summaryrefslogtreecommitdiff
path: root/polly/lib/Analysis/ScopDetection.cpp
blob: 393af1e5f605304c88d3f74d1561cc5565110bf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
//===- ScopDetection.cpp - Detect Scops -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Detect the maximal Scops of a function.
//
// A static control part (Scop) is a subgraph of the control flow graph (CFG)
// that only has statically known control flow and can therefore be described
// within the polyhedral model.
//
// Every Scop fulfills these restrictions:
//
// * It is a single entry single exit region
//
// * Only affine linear bounds in the loops
//
// Every natural loop in a Scop must have a number of loop iterations that can
// be described as an affine linear function in surrounding loop iterators or
// parameters. (A parameter is a scalar that does not change its value during
// execution of the Scop).
//
// * Only comparisons of affine linear expressions in conditions
//
// * All loops and conditions perfectly nested
//
// The control flow needs to be structured such that it could be written using
// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
// 'continue'.
//
// * Side effect free functions call
//
// Function calls and intrinsics that do not have side effects (readnone)
// or memory intrinsics (memset, memcpy, memmove) are allowed.
//
// The Scop detection finds the largest Scops by checking if the largest
// region is a Scop. If this is not the case, its canonical subregions are
// checked until a region is a Scop. It is now tried to extend this Scop by
// creating a larger non canonical region.
//
//===----------------------------------------------------------------------===//

#include "polly/ScopDetection.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopDetectionDiagnostic.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "polly/Support/ScopLocation.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Delinearization.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <memory>
#include <stack>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-detect"

// This option is set to a very high value, as analyzing such loops increases
// compile time on several cases. For experiments that enable this option,
// a value of around 40 has been working to avoid run-time regressions with
// Polly while still exposing interesting optimization opportunities.
static cl::opt<int> ProfitabilityMinPerLoopInstructions(
    "polly-detect-profitability-min-per-loop-insts",
    cl::desc("The minimal number of per-loop instructions before a single loop "
             "region is considered profitable"),
    cl::Hidden, cl::ValueRequired, cl::init(100000000), cl::cat(PollyCategory));

bool polly::PollyProcessUnprofitable;

static cl::opt<bool, true> XPollyProcessUnprofitable(
    "polly-process-unprofitable",
    cl::desc(
        "Process scops that are unlikely to benefit from Polly optimizations."),
    cl::location(PollyProcessUnprofitable), cl::init(false), cl::ZeroOrMore,
    cl::cat(PollyCategory));

static cl::list<std::string> OnlyFunctions(
    "polly-only-func",
    cl::desc("Only run on functions that match a regex. "
             "Multiple regexes can be comma separated. "
             "Scop detection will run on all functions that match "
             "ANY of the regexes provided."),
    cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));

static cl::list<std::string> IgnoredFunctions(
    "polly-ignore-func",
    cl::desc("Ignore functions that match a regex. "
             "Multiple regexes can be comma separated. "
             "Scop detection will ignore all functions that match "
             "ANY of the regexes provided."),
    cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));

bool polly::PollyAllowFullFunction;

static cl::opt<bool, true>
    XAllowFullFunction("polly-detect-full-functions",
                       cl::desc("Allow the detection of full functions"),
                       cl::location(polly::PollyAllowFullFunction),
                       cl::init(false), cl::cat(PollyCategory));

static cl::opt<std::string> OnlyRegion(
    "polly-only-region",
    cl::desc("Only run on certain regions (The provided identifier must "
             "appear in the name of the region's entry block"),
    cl::value_desc("identifier"), cl::ValueRequired, cl::init(""),
    cl::cat(PollyCategory));

static cl::opt<bool>
    IgnoreAliasing("polly-ignore-aliasing",
                   cl::desc("Ignore possible aliasing of the array bases"),
                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
                   cl::cat(PollyCategory));

bool polly::PollyAllowUnsignedOperations;

static cl::opt<bool, true> XPollyAllowUnsignedOperations(
    "polly-allow-unsigned-operations",
    cl::desc("Allow unsigned operations such as comparisons or zero-extends."),
    cl::location(PollyAllowUnsignedOperations), cl::Hidden, cl::ZeroOrMore,
    cl::init(true), cl::cat(PollyCategory));

bool polly::PollyUseRuntimeAliasChecks;

static cl::opt<bool, true> XPollyUseRuntimeAliasChecks(
    "polly-use-runtime-alias-checks",
    cl::desc("Use runtime alias checks to resolve possible aliasing."),
    cl::location(PollyUseRuntimeAliasChecks), cl::Hidden, cl::ZeroOrMore,
    cl::init(true), cl::cat(PollyCategory));

static cl::opt<bool>
    ReportLevel("polly-report",
                cl::desc("Print information about the activities of Polly"),
                cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool> AllowDifferentTypes(
    "polly-allow-differing-element-types",
    cl::desc("Allow different element types for array accesses"), cl::Hidden,
    cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool>
    AllowNonAffine("polly-allow-nonaffine",
                   cl::desc("Allow non affine access functions in arrays"),
                   cl::Hidden, cl::init(false), cl::ZeroOrMore,
                   cl::cat(PollyCategory));

static cl::opt<bool>
    AllowModrefCall("polly-allow-modref-calls",
                    cl::desc("Allow functions with known modref behavior"),
                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
                    cl::cat(PollyCategory));

static cl::opt<bool> AllowNonAffineSubRegions(
    "polly-allow-nonaffine-branches",
    cl::desc("Allow non affine conditions for branches"), cl::Hidden,
    cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool>
    AllowNonAffineSubLoops("polly-allow-nonaffine-loops",
                           cl::desc("Allow non affine conditions for loops"),
                           cl::Hidden, cl::init(false), cl::ZeroOrMore,
                           cl::cat(PollyCategory));

static cl::opt<bool, true>
    TrackFailures("polly-detect-track-failures",
                  cl::desc("Track failure strings in detecting scop regions"),
                  cl::location(PollyTrackFailures), cl::Hidden, cl::ZeroOrMore,
                  cl::init(true), cl::cat(PollyCategory));

static cl::opt<bool> KeepGoing("polly-detect-keep-going",
                               cl::desc("Do not fail on the first error."),
                               cl::Hidden, cl::ZeroOrMore, cl::init(false),
                               cl::cat(PollyCategory));

static cl::opt<bool, true>
    PollyDelinearizeX("polly-delinearize",
                      cl::desc("Delinearize array access functions"),
                      cl::location(PollyDelinearize), cl::Hidden,
                      cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));

static cl::opt<bool>
    VerifyScops("polly-detect-verify",
                cl::desc("Verify the detected SCoPs after each transformation"),
                cl::Hidden, cl::init(false), cl::ZeroOrMore,
                cl::cat(PollyCategory));

bool polly::PollyInvariantLoadHoisting;

static cl::opt<bool, true> XPollyInvariantLoadHoisting(
    "polly-invariant-load-hoisting", cl::desc("Hoist invariant loads."),
    cl::location(PollyInvariantLoadHoisting), cl::Hidden, cl::ZeroOrMore,
    cl::init(false), cl::cat(PollyCategory));

static cl::opt<bool> PollyAllowErrorBlocks(
    "polly-allow-error-blocks",
    cl::desc("Allow to speculate on the execution of 'error blocks'."),
    cl::Hidden, cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));

/// The minimal trip count under which loops are considered unprofitable.
static const unsigned MIN_LOOP_TRIP_COUNT = 8;

bool polly::PollyTrackFailures = false;
bool polly::PollyDelinearize = false;
StringRef polly::PollySkipFnAttr = "polly.skip.fn";

//===----------------------------------------------------------------------===//
// Statistics.

STATISTIC(NumScopRegions, "Number of scops");
STATISTIC(NumLoopsInScop, "Number of loops in scops");
STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0");
STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1");
STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2");
STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3");
STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4");
STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5");
STATISTIC(NumScopsDepthLarger,
          "Number of scops with maximal loop depth 6 and larger");
STATISTIC(NumProfScopRegions, "Number of scops (profitable scops only)");
STATISTIC(NumLoopsInProfScop,
          "Number of loops in scops (profitable scops only)");
STATISTIC(NumLoopsOverall, "Number of total loops");
STATISTIC(NumProfScopsDepthZero,
          "Number of scops with maximal loop depth 0 (profitable scops only)");
STATISTIC(NumProfScopsDepthOne,
          "Number of scops with maximal loop depth 1 (profitable scops only)");
STATISTIC(NumProfScopsDepthTwo,
          "Number of scops with maximal loop depth 2 (profitable scops only)");
STATISTIC(NumProfScopsDepthThree,
          "Number of scops with maximal loop depth 3 (profitable scops only)");
STATISTIC(NumProfScopsDepthFour,
          "Number of scops with maximal loop depth 4 (profitable scops only)");
STATISTIC(NumProfScopsDepthFive,
          "Number of scops with maximal loop depth 5 (profitable scops only)");
STATISTIC(NumProfScopsDepthLarger,
          "Number of scops with maximal loop depth 6 and larger "
          "(profitable scops only)");
STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops");
STATISTIC(MaxNumLoopsInProfScop,
          "Maximal number of loops in scops (profitable scops only)");

static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
                                     bool OnlyProfitable);

namespace {

class DiagnosticScopFound : public DiagnosticInfo {
private:
  static int PluginDiagnosticKind;

  Function &F;
  std::string FileName;
  unsigned EntryLine, ExitLine;

public:
  DiagnosticScopFound(Function &F, std::string FileName, unsigned EntryLine,
                      unsigned ExitLine)
      : DiagnosticInfo(PluginDiagnosticKind, DS_Note), F(F), FileName(FileName),
        EntryLine(EntryLine), ExitLine(ExitLine) {}

  void print(DiagnosticPrinter &DP) const override;

  static bool classof(const DiagnosticInfo *DI) {
    return DI->getKind() == PluginDiagnosticKind;
  }
};
} // namespace

int DiagnosticScopFound::PluginDiagnosticKind =
    getNextAvailablePluginDiagnosticKind();

void DiagnosticScopFound::print(DiagnosticPrinter &DP) const {
  DP << "Polly detected an optimizable loop region (scop) in function '" << F
     << "'\n";

  if (FileName.empty()) {
    DP << "Scop location is unknown. Compile with debug info "
          "(-g) to get more precise information. ";
    return;
  }

  DP << FileName << ":" << EntryLine << ": Start of scop\n";
  DP << FileName << ":" << ExitLine << ": End of scop";
}

/// Check if a string matches any regex in a list of regexes.
/// @param Str the input string to match against.
/// @param RegexList a list of strings that are regular expressions.
static bool doesStringMatchAnyRegex(StringRef Str,
                                    const cl::list<std::string> &RegexList) {
  for (auto RegexStr : RegexList) {
    Regex R(RegexStr);

    std::string Err;
    if (!R.isValid(Err))
      report_fatal_error(Twine("invalid regex given as input to polly: ") + Err,
                         true);

    if (R.match(Str))
      return true;
  }
  return false;
}
//===----------------------------------------------------------------------===//
// ScopDetection.

ScopDetection::ScopDetection(const DominatorTree &DT, ScalarEvolution &SE,
                             LoopInfo &LI, RegionInfo &RI, AliasAnalysis &AA,
                             OptimizationRemarkEmitter &ORE)
    : DT(DT), SE(SE), LI(LI), RI(RI), AA(AA), ORE(ORE) {}

void ScopDetection::detect(Function &F) {
  assert(ValidRegions.empty() && "Detection must run only once");

  if (!PollyProcessUnprofitable && LI.empty())
    return;

  Region *TopRegion = RI.getTopLevelRegion();

  if (!OnlyFunctions.empty() &&
      !doesStringMatchAnyRegex(F.getName(), OnlyFunctions))
    return;

  if (doesStringMatchAnyRegex(F.getName(), IgnoredFunctions))
    return;

  if (!isValidFunction(F))
    return;

  findScops(*TopRegion);

  NumScopRegions += ValidRegions.size();

  // Prune non-profitable regions.
  for (auto &DIt : DetectionContextMap) {
    DetectionContext &DC = *DIt.getSecond().get();
    if (DC.Log.hasErrors())
      continue;
    if (!ValidRegions.count(&DC.CurRegion))
      continue;
    LoopStats Stats = countBeneficialLoops(&DC.CurRegion, SE, LI, 0);
    updateLoopCountStatistic(Stats, false /* OnlyProfitable */);
    if (isProfitableRegion(DC)) {
      updateLoopCountStatistic(Stats, true /* OnlyProfitable */);
      continue;
    }

    ValidRegions.remove(&DC.CurRegion);
  }

  NumProfScopRegions += ValidRegions.size();
  NumLoopsOverall += countBeneficialLoops(TopRegion, SE, LI, 0).NumLoops;

  // Only makes sense when we tracked errors.
  if (PollyTrackFailures)
    emitMissedRemarks(F);

  if (ReportLevel)
    printLocations(F);

  assert(ValidRegions.size() <= DetectionContextMap.size() &&
         "Cached more results than valid regions");
}

template <class RR, typename... Args>
inline bool ScopDetection::invalid(DetectionContext &Context, bool Assert,
                                   Args &&...Arguments) const {
  if (!Context.Verifying) {
    RejectLog &Log = Context.Log;
    std::shared_ptr<RR> RejectReason = std::make_shared<RR>(Arguments...);

    if (PollyTrackFailures)
      Log.report(RejectReason);

    LLVM_DEBUG(dbgs() << RejectReason->getMessage());
    LLVM_DEBUG(dbgs() << "\n");
  } else {
    assert(!Assert && "Verification of detected scop failed");
  }

  return false;
}

bool ScopDetection::isMaxRegionInScop(const Region &R, bool Verify) {
  if (!ValidRegions.count(&R))
    return false;

  if (Verify) {
    BBPair P = getBBPairForRegion(&R);
    std::unique_ptr<DetectionContext> &Entry = DetectionContextMap[P];

    // Free previous DetectionContext for the region and create and verify a new
    // one. Be sure that the DetectionContext is not still used by a ScopInfop.
    // Due to changes but CodeGeneration of another Scop, the Region object and
    // the BBPair might not match anymore.
    Entry = std::make_unique<DetectionContext>(const_cast<Region &>(R), AA,
                                               /*Verifying=*/false);

    return isValidRegion(*Entry.get());
  }

  return true;
}

std::string ScopDetection::regionIsInvalidBecause(const Region *R) const {
  // Get the first error we found. Even in keep-going mode, this is the first
  // reason that caused the candidate to be rejected.
  auto *Log = lookupRejectionLog(R);

  // This can happen when we marked a region invalid, but didn't track
  // an error for it.
  if (!Log || !Log->hasErrors())
    return "";

  RejectReasonPtr RR = *Log->begin();
  return RR->getMessage();
}

bool ScopDetection::addOverApproximatedRegion(Region *AR,
                                              DetectionContext &Context) const {
  // If we already know about Ar we can exit.
  if (!Context.NonAffineSubRegionSet.insert(AR))
    return true;

  // All loops in the region have to be overapproximated too if there
  // are accesses that depend on the iteration count.

  for (BasicBlock *BB : AR->blocks()) {
    Loop *L = LI.getLoopFor(BB);
    if (AR->contains(L))
      Context.BoxedLoopsSet.insert(L);
  }

  return (AllowNonAffineSubLoops || Context.BoxedLoopsSet.empty());
}

bool ScopDetection::onlyValidRequiredInvariantLoads(
    InvariantLoadsSetTy &RequiredILS, DetectionContext &Context) const {
  Region &CurRegion = Context.CurRegion;
  const DataLayout &DL = CurRegion.getEntry()->getModule()->getDataLayout();

  if (!PollyInvariantLoadHoisting && !RequiredILS.empty())
    return false;

  for (LoadInst *Load : RequiredILS) {
    // If we already know a load has been accepted as required invariant, we
    // already run the validation below once and consequently don't need to
    // run it again. Hence, we return early. For certain test cases (e.g.,
    // COSMO this avoids us spending 50% of scop-detection time in this
    // very function (and its children).
    if (Context.RequiredILS.count(Load))
      continue;
    if (!isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
      return false;

    for (auto NonAffineRegion : Context.NonAffineSubRegionSet) {
      if (isSafeToLoadUnconditionally(Load->getPointerOperand(),
                                      Load->getType(), Load->getAlign(), DL))
        continue;

      if (NonAffineRegion->contains(Load) &&
          Load->getParent() != NonAffineRegion->getEntry())
        return false;
    }
  }

  Context.RequiredILS.insert(RequiredILS.begin(), RequiredILS.end());

  return true;
}

bool ScopDetection::involvesMultiplePtrs(const SCEV *S0, const SCEV *S1,
                                         Loop *Scope) const {
  SetVector<Value *> Values;
  findValues(S0, SE, Values);
  if (S1)
    findValues(S1, SE, Values);

  SmallPtrSet<Value *, 8> PtrVals;
  for (auto *V : Values) {
    if (auto *P2I = dyn_cast<PtrToIntInst>(V))
      V = P2I->getOperand(0);

    if (!V->getType()->isPointerTy())
      continue;

    auto *PtrSCEV = SE.getSCEVAtScope(V, Scope);
    if (isa<SCEVConstant>(PtrSCEV))
      continue;

    auto *BasePtr = dyn_cast<SCEVUnknown>(SE.getPointerBase(PtrSCEV));
    if (!BasePtr)
      return true;

    auto *BasePtrVal = BasePtr->getValue();
    if (PtrVals.insert(BasePtrVal).second) {
      for (auto *PtrVal : PtrVals)
        if (PtrVal != BasePtrVal && !AA.isNoAlias(PtrVal, BasePtrVal))
          return true;
    }
  }

  return false;
}

bool ScopDetection::isAffine(const SCEV *S, Loop *Scope,
                             DetectionContext &Context) const {
  InvariantLoadsSetTy AccessILS;
  if (!isAffineExpr(&Context.CurRegion, Scope, S, SE, &AccessILS))
    return false;

  if (!onlyValidRequiredInvariantLoads(AccessILS, Context))
    return false;

  return true;
}

bool ScopDetection::isValidSwitch(BasicBlock &BB, SwitchInst *SI,
                                  Value *Condition, bool IsLoopBranch,
                                  DetectionContext &Context) const {
  Loop *L = LI.getLoopFor(&BB);
  const SCEV *ConditionSCEV = SE.getSCEVAtScope(Condition, L);

  if (IsLoopBranch && L->isLoopLatch(&BB))
    return false;

  // Check for invalid usage of different pointers in one expression.
  if (involvesMultiplePtrs(ConditionSCEV, nullptr, L))
    return false;

  if (isAffine(ConditionSCEV, L, Context))
    return true;

  if (AllowNonAffineSubRegions &&
      addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
    return true;

  return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB,
                                     ConditionSCEV, ConditionSCEV, SI);
}

bool ScopDetection::isValidBranch(BasicBlock &BB, BranchInst *BI,
                                  Value *Condition, bool IsLoopBranch,
                                  DetectionContext &Context) {
  // Constant integer conditions are always affine.
  if (isa<ConstantInt>(Condition))
    return true;

  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
    auto Opcode = BinOp->getOpcode();
    if (Opcode == Instruction::And || Opcode == Instruction::Or) {
      Value *Op0 = BinOp->getOperand(0);
      Value *Op1 = BinOp->getOperand(1);
      return isValidBranch(BB, BI, Op0, IsLoopBranch, Context) &&
             isValidBranch(BB, BI, Op1, IsLoopBranch, Context);
    }
  }

  if (auto PHI = dyn_cast<PHINode>(Condition)) {
    auto *Unique = dyn_cast_or_null<ConstantInt>(
        getUniqueNonErrorValue(PHI, &Context.CurRegion, this));
    if (Unique && (Unique->isZero() || Unique->isOne()))
      return true;
  }

  if (auto Load = dyn_cast<LoadInst>(Condition))
    if (!IsLoopBranch && Context.CurRegion.contains(Load)) {
      Context.RequiredILS.insert(Load);
      return true;
    }

  // Non constant conditions of branches need to be ICmpInst.
  if (!isa<ICmpInst>(Condition)) {
    if (!IsLoopBranch && AllowNonAffineSubRegions &&
        addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
      return true;
    return invalid<ReportInvalidCond>(Context, /*Assert=*/true, BI, &BB);
  }

  ICmpInst *ICmp = cast<ICmpInst>(Condition);

  // Are both operands of the ICmp affine?
  if (isa<UndefValue>(ICmp->getOperand(0)) ||
      isa<UndefValue>(ICmp->getOperand(1)))
    return invalid<ReportUndefOperand>(Context, /*Assert=*/true, &BB, ICmp);

  Loop *L = LI.getLoopFor(&BB);
  const SCEV *LHS = SE.getSCEVAtScope(ICmp->getOperand(0), L);
  const SCEV *RHS = SE.getSCEVAtScope(ICmp->getOperand(1), L);

  LHS = tryForwardThroughPHI(LHS, Context.CurRegion, SE, this);
  RHS = tryForwardThroughPHI(RHS, Context.CurRegion, SE, this);

  // If unsigned operations are not allowed try to approximate the region.
  if (ICmp->isUnsigned() && !PollyAllowUnsignedOperations)
    return !IsLoopBranch && AllowNonAffineSubRegions &&
           addOverApproximatedRegion(RI.getRegionFor(&BB), Context);

  // Check for invalid usage of different pointers in one expression.
  if (ICmp->isEquality() && involvesMultiplePtrs(LHS, nullptr, L) &&
      involvesMultiplePtrs(RHS, nullptr, L))
    return false;

  // Check for invalid usage of different pointers in a relational comparison.
  if (ICmp->isRelational() && involvesMultiplePtrs(LHS, RHS, L))
    return false;

  if (isAffine(LHS, L, Context) && isAffine(RHS, L, Context))
    return true;

  if (!IsLoopBranch && AllowNonAffineSubRegions &&
      addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
    return true;

  if (IsLoopBranch)
    return false;

  return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB, LHS, RHS,
                                     ICmp);
}

bool ScopDetection::isValidCFG(BasicBlock &BB, bool IsLoopBranch,
                               bool AllowUnreachable,
                               DetectionContext &Context) {
  Region &CurRegion = Context.CurRegion;

  Instruction *TI = BB.getTerminator();

  if (AllowUnreachable && isa<UnreachableInst>(TI))
    return true;

  // Return instructions are only valid if the region is the top level region.
  if (isa<ReturnInst>(TI) && CurRegion.isTopLevelRegion())
    return true;

  Value *Condition = getConditionFromTerminator(TI);

  if (!Condition)
    return invalid<ReportInvalidTerminator>(Context, /*Assert=*/true, &BB);

  // UndefValue is not allowed as condition.
  if (isa<UndefValue>(Condition))
    return invalid<ReportUndefCond>(Context, /*Assert=*/true, TI, &BB);

  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    return isValidBranch(BB, BI, Condition, IsLoopBranch, Context);

  SwitchInst *SI = dyn_cast<SwitchInst>(TI);
  assert(SI && "Terminator was neither branch nor switch");

  return isValidSwitch(BB, SI, Condition, IsLoopBranch, Context);
}

bool ScopDetection::isValidCallInst(CallInst &CI,
                                    DetectionContext &Context) const {
  if (CI.doesNotReturn())
    return false;

  if (CI.doesNotAccessMemory())
    return true;

  if (auto *II = dyn_cast<IntrinsicInst>(&CI))
    if (isValidIntrinsicInst(*II, Context))
      return true;

  Function *CalledFunction = CI.getCalledFunction();

  // Indirect calls are not supported.
  if (CalledFunction == nullptr)
    return false;

  if (isDebugCall(&CI)) {
    LLVM_DEBUG(dbgs() << "Allow call to debug function: "
                      << CalledFunction->getName() << '\n');
    return true;
  }

  if (AllowModrefCall) {
    switch (AA.getModRefBehavior(CalledFunction)) {
    case FMRB_UnknownModRefBehavior:
      return false;
    case FMRB_DoesNotAccessMemory:
    case FMRB_OnlyReadsMemory:
    case FMRB_OnlyReadsInaccessibleMem:
    case FMRB_OnlyReadsInaccessibleOrArgMem:
      // Implicitly disable delinearization since we have an unknown
      // accesses with an unknown access function.
      Context.HasUnknownAccess = true;
      // Explicitly use addUnknown so we don't put a loop-variant
      // pointer into the alias set.
      Context.AST.addUnknown(&CI);
      return true;
    case FMRB_OnlyReadsArgumentPointees:
    case FMRB_OnlyAccessesArgumentPointees:
    case FMRB_OnlyWritesArgumentPointees:
      for (const auto &Arg : CI.args()) {
        if (!Arg->getType()->isPointerTy())
          continue;

        // Bail if a pointer argument has a base address not known to
        // ScalarEvolution. Note that a zero pointer is acceptable.
        auto *ArgSCEV = SE.getSCEVAtScope(Arg, LI.getLoopFor(CI.getParent()));
        if (ArgSCEV->isZero())
          continue;

        auto *BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV));
        if (!BP)
          return false;

        // Implicitly disable delinearization since we have an unknown
        // accesses with an unknown access function.
        Context.HasUnknownAccess = true;
      }

      // Explicitly use addUnknown so we don't put a loop-variant
      // pointer into the alias set.
      Context.AST.addUnknown(&CI);
      return true;
    case FMRB_OnlyWritesMemory:
    case FMRB_OnlyWritesInaccessibleMem:
    case FMRB_OnlyWritesInaccessibleOrArgMem:
    case FMRB_OnlyAccessesInaccessibleMem:
    case FMRB_OnlyAccessesInaccessibleOrArgMem:
      return false;
    }
  }

  return false;
}

bool ScopDetection::isValidIntrinsicInst(IntrinsicInst &II,
                                         DetectionContext &Context) const {
  if (isIgnoredIntrinsic(&II))
    return true;

  // The closest loop surrounding the call instruction.
  Loop *L = LI.getLoopFor(II.getParent());

  // The access function and base pointer for memory intrinsics.
  const SCEV *AF;
  const SCEVUnknown *BP;

  switch (II.getIntrinsicID()) {
  // Memory intrinsics that can be represented are supported.
  case Intrinsic::memmove:
  case Intrinsic::memcpy:
    AF = SE.getSCEVAtScope(cast<MemTransferInst>(II).getSource(), L);
    if (!AF->isZero()) {
      BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
      // Bail if the source pointer is not valid.
      if (!isValidAccess(&II, AF, BP, Context))
        return false;
    }
    LLVM_FALLTHROUGH;
  case Intrinsic::memset:
    AF = SE.getSCEVAtScope(cast<MemIntrinsic>(II).getDest(), L);
    if (!AF->isZero()) {
      BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
      // Bail if the destination pointer is not valid.
      if (!isValidAccess(&II, AF, BP, Context))
        return false;
    }

    // Bail if the length is not affine.
    if (!isAffine(SE.getSCEVAtScope(cast<MemIntrinsic>(II).getLength(), L), L,
                  Context))
      return false;

    return true;
  default:
    break;
  }

  return false;
}

bool ScopDetection::isInvariant(Value &Val, const Region &Reg,
                                DetectionContext &Ctx) const {
  // A reference to function argument or constant value is invariant.
  if (isa<Argument>(Val) || isa<Constant>(Val))
    return true;

  Instruction *I = dyn_cast<Instruction>(&Val);
  if (!I)
    return false;

  if (!Reg.contains(I))
    return true;

  // Loads within the SCoP may read arbitrary values, need to hoist them. If it
  // is not hoistable, it will be rejected later, but here we assume it is and
  // that makes the value invariant.
  if (auto LI = dyn_cast<LoadInst>(I)) {
    Ctx.RequiredILS.insert(LI);
    return true;
  }

  return false;
}

namespace {

/// Remove smax of smax(0, size) expressions from a SCEV expression and
/// register the '...' components.
///
/// Array access expressions as they are generated by GFortran contain smax(0,
/// size) expressions that confuse the 'normal' delinearization algorithm.
/// However, if we extract such expressions before the normal delinearization
/// takes place they can actually help to identify array size expressions in
/// Fortran accesses. For the subsequently following delinearization the smax(0,
/// size) component can be replaced by just 'size'. This is correct as we will
/// always add and verify the assumption that for all subscript expressions
/// 'exp' the inequality 0 <= exp < size holds. Hence, we will also verify
/// that 0 <= size, which means smax(0, size) == size.
class SCEVRemoveMax : public SCEVRewriteVisitor<SCEVRemoveMax> {
public:
  SCEVRemoveMax(ScalarEvolution &SE, std::vector<const SCEV *> *Terms)
      : SCEVRewriteVisitor(SE), Terms(Terms) {}

  static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
                             std::vector<const SCEV *> *Terms = nullptr) {
    SCEVRemoveMax Rewriter(SE, Terms);
    return Rewriter.visit(Scev);
  }

  const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
    if ((Expr->getNumOperands() == 2) && Expr->getOperand(0)->isZero()) {
      auto Res = visit(Expr->getOperand(1));
      if (Terms)
        (*Terms).push_back(Res);
      return Res;
    }

    return Expr;
  }

private:
  std::vector<const SCEV *> *Terms;
};
} // namespace

SmallVector<const SCEV *, 4>
ScopDetection::getDelinearizationTerms(DetectionContext &Context,
                                       const SCEVUnknown *BasePointer) const {
  SmallVector<const SCEV *, 4> Terms;
  for (const auto &Pair : Context.Accesses[BasePointer]) {
    std::vector<const SCEV *> MaxTerms;
    SCEVRemoveMax::rewrite(Pair.second, SE, &MaxTerms);
    if (!MaxTerms.empty()) {
      Terms.insert(Terms.begin(), MaxTerms.begin(), MaxTerms.end());
      continue;
    }
    // In case the outermost expression is a plain add, we check if any of its
    // terms has the form 4 * %inst * %param * %param ..., aka a term that
    // contains a product between a parameter and an instruction that is
    // inside the scop. Such instructions, if allowed at all, are instructions
    // SCEV can not represent, but Polly is still looking through. As a
    // result, these instructions can depend on induction variables and are
    // most likely no array sizes. However, terms that are multiplied with
    // them are likely candidates for array sizes.
    if (auto *AF = dyn_cast<SCEVAddExpr>(Pair.second)) {
      for (auto Op : AF->operands()) {
        if (auto *AF2 = dyn_cast<SCEVAddRecExpr>(Op))
          collectParametricTerms(SE, AF2, Terms);
        if (auto *AF2 = dyn_cast<SCEVMulExpr>(Op)) {
          SmallVector<const SCEV *, 0> Operands;

          for (auto *MulOp : AF2->operands()) {
            if (auto *Const = dyn_cast<SCEVConstant>(MulOp))
              Operands.push_back(Const);
            if (auto *Unknown = dyn_cast<SCEVUnknown>(MulOp)) {
              if (auto *Inst = dyn_cast<Instruction>(Unknown->getValue())) {
                if (!Context.CurRegion.contains(Inst))
                  Operands.push_back(MulOp);

              } else {
                Operands.push_back(MulOp);
              }
            }
          }
          if (Operands.size())
            Terms.push_back(SE.getMulExpr(Operands));
        }
      }
    }
    if (Terms.empty())
      collectParametricTerms(SE, Pair.second, Terms);
  }
  return Terms;
}

bool ScopDetection::hasValidArraySizes(DetectionContext &Context,
                                       SmallVectorImpl<const SCEV *> &Sizes,
                                       const SCEVUnknown *BasePointer,
                                       Loop *Scope) const {
  // If no sizes were found, all sizes are trivially valid. We allow this case
  // to make it possible to pass known-affine accesses to the delinearization to
  // try to recover some interesting multi-dimensional accesses, but to still
  // allow the already known to be affine access in case the delinearization
  // fails. In such situations, the delinearization will just return a Sizes
  // array of size zero.
  if (Sizes.size() == 0)
    return true;

  Value *BaseValue = BasePointer->getValue();
  Region &CurRegion = Context.CurRegion;
  for (const SCEV *DelinearizedSize : Sizes) {
    // Don't pass down the scope to isAfffine; array dimensions must be
    // invariant across the entire scop.
    if (!isAffine(DelinearizedSize, nullptr, Context)) {
      Sizes.clear();
      break;
    }
    if (auto *Unknown = dyn_cast<SCEVUnknown>(DelinearizedSize)) {
      auto *V = dyn_cast<Value>(Unknown->getValue());
      if (auto *Load = dyn_cast<LoadInst>(V)) {
        if (Context.CurRegion.contains(Load) &&
            isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
          Context.RequiredILS.insert(Load);
        continue;
      }
    }
    if (hasScalarDepsInsideRegion(DelinearizedSize, &CurRegion, Scope, false,
                                  Context.RequiredILS))
      return invalid<ReportNonAffineAccess>(
          Context, /*Assert=*/true, DelinearizedSize,
          Context.Accesses[BasePointer].front().first, BaseValue);
  }

  // No array shape derived.
  if (Sizes.empty()) {
    if (AllowNonAffine)
      return true;

    for (const auto &Pair : Context.Accesses[BasePointer]) {
      const Instruction *Insn = Pair.first;
      const SCEV *AF = Pair.second;

      if (!isAffine(AF, Scope, Context)) {
        invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Insn,
                                       BaseValue);
        if (!KeepGoing)
          return false;
      }
    }
    return false;
  }
  return true;
}

// We first store the resulting memory accesses in TempMemoryAccesses. Only
// if the access functions for all memory accesses have been successfully
// delinearized we continue. Otherwise, we either report a failure or, if
// non-affine accesses are allowed, we drop the information. In case the
// information is dropped the memory accesses need to be overapproximated
// when translated to a polyhedral representation.
bool ScopDetection::computeAccessFunctions(
    DetectionContext &Context, const SCEVUnknown *BasePointer,
    std::shared_ptr<ArrayShape> Shape) const {
  Value *BaseValue = BasePointer->getValue();
  bool BasePtrHasNonAffine = false;
  MapInsnToMemAcc TempMemoryAccesses;
  for (const auto &Pair : Context.Accesses[BasePointer]) {
    const Instruction *Insn = Pair.first;
    auto *AF = Pair.second;
    AF = SCEVRemoveMax::rewrite(AF, SE);
    bool IsNonAffine = false;
    TempMemoryAccesses.insert(std::make_pair(Insn, MemAcc(Insn, Shape)));
    MemAcc *Acc = &TempMemoryAccesses.find(Insn)->second;
    auto *Scope = LI.getLoopFor(Insn->getParent());

    if (!AF) {
      if (isAffine(Pair.second, Scope, Context))
        Acc->DelinearizedSubscripts.push_back(Pair.second);
      else
        IsNonAffine = true;
    } else {
      if (Shape->DelinearizedSizes.size() == 0) {
        Acc->DelinearizedSubscripts.push_back(AF);
      } else {
        llvm::computeAccessFunctions(SE, AF, Acc->DelinearizedSubscripts,
                                     Shape->DelinearizedSizes);
        if (Acc->DelinearizedSubscripts.size() == 0)
          IsNonAffine = true;
      }
      for (const SCEV *S : Acc->DelinearizedSubscripts)
        if (!isAffine(S, Scope, Context))
          IsNonAffine = true;
    }

    // (Possibly) report non affine access
    if (IsNonAffine) {
      BasePtrHasNonAffine = true;
      if (!AllowNonAffine)
        invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, Pair.second,
                                       Insn, BaseValue);
      if (!KeepGoing && !AllowNonAffine)
        return false;
    }
  }

  if (!BasePtrHasNonAffine)
    Context.InsnToMemAcc.insert(TempMemoryAccesses.begin(),
                                TempMemoryAccesses.end());

  return true;
}

bool ScopDetection::hasBaseAffineAccesses(DetectionContext &Context,
                                          const SCEVUnknown *BasePointer,
                                          Loop *Scope) const {
  auto Shape = std::shared_ptr<ArrayShape>(new ArrayShape(BasePointer));

  auto Terms = getDelinearizationTerms(Context, BasePointer);

  findArrayDimensions(SE, Terms, Shape->DelinearizedSizes,
                      Context.ElementSize[BasePointer]);

  if (!hasValidArraySizes(Context, Shape->DelinearizedSizes, BasePointer,
                          Scope))
    return false;

  return computeAccessFunctions(Context, BasePointer, Shape);
}

bool ScopDetection::hasAffineMemoryAccesses(DetectionContext &Context) const {
  // TODO: If we have an unknown access and other non-affine accesses we do
  //       not try to delinearize them for now.
  if (Context.HasUnknownAccess && !Context.NonAffineAccesses.empty())
    return AllowNonAffine;

  for (auto &Pair : Context.NonAffineAccesses) {
    auto *BasePointer = Pair.first;
    auto *Scope = Pair.second;
    if (!hasBaseAffineAccesses(Context, BasePointer, Scope)) {
      if (KeepGoing)
        continue;
      else
        return false;
    }
  }
  return true;
}

bool ScopDetection::isValidAccess(Instruction *Inst, const SCEV *AF,
                                  const SCEVUnknown *BP,
                                  DetectionContext &Context) const {

  if (!BP)
    return invalid<ReportNoBasePtr>(Context, /*Assert=*/true, Inst);

  auto *BV = BP->getValue();
  if (isa<UndefValue>(BV))
    return invalid<ReportUndefBasePtr>(Context, /*Assert=*/true, Inst);

  // FIXME: Think about allowing IntToPtrInst
  if (IntToPtrInst *Inst = dyn_cast<IntToPtrInst>(BV))
    return invalid<ReportIntToPtr>(Context, /*Assert=*/true, Inst);

  // Check that the base address of the access is invariant in the current
  // region.
  if (!isInvariant(*BV, Context.CurRegion, Context))
    return invalid<ReportVariantBasePtr>(Context, /*Assert=*/true, BV, Inst);

  AF = SE.getMinusSCEV(AF, BP);

  const SCEV *Size;
  if (!isa<MemIntrinsic>(Inst)) {
    Size = SE.getElementSize(Inst);
  } else {
    auto *SizeTy =
        SE.getEffectiveSCEVType(PointerType::getInt8PtrTy(SE.getContext()));
    Size = SE.getConstant(SizeTy, 8);
  }

  if (Context.ElementSize[BP]) {
    if (!AllowDifferentTypes && Context.ElementSize[BP] != Size)
      return invalid<ReportDifferentArrayElementSize>(Context, /*Assert=*/true,
                                                      Inst, BV);

    Context.ElementSize[BP] = SE.getSMinExpr(Size, Context.ElementSize[BP]);
  } else {
    Context.ElementSize[BP] = Size;
  }

  bool IsVariantInNonAffineLoop = false;
  SetVector<const Loop *> Loops;
  findLoops(AF, Loops);
  for (const Loop *L : Loops)
    if (Context.BoxedLoopsSet.count(L))
      IsVariantInNonAffineLoop = true;

  auto *Scope = LI.getLoopFor(Inst->getParent());
  bool IsAffine = !IsVariantInNonAffineLoop && isAffine(AF, Scope, Context);
  // Do not try to delinearize memory intrinsics and force them to be affine.
  if (isa<MemIntrinsic>(Inst) && !IsAffine) {
    return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
                                          BV);
  } else if (PollyDelinearize && !IsVariantInNonAffineLoop) {
    Context.Accesses[BP].push_back({Inst, AF});

    if (!IsAffine)
      Context.NonAffineAccesses.insert(
          std::make_pair(BP, LI.getLoopFor(Inst->getParent())));
  } else if (!AllowNonAffine && !IsAffine) {
    return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
                                          BV);
  }

  if (IgnoreAliasing)
    return true;

  // Check if the base pointer of the memory access does alias with
  // any other pointer. This cannot be handled at the moment.
  AAMDNodes AATags = Inst->getAAMetadata();
  AliasSet &AS = Context.AST.getAliasSetFor(
      MemoryLocation::getBeforeOrAfter(BP->getValue(), AATags));

  if (!AS.isMustAlias()) {
    if (PollyUseRuntimeAliasChecks) {
      bool CanBuildRunTimeCheck = true;
      // The run-time alias check places code that involves the base pointer at
      // the beginning of the SCoP. This breaks if the base pointer is defined
      // inside the scop. Hence, we can only create a run-time check if we are
      // sure the base pointer is not an instruction defined inside the scop.
      // However, we can ignore loads that will be hoisted.

      InvariantLoadsSetTy VariantLS, InvariantLS;
      // In order to detect loads which are dependent on other invariant loads
      // as invariant, we use fixed-point iteration method here i.e we iterate
      // over the alias set for arbitrary number of times until it is safe to
      // assume that all the invariant loads have been detected
      while (1) {
        const unsigned int VariantSize = VariantLS.size(),
                           InvariantSize = InvariantLS.size();

        for (const auto &Ptr : AS) {
          Instruction *Inst = dyn_cast<Instruction>(Ptr.getValue());
          if (Inst && Context.CurRegion.contains(Inst)) {
            auto *Load = dyn_cast<LoadInst>(Inst);
            if (Load && InvariantLS.count(Load))
              continue;
            if (Load && isHoistableLoad(Load, Context.CurRegion, LI, SE, DT,
                                        InvariantLS)) {
              if (VariantLS.count(Load))
                VariantLS.remove(Load);
              Context.RequiredILS.insert(Load);
              InvariantLS.insert(Load);
            } else {
              CanBuildRunTimeCheck = false;
              VariantLS.insert(Load);
            }
          }
        }

        if (InvariantSize == InvariantLS.size() &&
            VariantSize == VariantLS.size())
          break;
      }

      if (CanBuildRunTimeCheck)
        return true;
    }
    return invalid<ReportAlias>(Context, /*Assert=*/true, Inst, AS);
  }

  return true;
}

bool ScopDetection::isValidMemoryAccess(MemAccInst Inst,
                                        DetectionContext &Context) const {
  Value *Ptr = Inst.getPointerOperand();
  Loop *L = LI.getLoopFor(Inst->getParent());
  const SCEV *AccessFunction = SE.getSCEVAtScope(Ptr, L);
  const SCEVUnknown *BasePointer;

  BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));

  return isValidAccess(Inst, AccessFunction, BasePointer, Context);
}

bool ScopDetection::isValidInstruction(Instruction &Inst,
                                       DetectionContext &Context) {
  for (auto &Op : Inst.operands()) {
    auto *OpInst = dyn_cast<Instruction>(&Op);

    if (!OpInst)
      continue;

    if (isErrorBlock(*OpInst->getParent(), Context.CurRegion)) {
      auto *PHI = dyn_cast<PHINode>(OpInst);
      if (PHI) {
        for (User *U : PHI->users()) {
          auto *UI = dyn_cast<Instruction>(U);
          if (!UI || !UI->isTerminator())
            return false;
        }
      } else {
        return false;
      }
    }
  }

  if (isa<LandingPadInst>(&Inst) || isa<ResumeInst>(&Inst))
    return false;

  // We only check the call instruction but not invoke instruction.
  if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
    if (isValidCallInst(*CI, Context))
      return true;

    return invalid<ReportFuncCall>(Context, /*Assert=*/true, &Inst);
  }

  if (!Inst.mayReadOrWriteMemory()) {
    if (!isa<AllocaInst>(Inst))
      return true;

    return invalid<ReportAlloca>(Context, /*Assert=*/true, &Inst);
  }

  // Check the access function.
  if (auto MemInst = MemAccInst::dyn_cast(Inst)) {
    Context.hasStores |= isa<StoreInst>(MemInst);
    Context.hasLoads |= isa<LoadInst>(MemInst);
    if (!MemInst.isSimple())
      return invalid<ReportNonSimpleMemoryAccess>(Context, /*Assert=*/true,
                                                  &Inst);

    return isValidMemoryAccess(MemInst, Context);
  }

  // We do not know this instruction, therefore we assume it is invalid.
  return invalid<ReportUnknownInst>(Context, /*Assert=*/true, &Inst);
}

/// Check whether @p L has exiting blocks.
///
/// @param L The loop of interest
///
/// @return True if the loop has exiting blocks, false otherwise.
static bool hasExitingBlocks(Loop *L) {
  SmallVector<BasicBlock *, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
  return !ExitingBlocks.empty();
}

bool ScopDetection::canUseISLTripCount(Loop *L, DetectionContext &Context) {
  // Ensure the loop has valid exiting blocks as well as latches, otherwise we
  // need to overapproximate it as a boxed loop.
  SmallVector<BasicBlock *, 4> LoopControlBlocks;
  L->getExitingBlocks(LoopControlBlocks);
  L->getLoopLatches(LoopControlBlocks);
  for (BasicBlock *ControlBB : LoopControlBlocks) {
    if (!isValidCFG(*ControlBB, true, false, Context))
      return false;
  }

  // We can use ISL to compute the trip count of L.
  return true;
}

bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) {
  // Loops that contain part but not all of the blocks of a region cannot be
  // handled by the schedule generation. Such loop constructs can happen
  // because a region can contain BBs that have no path to the exit block
  // (Infinite loops, UnreachableInst), but such blocks are never part of a
  // loop.
  //
  // _______________
  // | Loop Header | <-----------.
  // ---------------             |
  //        |                    |
  // _______________       ______________
  // | RegionEntry |-----> | RegionExit |----->
  // ---------------       --------------
  //        |
  // _______________
  // | EndlessLoop | <--.
  // ---------------    |
  //       |            |
  //       \------------/
  //
  // In the example above, the loop (LoopHeader,RegionEntry,RegionExit) is
  // neither entirely contained in the region RegionEntry->RegionExit
  // (containing RegionEntry,EndlessLoop) nor is the region entirely contained
  // in the loop.
  // The block EndlessLoop is contained in the region because Region::contains
  // tests whether it is not dominated by RegionExit. This is probably to not
  // having to query the PostdominatorTree. Instead of an endless loop, a dead
  // end can also be formed by an UnreachableInst. This case is already caught
  // by isErrorBlock(). We hence only have to reject endless loops here.
  if (!hasExitingBlocks(L))
    return invalid<ReportLoopHasNoExit>(Context, /*Assert=*/true, L);

  // The algorithm for domain construction assumes that loops has only a single
  // exit block (and hence corresponds to a subregion). Note that we cannot use
  // L->getExitBlock() because it does not check whether all exiting edges point
  // to the same BB.
  SmallVector<BasicBlock *, 4> ExitBlocks;
  L->getExitBlocks(ExitBlocks);
  BasicBlock *TheExitBlock = ExitBlocks[0];
  for (BasicBlock *ExitBB : ExitBlocks) {
    if (TheExitBlock != ExitBB)
      return invalid<ReportLoopHasMultipleExits>(Context, /*Assert=*/true, L);
  }

  if (canUseISLTripCount(L, Context))
    return true;

  if (AllowNonAffineSubLoops && AllowNonAffineSubRegions) {
    Region *R = RI.getRegionFor(L->getHeader());
    while (R != &Context.CurRegion && !R->contains(L))
      R = R->getParent();

    if (addOverApproximatedRegion(R, Context))
      return true;
  }

  const SCEV *LoopCount = SE.getBackedgeTakenCount(L);
  return invalid<ReportLoopBound>(Context, /*Assert=*/true, L, LoopCount);
}

/// Return the number of loops in @p L (incl. @p L) that have a trip
///        count that is not known to be less than @MinProfitableTrips.
ScopDetection::LoopStats
ScopDetection::countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
                                       unsigned MinProfitableTrips) {
  auto *TripCount = SE.getBackedgeTakenCount(L);

  int NumLoops = 1;
  int MaxLoopDepth = 1;
  if (MinProfitableTrips > 0)
    if (auto *TripCountC = dyn_cast<SCEVConstant>(TripCount))
      if (TripCountC->getType()->getScalarSizeInBits() <= 64)
        if (TripCountC->getValue()->getZExtValue() <= MinProfitableTrips)
          NumLoops -= 1;

  for (auto &SubLoop : *L) {
    LoopStats Stats = countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
    NumLoops += Stats.NumLoops;
    MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth + 1);
  }

  return {NumLoops, MaxLoopDepth};
}

ScopDetection::LoopStats
ScopDetection::countBeneficialLoops(Region *R, ScalarEvolution &SE,
                                    LoopInfo &LI, unsigned MinProfitableTrips) {
  int LoopNum = 0;
  int MaxLoopDepth = 0;

  auto L = LI.getLoopFor(R->getEntry());

  // If L is fully contained in R, move to first loop surrounding R. Otherwise,
  // L is either nullptr or already surrounding R.
  if (L && R->contains(L)) {
    L = R->outermostLoopInRegion(L);
    L = L->getParentLoop();
  }

  auto SubLoops =
      L ? L->getSubLoopsVector() : std::vector<Loop *>(LI.begin(), LI.end());

  for (auto &SubLoop : SubLoops)
    if (R->contains(SubLoop)) {
      LoopStats Stats =
          countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
      LoopNum += Stats.NumLoops;
      MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth);
    }

  return {LoopNum, MaxLoopDepth};
}

static bool isErrorBlockImpl(BasicBlock &BB, const Region &R, LoopInfo &LI,
                             const DominatorTree &DT) {
  if (isa<UnreachableInst>(BB.getTerminator()))
    return true;

  if (LI.isLoopHeader(&BB))
    return false;

  // Don't consider something outside the SCoP as error block. It will precede
  // the code versioning runtime check.
  if (!R.contains(&BB))
    return false;

  // Basic blocks that are always executed are not considered error blocks,
  // as their execution can not be a rare event.
  bool DominatesAllPredecessors = true;
  if (R.isTopLevelRegion()) {
    for (BasicBlock &I : *R.getEntry()->getParent()) {
      if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I)) {
        DominatesAllPredecessors = false;
        break;
      }
    }
  } else {
    for (auto Pred : predecessors(R.getExit())) {
      if (R.contains(Pred) && !DT.dominates(&BB, Pred)) {
        DominatesAllPredecessors = false;
        break;
      }
    }
  }

  if (DominatesAllPredecessors)
    return false;

  for (Instruction &Inst : BB)
    if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
      if (isDebugCall(CI))
        continue;

      if (isIgnoredIntrinsic(CI))
        continue;

      // memset, memcpy and memmove are modeled intrinsics.
      if (isa<MemSetInst>(CI) || isa<MemTransferInst>(CI))
        continue;

      if (!CI->doesNotAccessMemory())
        return true;
      if (CI->doesNotReturn())
        return true;
    }

  return false;
}

bool ScopDetection::isErrorBlock(llvm::BasicBlock &BB, const llvm::Region &R) {
  if (!PollyAllowErrorBlocks)
    return false;

  auto It = ErrorBlockCache.insert({std::make_pair(&BB, &R), false});
  if (!It.second)
    return It.first->getSecond();

  bool Result = isErrorBlockImpl(BB, R, LI, DT);
  It.first->second = Result;
  return Result;
}

Region *ScopDetection::expandRegion(Region &R) {
  // Initial no valid region was found (greater than R)
  std::unique_ptr<Region> LastValidRegion;
  auto ExpandedRegion = std::unique_ptr<Region>(R.getExpandedRegion());

  LLVM_DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n");

  while (ExpandedRegion) {
    BBPair P = getBBPairForRegion(ExpandedRegion.get());
    std::unique_ptr<DetectionContext> &Entry = DetectionContextMap[P];
    Entry = std::make_unique<DetectionContext>(*ExpandedRegion, AA,
                                               /*Verifying=*/false);
    DetectionContext &Context = *Entry.get();

    LLVM_DEBUG(dbgs() << "\t\tTrying " << ExpandedRegion->getNameStr() << "\n");
    // Only expand when we did not collect errors.

    if (!Context.Log.hasErrors()) {
      // If the exit is valid check all blocks
      //  - if true, a valid region was found => store it + keep expanding
      //  - if false, .tbd. => stop  (should this really end the loop?)
      if (!allBlocksValid(Context) || Context.Log.hasErrors()) {
        removeCachedResults(*ExpandedRegion);
        DetectionContextMap.erase(P);
        break;
      }

      // Store this region, because it is the greatest valid (encountered so
      // far).
      if (LastValidRegion) {
        removeCachedResults(*LastValidRegion);
        DetectionContextMap.erase(P);
      }
      LastValidRegion = std::move(ExpandedRegion);

      // Create and test the next greater region (if any)
      ExpandedRegion =
          std::unique_ptr<Region>(LastValidRegion->getExpandedRegion());

    } else {
      // Create and test the next greater region (if any)
      removeCachedResults(*ExpandedRegion);
      DetectionContextMap.erase(P);
      ExpandedRegion =
          std::unique_ptr<Region>(ExpandedRegion->getExpandedRegion());
    }
  }

  LLVM_DEBUG({
    if (LastValidRegion)
      dbgs() << "\tto " << LastValidRegion->getNameStr() << "\n";
    else
      dbgs() << "\tExpanding " << R.getNameStr() << " failed\n";
  });

  return LastValidRegion.release();
}

static bool regionWithoutLoops(Region &R, LoopInfo &LI) {
  for (const BasicBlock *BB : R.blocks())
    if (R.contains(LI.getLoopFor(BB)))
      return false;

  return true;
}

void ScopDetection::removeCachedResultsRecursively(const Region &R) {
  for (auto &SubRegion : R) {
    if (ValidRegions.count(SubRegion.get())) {
      removeCachedResults(*SubRegion.get());
    } else
      removeCachedResultsRecursively(*SubRegion);
  }
}

void ScopDetection::removeCachedResults(const Region &R) {
  ValidRegions.remove(&R);
}

void ScopDetection::findScops(Region &R) {
  std::unique_ptr<DetectionContext> &Entry =
      DetectionContextMap[getBBPairForRegion(&R)];
  Entry = std::make_unique<DetectionContext>(R, AA, /*Verifying=*/false);
  DetectionContext &Context = *Entry.get();

  bool RegionIsValid = false;
  if (!PollyProcessUnprofitable && regionWithoutLoops(R, LI))
    invalid<ReportUnprofitable>(Context, /*Assert=*/true, &R);
  else
    RegionIsValid = isValidRegion(Context);

  bool HasErrors = !RegionIsValid || Context.Log.size() > 0;

  if (HasErrors) {
    removeCachedResults(R);
  } else {
    ValidRegions.insert(&R);
    return;
  }

  for (auto &SubRegion : R)
    findScops(*SubRegion);

  // Try to expand regions.
  //
  // As the region tree normally only contains canonical regions, non canonical
  // regions that form a Scop are not found. Therefore, those non canonical
  // regions are checked by expanding the canonical ones.

  std::vector<Region *> ToExpand;

  for (auto &SubRegion : R)
    ToExpand.push_back(SubRegion.get());

  for (Region *CurrentRegion : ToExpand) {
    // Skip invalid regions. Regions may become invalid, if they are element of
    // an already expanded region.
    if (!ValidRegions.count(CurrentRegion))
      continue;

    // Skip regions that had errors.
    bool HadErrors = lookupRejectionLog(CurrentRegion)->hasErrors();
    if (HadErrors)
      continue;

    Region *ExpandedR = expandRegion(*CurrentRegion);

    if (!ExpandedR)
      continue;

    R.addSubRegion(ExpandedR, true);
    ValidRegions.insert(ExpandedR);
    removeCachedResults(*CurrentRegion);
    removeCachedResultsRecursively(*ExpandedR);
  }
}

bool ScopDetection::allBlocksValid(DetectionContext &Context) {
  Region &CurRegion = Context.CurRegion;

  for (const BasicBlock *BB : CurRegion.blocks()) {
    Loop *L = LI.getLoopFor(BB);
    if (L && L->getHeader() == BB) {
      if (CurRegion.contains(L)) {
        if (!isValidLoop(L, Context) && !KeepGoing)
          return false;
      } else {
        SmallVector<BasicBlock *, 1> Latches;
        L->getLoopLatches(Latches);
        for (BasicBlock *Latch : Latches)
          if (CurRegion.contains(Latch))
            return invalid<ReportLoopOnlySomeLatches>(Context, /*Assert=*/true,
                                                      L);
      }
    }
  }

  for (BasicBlock *BB : CurRegion.blocks()) {
    bool IsErrorBlock = isErrorBlock(*BB, CurRegion);

    // Also check exception blocks (and possibly register them as non-affine
    // regions). Even though exception blocks are not modeled, we use them
    // to forward-propagate domain constraints during ScopInfo construction.
    if (!isValidCFG(*BB, false, IsErrorBlock, Context) && !KeepGoing)
      return false;

    if (IsErrorBlock)
      continue;

    for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ++I)
      if (!isValidInstruction(*I, Context) && !KeepGoing)
        return false;
  }

  if (!hasAffineMemoryAccesses(Context))
    return false;

  return true;
}

bool ScopDetection::hasSufficientCompute(DetectionContext &Context,
                                         int NumLoops) const {
  int InstCount = 0;

  if (NumLoops == 0)
    return false;

  for (auto *BB : Context.CurRegion.blocks())
    if (Context.CurRegion.contains(LI.getLoopFor(BB)))
      InstCount += BB->size();

  InstCount = InstCount / NumLoops;

  return InstCount >= ProfitabilityMinPerLoopInstructions;
}

bool ScopDetection::hasPossiblyDistributableLoop(
    DetectionContext &Context) const {
  for (auto *BB : Context.CurRegion.blocks()) {
    auto *L = LI.getLoopFor(BB);
    if (!Context.CurRegion.contains(L))
      continue;
    if (Context.BoxedLoopsSet.count(L))
      continue;
    unsigned StmtsWithStoresInLoops = 0;
    for (auto *LBB : L->blocks()) {
      bool MemStore = false;
      for (auto &I : *LBB)
        MemStore |= isa<StoreInst>(&I);
      StmtsWithStoresInLoops += MemStore;
    }
    return (StmtsWithStoresInLoops > 1);
  }
  return false;
}

bool ScopDetection::isProfitableRegion(DetectionContext &Context) const {
  Region &CurRegion = Context.CurRegion;

  if (PollyProcessUnprofitable)
    return true;

  // We can probably not do a lot on scops that only write or only read
  // data.
  if (!Context.hasStores || !Context.hasLoads)
    return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);

  int NumLoops =
      countBeneficialLoops(&CurRegion, SE, LI, MIN_LOOP_TRIP_COUNT).NumLoops;
  int NumAffineLoops = NumLoops - Context.BoxedLoopsSet.size();

  // Scops with at least two loops may allow either loop fusion or tiling and
  // are consequently interesting to look at.
  if (NumAffineLoops >= 2)
    return true;

  // A loop with multiple non-trivial blocks might be amendable to distribution.
  if (NumAffineLoops == 1 && hasPossiblyDistributableLoop(Context))
    return true;

  // Scops that contain a loop with a non-trivial amount of computation per
  // loop-iteration are interesting as we may be able to parallelize such
  // loops. Individual loops that have only a small amount of computation
  // per-iteration are performance-wise very fragile as any change to the
  // loop induction variables may affect performance. To not cause spurious
  // performance regressions, we do not consider such loops.
  if (NumAffineLoops == 1 && hasSufficientCompute(Context, NumLoops))
    return true;

  return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
}

bool ScopDetection::isValidRegion(DetectionContext &Context) {
  Region &CurRegion = Context.CurRegion;

  LLVM_DEBUG(dbgs() << "Checking region: " << CurRegion.getNameStr() << "\n\t");

  if (!PollyAllowFullFunction && CurRegion.isTopLevelRegion()) {
    LLVM_DEBUG(dbgs() << "Top level region is invalid\n");
    return false;
  }

  DebugLoc DbgLoc;
  if (CurRegion.getExit() &&
      isa<UnreachableInst>(CurRegion.getExit()->getTerminator())) {
    LLVM_DEBUG(dbgs() << "Unreachable in exit\n");
    return invalid<ReportUnreachableInExit>(Context, /*Assert=*/true,
                                            CurRegion.getExit(), DbgLoc);
  }

  if (!OnlyRegion.empty() &&
      !CurRegion.getEntry()->getName().count(OnlyRegion)) {
    LLVM_DEBUG({
      dbgs() << "Region entry does not match -polly-only-region";
      dbgs() << "\n";
    });
    return false;
  }

  for (BasicBlock *Pred : predecessors(CurRegion.getEntry())) {
    Instruction *PredTerm = Pred->getTerminator();
    if (isa<IndirectBrInst>(PredTerm) || isa<CallBrInst>(PredTerm))
      return invalid<ReportIndirectPredecessor>(
          Context, /*Assert=*/true, PredTerm, PredTerm->getDebugLoc());
  }

  // SCoP cannot contain the entry block of the function, because we need
  // to insert alloca instruction there when translate scalar to array.
  if (!PollyAllowFullFunction &&
      CurRegion.getEntry() ==
          &(CurRegion.getEntry()->getParent()->getEntryBlock()))
    return invalid<ReportEntry>(Context, /*Assert=*/true, CurRegion.getEntry());

  if (!allBlocksValid(Context))
    return false;

  if (!isReducibleRegion(CurRegion, DbgLoc))
    return invalid<ReportIrreducibleRegion>(Context, /*Assert=*/true,
                                            &CurRegion, DbgLoc);

  LLVM_DEBUG(dbgs() << "OK\n");
  return true;
}

void ScopDetection::markFunctionAsInvalid(Function *F) {
  F->addFnAttr(PollySkipFnAttr);
}

bool ScopDetection::isValidFunction(Function &F) {
  return !F.hasFnAttribute(PollySkipFnAttr);
}

void ScopDetection::printLocations(Function &F) {
  for (const Region *R : *this) {
    unsigned LineEntry, LineExit;
    std::string FileName;

    getDebugLocation(R, LineEntry, LineExit, FileName);
    DiagnosticScopFound Diagnostic(F, FileName, LineEntry, LineExit);
    F.getContext().diagnose(Diagnostic);
  }
}

void ScopDetection::emitMissedRemarks(const Function &F) {
  for (auto &DIt : DetectionContextMap) {
    DetectionContext &DC = *DIt.getSecond().get();
    if (DC.Log.hasErrors())
      emitRejectionRemarks(DIt.getFirst(), DC.Log, ORE);
  }
}

bool ScopDetection::isReducibleRegion(Region &R, DebugLoc &DbgLoc) const {
  /// Enum for coloring BBs in Region.
  ///
  /// WHITE - Unvisited BB in DFS walk.
  /// GREY - BBs which are currently on the DFS stack for processing.
  /// BLACK - Visited and completely processed BB.
  enum Color { WHITE, GREY, BLACK };

  BasicBlock *REntry = R.getEntry();
  BasicBlock *RExit = R.getExit();
  // Map to match the color of a BasicBlock during the DFS walk.
  DenseMap<const BasicBlock *, Color> BBColorMap;
  // Stack keeping track of current BB and index of next child to be processed.
  std::stack<std::pair<BasicBlock *, unsigned>> DFSStack;

  unsigned AdjacentBlockIndex = 0;
  BasicBlock *CurrBB, *SuccBB;
  CurrBB = REntry;

  // Initialize the map for all BB with WHITE color.
  for (auto *BB : R.blocks())
    BBColorMap[BB] = WHITE;

  // Process the entry block of the Region.
  BBColorMap[CurrBB] = GREY;
  DFSStack.push(std::make_pair(CurrBB, 0));

  while (!DFSStack.empty()) {
    // Get next BB on stack to be processed.
    CurrBB = DFSStack.top().first;
    AdjacentBlockIndex = DFSStack.top().second;
    DFSStack.pop();

    // Loop to iterate over the successors of current BB.
    const Instruction *TInst = CurrBB->getTerminator();
    unsigned NSucc = TInst->getNumSuccessors();
    for (unsigned I = AdjacentBlockIndex; I < NSucc;
         ++I, ++AdjacentBlockIndex) {
      SuccBB = TInst->getSuccessor(I);

      // Checks for region exit block and self-loops in BB.
      if (SuccBB == RExit || SuccBB == CurrBB)
        continue;

      // WHITE indicates an unvisited BB in DFS walk.
      if (BBColorMap[SuccBB] == WHITE) {
        // Push the current BB and the index of the next child to be visited.
        DFSStack.push(std::make_pair(CurrBB, I + 1));
        // Push the next BB to be processed.
        DFSStack.push(std::make_pair(SuccBB, 0));
        // First time the BB is being processed.
        BBColorMap[SuccBB] = GREY;
        break;
      } else if (BBColorMap[SuccBB] == GREY) {
        // GREY indicates a loop in the control flow.
        // If the destination dominates the source, it is a natural loop
        // else, an irreducible control flow in the region is detected.
        if (!DT.dominates(SuccBB, CurrBB)) {
          // Get debug info of instruction which causes irregular control flow.
          DbgLoc = TInst->getDebugLoc();
          return false;
        }
      }
    }

    // If all children of current BB have been processed,
    // then mark that BB as fully processed.
    if (AdjacentBlockIndex == NSucc)
      BBColorMap[CurrBB] = BLACK;
  }

  return true;
}

static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
                                     bool OnlyProfitable) {
  if (!OnlyProfitable) {
    NumLoopsInScop += Stats.NumLoops;
    MaxNumLoopsInScop =
        std::max(MaxNumLoopsInScop.getValue(), (unsigned)Stats.NumLoops);
    if (Stats.MaxDepth == 0)
      NumScopsDepthZero++;
    else if (Stats.MaxDepth == 1)
      NumScopsDepthOne++;
    else if (Stats.MaxDepth == 2)
      NumScopsDepthTwo++;
    else if (Stats.MaxDepth == 3)
      NumScopsDepthThree++;
    else if (Stats.MaxDepth == 4)
      NumScopsDepthFour++;
    else if (Stats.MaxDepth == 5)
      NumScopsDepthFive++;
    else
      NumScopsDepthLarger++;
  } else {
    NumLoopsInProfScop += Stats.NumLoops;
    MaxNumLoopsInProfScop =
        std::max(MaxNumLoopsInProfScop.getValue(), (unsigned)Stats.NumLoops);
    if (Stats.MaxDepth == 0)
      NumProfScopsDepthZero++;
    else if (Stats.MaxDepth == 1)
      NumProfScopsDepthOne++;
    else if (Stats.MaxDepth == 2)
      NumProfScopsDepthTwo++;
    else if (Stats.MaxDepth == 3)
      NumProfScopsDepthThree++;
    else if (Stats.MaxDepth == 4)
      NumProfScopsDepthFour++;
    else if (Stats.MaxDepth == 5)
      NumProfScopsDepthFive++;
    else
      NumProfScopsDepthLarger++;
  }
}

ScopDetection::DetectionContext *
ScopDetection::getDetectionContext(const Region *R) const {
  auto DCMIt = DetectionContextMap.find(getBBPairForRegion(R));
  if (DCMIt == DetectionContextMap.end())
    return nullptr;
  return DCMIt->second.get();
}

const RejectLog *ScopDetection::lookupRejectionLog(const Region *R) const {
  const DetectionContext *DC = getDetectionContext(R);
  return DC ? &DC->Log : nullptr;
}

void ScopDetection::verifyRegion(const Region &R) {
  assert(isMaxRegionInScop(R) && "Expect R is a valid region.");

  DetectionContext Context(const_cast<Region &>(R), AA, true /*verifying*/);
  isValidRegion(Context);
}

void ScopDetection::verifyAnalysis() {
  if (!VerifyScops)
    return;

  for (const Region *R : ValidRegions)
    verifyRegion(*R);
}

bool ScopDetectionWrapperPass::runOnFunction(Function &F) {
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto &RI = getAnalysis<RegionInfoPass>().getRegionInfo();
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

  Result = std::make_unique<ScopDetection>(DT, SE, LI, RI, AA, ORE);
  Result->detect(F);
  return false;
}

void ScopDetectionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
  // We also need AA and RegionInfo when we are verifying analysis.
  AU.addRequiredTransitive<AAResultsWrapperPass>();
  AU.addRequiredTransitive<RegionInfoPass>();
  AU.setPreservesAll();
}

void ScopDetectionWrapperPass::print(raw_ostream &OS, const Module *) const {
  for (const Region *R : Result->ValidRegions)
    OS << "Valid Region for Scop: " << R->getNameStr() << '\n';

  OS << "\n";
}

ScopDetectionWrapperPass::ScopDetectionWrapperPass() : FunctionPass(ID) {
  // Disable runtime alias checks if we ignore aliasing all together.
  if (IgnoreAliasing)
    PollyUseRuntimeAliasChecks = false;
}

ScopAnalysis::ScopAnalysis() {
  // Disable runtime alias checks if we ignore aliasing all together.
  if (IgnoreAliasing)
    PollyUseRuntimeAliasChecks = false;
}

void ScopDetectionWrapperPass::releaseMemory() { Result.reset(); }

char ScopDetectionWrapperPass::ID;

AnalysisKey ScopAnalysis::Key;

ScopDetection ScopAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
  auto &LI = FAM.getResult<LoopAnalysis>(F);
  auto &RI = FAM.getResult<RegionInfoAnalysis>(F);
  auto &AA = FAM.getResult<AAManager>(F);
  auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
  auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
  auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);

  ScopDetection Result(DT, SE, LI, RI, AA, ORE);
  Result.detect(F);
  return Result;
}

PreservedAnalyses ScopAnalysisPrinterPass::run(Function &F,
                                               FunctionAnalysisManager &FAM) {
  OS << "Detected Scops in Function " << F.getName() << "\n";
  auto &SD = FAM.getResult<ScopAnalysis>(F);
  for (const Region *R : SD.ValidRegions)
    OS << "Valid Region for Scop: " << R->getNameStr() << '\n';

  OS << "\n";
  return PreservedAnalyses::all();
}

Pass *polly::createScopDetectionWrapperPassPass() {
  return new ScopDetectionWrapperPass();
}

INITIALIZE_PASS_BEGIN(ScopDetectionWrapperPass, "polly-detect",
                      "Polly - Detect static control parts (SCoPs)", false,
                      false);
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass);
INITIALIZE_PASS_END(ScopDetectionWrapperPass, "polly-detect",
                    "Polly - Detect static control parts (SCoPs)", false, false)