    // For these instructions we can only swap operand 1 and operand 3 by
    // changing the opcode.
    unsigned CommutableOpIdx1 = 1;
    unsigned CommutableOpIdx2 = 3;
    if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
                              CommutableOpIdx2))
      return false;
    return true;
  }
  case CASE_VFMA_OPCODE_LMULS(FMADD, VV):
  case CASE_VFMA_OPCODE_LMULS(FMSUB, VV):
  case CASE_VFMA_OPCODE_LMULS(FNMADD, VV):
  case CASE_VFMA_OPCODE_LMULS(FNMSUB, VV):
  case CASE_VFMA_OPCODE_LMULS(MADD, VV):
  case CASE_VFMA_OPCODE_LMULS(NMSUB, VV): {
    // For these instructions we have more freedom. We can commute with the
    // other multiplicand or with the addend/subtrahend/minuend.

    // Any fixed operand must be from source 1, 2 or 3.
    if (SrcOpIdx1 != CommuteAnyOperandIndex && SrcOpIdx1 > 3)
      return false;
    if (SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx2 > 3)
      return false;

    // It both ops are fixed one must be the tied source.
    if (SrcOpIdx1 != CommuteAnyOperandIndex &&
        SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx1 != 1 && SrcOpIdx2 != 1)
      return false;

    // Look for two different register operands assumed to be commutable
    // regardless of the FMA opcode. The FMA opcode is adjusted later if
    // needed.
    if (SrcOpIdx1 == CommuteAnyOperandIndex ||
        SrcOpIdx2 == CommuteAnyOperandIndex) {
      // At least one of operands to be commuted is not specified and
      // this method is free to choose appropriate commutable operands.
      unsigned CommutableOpIdx1 = SrcOpIdx1;
      if (SrcOpIdx1 == SrcOpIdx2) {
        // Both of operands are not fixed. Set one of commutable
        // operands to the tied source.
        CommutableOpIdx1 = 1;
      } else if (SrcOpIdx1 == CommuteAnyOperandIndex) {
        // Only one of the operands is not fixed.
        CommutableOpIdx1 = SrcOpIdx2;
      }

      // CommutableOpIdx1 is well defined now. Let's choose another commutable
      // operand and assign its index to CommutableOpIdx2.
      unsigned CommutableOpIdx2;
      if (CommutableOpIdx1 != 1) {
        // If we haven't already used the tied source, we must use it now.
        CommutableOpIdx2 = 1;
      } else {
        Register Op1Reg = MI.getOperand(CommutableOpIdx1).getReg();

        // The commuted operands should have different registers.
        // Otherwise, the commute transformation does not change anything and
        // is useless. We use this as a hint to make our decision.
        if (Op1Reg != MI.getOperand(2).getReg())
          CommutableOpIdx2 = 2;
        else
          CommutableOpIdx2 = 3;
      }

      // Assign the found pair of commutable indices to SrcOpIdx1 and
      // SrcOpIdx2 to return those values.
      if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
                                CommutableOpIdx2))
        return false;
    }

    return true;
  }
  }

  return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
}

#define CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL)               \
  case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL##_COMMUTABLE:                   \
    Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL##_COMMUTABLE;                \
    break;

#define CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE)                      \
  CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF8)                      \
  CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4)                      \
  CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2)                      \
  CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1)                       \
  CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2)                       \
  CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4)                       \
  CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8)

#define CASE_VFMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP)                           \
  CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, VF16)                            \
  CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, VF32)                            \
  CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, VF64)

MachineInstr *RISCVInstrInfo::commuteInstructionImpl(MachineInstr &MI,
                                                     bool NewMI,
                                                     unsigned OpIdx1,
                                                     unsigned OpIdx2) const {
  auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
    if (NewMI)
      return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
    return MI;
  };

  switch (MI.getOpcode()) {
  case CASE_VFMA_SPLATS(FMACC):
  case CASE_VFMA_SPLATS(FMADD):
  case CASE_VFMA_SPLATS(FMSAC):
  case CASE_VFMA_SPLATS(FMSUB):
  case CASE_VFMA_SPLATS(FNMACC):
  case CASE_VFMA_SPLATS(FNMADD):
  case CASE_VFMA_SPLATS(FNMSAC):
  case CASE_VFMA_SPLATS(FNMSUB):
  case CASE_VFMA_OPCODE_LMULS(FMACC, VV):
  case CASE_VFMA_OPCODE_LMULS(FMSAC, VV):
  case CASE_VFMA_OPCODE_LMULS(FNMACC, VV):
  case CASE_VFMA_OPCODE_LMULS(FNMSAC, VV):
  case CASE_VFMA_OPCODE_LMULS(MADD, VX):
  case CASE_VFMA_OPCODE_LMULS(NMSUB, VX):
  case CASE_VFMA_OPCODE_LMULS(MACC, VX):
  case CASE_VFMA_OPCODE_LMULS(NMSAC, VX):
  case CASE_VFMA_OPCODE_LMULS(MACC, VV):
  case CASE_VFMA_OPCODE_LMULS(NMSAC, VV): {
    // It only make sense to toggle these between clobbering the
    // addend/subtrahend/minuend one of the multiplicands.
    assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
    assert((OpIdx1 == 3 || OpIdx2 == 3) && "Unexpected opcode index");
    unsigned Opc;
    switch (MI.getOpcode()) {
      default:
        llvm_unreachable("Unexpected opcode");
      CASE_VFMA_CHANGE_OPCODE_SPLATS(FMACC, FMADD)
      CASE_VFMA_CHANGE_OPCODE_SPLATS(FMADD, FMACC)
      CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSAC, FMSUB)
      CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSUB, FMSAC)
      CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMACC, FNMADD)
      CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMADD, FNMACC)
      CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSAC, FNMSUB)
      CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSUB, FNMSAC)
      CASE_VFMA_CHANGE_OPCODE_LMULS(FMACC, FMADD, VV)
      CASE_VFMA_CHANGE_OPCODE_LMULS(FMSAC, FMSUB, VV)
      CASE_VFMA_CHANGE_OPCODE_LMULS(FNMACC, FNMADD, VV)
      CASE_VFMA_CHANGE_OPCODE_LMULS(FNMSAC, FNMSUB, VV)
      CASE_VFMA_CHANGE_OPCODE_LMULS(MACC, MADD, VX)
      CASE_VFMA_CHANGE_OPCODE_LMULS(MADD, MACC, VX)
      CASE_VFMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VX)
      CASE_VFMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VX)
      CASE_VFMA_CHANGE_OPCODE_LMULS(MACC, MADD, VV)
      CASE_VFMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VV)
    }

    auto &WorkingMI = cloneIfNew(MI);
    WorkingMI.setDesc(get(Opc));
    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
                                                   OpIdx1, OpIdx2);
  }
  case CASE_VFMA_OPCODE_LMULS(FMADD, VV):
  case CASE_VFMA_OPCODE_LMULS(FMSUB, VV):
  case CASE_VFMA_OPCODE_LMULS(FNMADD, VV):
  case CASE_VFMA_OPCODE_LMULS(FNMSUB, VV):
  case CASE_VFMA_OPCODE_LMULS(MADD, VV):
  case CASE_VFMA_OPCODE_LMULS(NMSUB, VV): {
    assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
    // If one of the operands, is the addend we need to change opcode.
    // Otherwise we're just swapping 2 of the multiplicands.
    if (OpIdx1 == 3 || OpIdx2 == 3) {
      unsigned Opc;
      switch (MI.getOpcode()) {
        default:
          llvm_unreachable("Unexpected opcode");
        CASE_VFMA_CHANGE_OPCODE_LMULS(FMADD, FMACC, VV)
        CASE_VFMA_CHANGE_OPCODE_LMULS(FMSUB, FMSAC, VV)
        CASE_VFMA_CHANGE_OPCODE_LMULS(FNMADD, FNMACC, VV)
        CASE_VFMA_CHANGE_OPCODE_LMULS(FNMSUB, FNMSAC, VV)
        CASE_VFMA_CHANGE_OPCODE_LMULS(MADD, MACC, VV)
        CASE_VFMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VV)
      }

      auto &WorkingMI = cloneIfNew(MI);
      WorkingMI.setDesc(get(Opc));
      return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
                                                     OpIdx1, OpIdx2);
    }
    // Let the default code handle it.
    break;
  }
  }

  return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
}

#undef CASE_VFMA_CHANGE_OPCODE_SPLATS
#undef CASE_VFMA_CHANGE_OPCODE_LMULS
#undef CASE_VFMA_CHANGE_OPCODE_COMMON
#undef CASE_VFMA_SPLATS
#undef CASE_VFMA_OPCODE_LMULS
#undef CASE_VFMA_OPCODE_COMMON

// clang-format off
#define CASE_WIDEOP_OPCODE_COMMON(OP, LMUL)                                    \
  RISCV::PseudoV##OP##_##LMUL##_TIED

#define CASE_WIDEOP_OPCODE_LMULS(OP)                                           \
  CASE_WIDEOP_OPCODE_COMMON(OP, MF8):                                          \
  case CASE_WIDEOP_OPCODE_COMMON(OP, MF4):                                     \
  case CASE_WIDEOP_OPCODE_COMMON(OP, MF2):                                     \
  case CASE_WIDEOP_OPCODE_COMMON(OP, M1):                                      \
  case CASE_WIDEOP_OPCODE_COMMON(OP, M2):                                      \
  case CASE_WIDEOP_OPCODE_COMMON(OP, M4)
// clang-format on

#define CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, LMUL)                             \
  case RISCV::PseudoV##OP##_##LMUL##_TIED:                                     \
    NewOpc = RISCV::PseudoV##OP##_##LMUL;                                      \
    break;

#define CASE_WIDEOP_CHANGE_OPCODE_LMULS(OP)                                    \
  CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF8)                                    \
  CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF4)                                    \
  CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2)                                    \
  CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1)                                     \
  CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2)                                     \
  CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4)

MachineInstr *RISCVInstrInfo::convertToThreeAddress(
    MachineFunction::iterator &MBB, MachineInstr &MI, LiveVariables *LV) const {
  switch (MI.getOpcode()) {
  default:
    break;
  case CASE_WIDEOP_OPCODE_LMULS(FWADD_WV):
  case CASE_WIDEOP_OPCODE_LMULS(FWSUB_WV):
  case CASE_WIDEOP_OPCODE_LMULS(WADD_WV):
  case CASE_WIDEOP_OPCODE_LMULS(WADDU_WV):
  case CASE_WIDEOP_OPCODE_LMULS(WSUB_WV):
  case CASE_WIDEOP_OPCODE_LMULS(WSUBU_WV): {
    // clang-format off
    unsigned NewOpc;
    switch (MI.getOpcode()) {
    default:
      llvm_unreachable("Unexpected opcode");
    CASE_WIDEOP_CHANGE_OPCODE_LMULS(FWADD_WV)
    CASE_WIDEOP_CHANGE_OPCODE_LMULS(FWSUB_WV)
    CASE_WIDEOP_CHANGE_OPCODE_LMULS(WADD_WV)
    CASE_WIDEOP_CHANGE_OPCODE_LMULS(WADDU_WV)
    CASE_WIDEOP_CHANGE_OPCODE_LMULS(WSUB_WV)
    CASE_WIDEOP_CHANGE_OPCODE_LMULS(WSUBU_WV)
    }
    //clang-format on

    MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpc))
                                  .add(MI.getOperand(0))
                                  .add(MI.getOperand(1))
                                  .add(MI.getOperand(2))
                                  .add(MI.getOperand(3))
                                  .add(MI.getOperand(4));
    MIB.copyImplicitOps(MI);

    if (LV) {
      unsigned NumOps = MI.getNumOperands();
      for (unsigned I = 1; I < NumOps; ++I) {
        MachineOperand &Op = MI.getOperand(I);
        if (Op.isReg() && Op.isKill())
          LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
      }
    }

    return MIB;
  }
  }

  return nullptr;
}

#undef CASE_WIDEOP_CHANGE_OPCODE_LMULS
#undef CASE_WIDEOP_CHANGE_OPCODE_COMMON
#undef CASE_WIDEOP_OPCODE_LMULS
#undef CASE_WIDEOP_OPCODE_COMMON

Register RISCVInstrInfo::getVLENFactoredAmount(MachineFunction &MF,
                                               MachineBasicBlock &MBB,
                                               MachineBasicBlock::iterator II,
                                               const DebugLoc &DL,
                                               int64_t Amount,
                                               MachineInstr::MIFlag Flag) const {
  assert(Amount > 0 && "There is no need to get VLEN scaled value.");
  assert(Amount % 8 == 0 &&
         "Reserve the stack by the multiple of one vector size.");

  MachineRegisterInfo &MRI = MF.getRegInfo();
  const RISCVInstrInfo *TII = MF.getSubtarget<RISCVSubtarget>().getInstrInfo();
  int64_t NumOfVReg = Amount / 8;

  Register VL = MRI.createVirtualRegister(&RISCV::GPRRegClass);
  BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENB), VL)
    .setMIFlag(Flag);
  assert(isInt<32>(NumOfVReg) &&
         "Expect the number of vector registers within 32-bits.");
  if (isPowerOf2_32(NumOfVReg)) {
    uint32_t ShiftAmount = Log2_32(NumOfVReg);
    if (ShiftAmount == 0)
      return VL;
    BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), VL)
        .addReg(VL, RegState::Kill)
        .addImm(ShiftAmount)
        .setMIFlag(Flag);
  } else if (isPowerOf2_32(NumOfVReg - 1)) {
    Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
    uint32_t ShiftAmount = Log2_32(NumOfVReg - 1);
    BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), ScaledRegister)
        .addReg(VL)
        .addImm(ShiftAmount)
        .setMIFlag(Flag);
    BuildMI(MBB, II, DL, TII->get(RISCV::ADD), VL)
        .addReg(ScaledRegister, RegState::Kill)
        .addReg(VL, RegState::Kill)
        .setMIFlag(Flag);
  } else if (isPowerOf2_32(NumOfVReg + 1)) {
    Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
    uint32_t ShiftAmount = Log2_32(NumOfVReg + 1);
    BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), ScaledRegister)
        .addReg(VL)
        .addImm(ShiftAmount)
        .setMIFlag(Flag);
    BuildMI(MBB, II, DL, TII->get(RISCV::SUB), VL)
        .addReg(ScaledRegister, RegState::Kill)
        .addReg(VL, RegState::Kill)
        .setMIFlag(Flag);
  } else {
    Register N = MRI.createVirtualRegister(&RISCV::GPRRegClass);
    if (!isInt<12>(NumOfVReg))
      movImm(MBB, II, DL, N, NumOfVReg);
    else {
      BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), N)
          .addReg(RISCV::X0)
          .addImm(NumOfVReg)
          .setMIFlag(Flag);
    }
    if (!MF.getSubtarget<RISCVSubtarget>().hasStdExtM())
      MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
          MF.getFunction(),
          "M-extension must be enabled to calculate the vscaled size/offset."});
    BuildMI(MBB, II, DL, TII->get(RISCV::MUL), VL)
        .addReg(VL, RegState::Kill)
        .addReg(N, RegState::Kill)
        .setMIFlag(Flag);
  }

  return VL;
}

static bool isRVVWholeLoadStore(unsigned Opcode) {
  switch (Opcode) {
  default:
    return false;
  case RISCV::VS1R_V:
  case RISCV::VS2R_V:
  case RISCV::VS4R_V:
  case RISCV::VS8R_V:
  case RISCV::VL1RE8_V:
  case RISCV::VL2RE8_V:
  case RISCV::VL4RE8_V:
  case RISCV::VL8RE8_V:
  case RISCV::VL1RE16_V:
  case RISCV::VL2RE16_V:
  case RISCV::VL4RE16_V:
  case RISCV::VL8RE16_V:
  case RISCV::VL1RE32_V:
  case RISCV::VL2RE32_V:
  case RISCV::VL4RE32_V:
  case RISCV::VL8RE32_V:
  case RISCV::VL1RE64_V:
  case RISCV::VL2RE64_V:
  case RISCV::VL4RE64_V:
  case RISCV::VL8RE64_V:
    return true;
  }
}

bool RISCVInstrInfo::isRVVSpill(const MachineInstr &MI, bool CheckFIs) const {
  // RVV lacks any support for immediate addressing for stack addresses, so be
  // conservative.
  unsigned Opcode = MI.getOpcode();
  if (!RISCVVPseudosTable::getPseudoInfo(Opcode) &&
      !isRVVWholeLoadStore(Opcode) && !isRVVSpillForZvlsseg(Opcode))
    return false;
  return !CheckFIs || any_of(MI.operands(), [](const MachineOperand &MO) {
    return MO.isFI();
  });
}

Optional<std::pair<unsigned, unsigned>>
RISCVInstrInfo::isRVVSpillForZvlsseg(unsigned Opcode) const {
  switch (Opcode) {
  default:
    return None;
  case RISCV::PseudoVSPILL2_M1:
  case RISCV::PseudoVRELOAD2_M1:
    return std::make_pair(2u, 1u);
  case RISCV::PseudoVSPILL2_M2:
  case RISCV::PseudoVRELOAD2_M2:
    return std::make_pair(2u, 2u);
  case RISCV::PseudoVSPILL2_M4:
  case RISCV::PseudoVRELOAD2_M4:
    return std::make_pair(2u, 4u);
  case RISCV::PseudoVSPILL3_M1:
  case RISCV::PseudoVRELOAD3_M1:
    return std::make_pair(3u, 1u);
  case RISCV::PseudoVSPILL3_M2:
  case RISCV::PseudoVRELOAD3_M2:
    return std::make_pair(3u, 2u);
  case RISCV::PseudoVSPILL4_M1:
  case RISCV::PseudoVRELOAD4_M1:
    return std::make_pair(4u, 1u);
  case RISCV::PseudoVSPILL4_M2:
  case RISCV::PseudoVRELOAD4_M2:
    return std::make_pair(4u, 2u);
  case RISCV::PseudoVSPILL5_M1:
  case RISCV::PseudoVRELOAD5_M1:
    return std::make_pair(5u, 1u);
  case RISCV::PseudoVSPILL6_M1:
  case RISCV::PseudoVRELOAD6_M1:
    return std::make_pair(6u, 1u);
  case RISCV::PseudoVSPILL7_M1:
  case RISCV::PseudoVRELOAD7_M1:
    return std::make_pair(7u, 1u);
  case RISCV::PseudoVSPILL8_M1:
  case RISCV::PseudoVRELOAD8_M1:
    return std::make_pair(8u, 1u);
  }
}