summaryrefslogtreecommitdiff
path: root/release_23/include/llvm/CodeGen/SelectionDAGNodes.h
blob: f2ff91abf36916571893abb65c0eaf8cb8bac511 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SDNode class and derived classes, which are used to
// represent the nodes and operations present in a SelectionDAG.  These nodes
// and operations are machine code level operations, with some similarities to
// the GCC RTL representation.
//
// Clients should include the SelectionDAG.h file instead of this file directly.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
#define LLVM_CODEGEN_SELECTIONDAGNODES_H

#include "llvm/Value.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/Support/DataTypes.h"
#include <cassert>

namespace llvm {

class SelectionDAG;
class GlobalValue;
class MachineBasicBlock;
class MachineConstantPoolValue;
class SDNode;
template <typename T> struct DenseMapInfo;
template <typename T> struct simplify_type;
template <typename T> struct ilist_traits;
template<typename NodeTy, typename Traits> class iplist;
template<typename NodeTy> class ilist_iterator;

/// SDVTList - This represents a list of ValueType's that has been intern'd by
/// a SelectionDAG.  Instances of this simple value class are returned by
/// SelectionDAG::getVTList(...).
///
struct SDVTList {
  const MVT::ValueType *VTs;
  unsigned short NumVTs;
};

/// ISD namespace - This namespace contains an enum which represents all of the
/// SelectionDAG node types and value types.
///
namespace ISD {

  //===--------------------------------------------------------------------===//
  /// ISD::NodeType enum - This enum defines all of the operators valid in a
  /// SelectionDAG.
  ///
  enum NodeType {
    // DELETED_NODE - This is an illegal flag value that is used to catch
    // errors.  This opcode is not a legal opcode for any node.
    DELETED_NODE,
    
    // EntryToken - This is the marker used to indicate the start of the region.
    EntryToken,

    // Token factor - This node takes multiple tokens as input and produces a
    // single token result.  This is used to represent the fact that the operand
    // operators are independent of each other.
    TokenFactor,
    
    // AssertSext, AssertZext - These nodes record if a register contains a 
    // value that has already been zero or sign extended from a narrower type.  
    // These nodes take two operands.  The first is the node that has already 
    // been extended, and the second is a value type node indicating the width
    // of the extension
    AssertSext, AssertZext,

    // Various leaf nodes.
    STRING, BasicBlock, VALUETYPE, ARG_FLAGS, CONDCODE, Register,
    Constant, ConstantFP,
    GlobalAddress, GlobalTLSAddress, FrameIndex,
    JumpTable, ConstantPool, ExternalSymbol,

    // The address of the GOT
    GLOBAL_OFFSET_TABLE,
    
    // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
    // llvm.returnaddress on the DAG.  These nodes take one operand, the index
    // of the frame or return address to return.  An index of zero corresponds
    // to the current function's frame or return address, an index of one to the
    // parent's frame or return address, and so on.
    FRAMEADDR, RETURNADDR,

    // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
    // first (possible) on-stack argument. This is needed for correct stack
    // adjustment during unwind.
    FRAME_TO_ARGS_OFFSET,
    
    // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
    // address of the exception block on entry to an landing pad block.
    EXCEPTIONADDR,
    
    // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
    // the selection index of the exception thrown.
    EHSELECTION,

    // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
    // 'eh_return' gcc dwarf builtin, which is used to return from
    // exception. The general meaning is: adjust stack by OFFSET and pass
    // execution to HANDLER. Many platform-related details also :)
    EH_RETURN,

    // TargetConstant* - Like Constant*, but the DAG does not do any folding or
    // simplification of the constant.
    TargetConstant,
    TargetConstantFP,
    
    // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
    // anything else with this node, and this is valid in the target-specific
    // dag, turning into a GlobalAddress operand.
    TargetGlobalAddress,
    TargetGlobalTLSAddress,
    TargetFrameIndex,
    TargetJumpTable,
    TargetConstantPool,
    TargetExternalSymbol,
    
    /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
    /// This node represents a target intrinsic function with no side effects.
    /// The first operand is the ID number of the intrinsic from the
    /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
    /// node has returns the result of the intrinsic.
    INTRINSIC_WO_CHAIN,
    
    /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
    /// This node represents a target intrinsic function with side effects that
    /// returns a result.  The first operand is a chain pointer.  The second is
    /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
    /// operands to the intrinsic follow.  The node has two results, the result
    /// of the intrinsic and an output chain.
    INTRINSIC_W_CHAIN,

    /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
    /// This node represents a target intrinsic function with side effects that
    /// does not return a result.  The first operand is a chain pointer.  The
    /// second is the ID number of the intrinsic from the llvm::Intrinsic
    /// namespace.  The operands to the intrinsic follow.
    INTRINSIC_VOID,
    
    // CopyToReg - This node has three operands: a chain, a register number to
    // set to this value, and a value.  
    CopyToReg,

    // CopyFromReg - This node indicates that the input value is a virtual or
    // physical register that is defined outside of the scope of this
    // SelectionDAG.  The register is available from the RegisterSDNode object.
    CopyFromReg,

    // UNDEF - An undefined node
    UNDEF,
    
    /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node
    /// represents the formal arguments for a function.  CC# is a Constant value
    /// indicating the calling convention of the function, and ISVARARG is a
    /// flag that indicates whether the function is varargs or not. This node
    /// has one result value for each incoming argument, plus one for the output
    /// chain. It must be custom legalized. See description of CALL node for
    /// FLAG argument contents explanation.
    /// 
    FORMAL_ARGUMENTS,
    
    /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
    ///                              ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn)
    /// This node represents a fully general function call, before the legalizer
    /// runs.  This has one result value for each argument / flag pair, plus
    /// a chain result. It must be custom legalized. Flag argument indicates
    /// misc. argument attributes. Currently:
    /// Bit 0 - signness
    /// Bit 1 - 'inreg' attribute
    /// Bit 2 - 'sret' attribute
    /// Bit 4 - 'byval' attribute
    /// Bit 5 - 'nest' attribute
    /// Bit 6-9 - alignment of byval structures
    /// Bit 10-26 - size of byval structures
    /// Bits 31:27 - argument ABI alignment in the first argument piece and
    /// alignment '1' in other argument pieces.
    CALL,

    // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
    // a Constant, which is required to be operand #1) half of the integer value
    // specified as operand #0.  This is only for use before legalization, for
    // values that will be broken into multiple registers.
    EXTRACT_ELEMENT,

    // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
    // two values of the same integer value type, this produces a value twice as
    // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
    BUILD_PAIR,
    
    // MERGE_VALUES - This node takes multiple discrete operands and returns
    // them all as its individual results.  This nodes has exactly the same
    // number of inputs and outputs, and is only valid before legalization.
    // This node is useful for some pieces of the code generator that want to
    // think about a single node with multiple results, not multiple nodes.
    MERGE_VALUES,

    // Simple integer binary arithmetic operators.
    ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,

    // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
    // a signed/unsigned value of type i[2*N], and return the full value as
    // two results, each of type iN.
    SMUL_LOHI, UMUL_LOHI,

    // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
    // remainder result.
    SDIVREM, UDIVREM,
    
    // CARRY_FALSE - This node is used when folding other nodes,
    // like ADDC/SUBC, which indicate the carry result is always false.
    CARRY_FALSE,
    
    // Carry-setting nodes for multiple precision addition and subtraction.
    // These nodes take two operands of the same value type, and produce two
    // results.  The first result is the normal add or sub result, the second
    // result is the carry flag result.
    ADDC, SUBC,
    
    // Carry-using nodes for multiple precision addition and subtraction.  These
    // nodes take three operands: The first two are the normal lhs and rhs to
    // the add or sub, and the third is the input carry flag.  These nodes
    // produce two results; the normal result of the add or sub, and the output
    // carry flag.  These nodes both read and write a carry flag to allow them
    // to them to be chained together for add and sub of arbitrarily large
    // values.
    ADDE, SUBE,
    
    // Simple binary floating point operators.
    FADD, FSUB, FMUL, FDIV, FREM,

    // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
    // DAG node does not require that X and Y have the same type, just that they
    // are both floating point.  X and the result must have the same type.
    // FCOPYSIGN(f32, f64) is allowed.
    FCOPYSIGN,

    // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
    // value as an integer 0/1 value.
    FGETSIGN,
    
    /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector
    /// with the specified, possibly variable, elements.  The number of elements
    /// is required to be a power of two.
    BUILD_VECTOR,
    
    /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
    /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
    /// element type then VAL is truncated before replacement.
    INSERT_VECTOR_ELT,

    /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
    /// identified by the (potentially variable) element number IDX.
    EXTRACT_VECTOR_ELT,
    
    /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
    /// vector type with the same length and element type, this produces a
    /// concatenated vector result value, with length equal to the sum of the
    /// lengths of the input vectors.
    CONCAT_VECTORS,
    
    /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
    /// vector value) starting with the (potentially variable) element number
    /// IDX, which must be a multiple of the result vector length.
    EXTRACT_SUBVECTOR,

    /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
    /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
    /// (maybe of an illegal datatype) or undef that indicate which value each
    /// result element will get.  The elements of VEC1/VEC2 are enumerated in
    /// order.  This is quite similar to the Altivec 'vperm' instruction, except
    /// that the indices must be constants and are in terms of the element size
    /// of VEC1/VEC2, not in terms of bytes.
    VECTOR_SHUFFLE,

    /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
    /// scalar value into element 0 of the resultant vector type.  The top
    /// elements 1 to N-1 of the N-element vector are undefined.
    SCALAR_TO_VECTOR,
    
    // EXTRACT_SUBREG - This node is used to extract a sub-register value. 
    // This node takes a superreg and a constant sub-register index as operands.
    // Note sub-register indices must be increasing. That is, if the
    // sub-register index of a 8-bit sub-register is N, then the index for a
    // 16-bit sub-register must be at least N+1.
    EXTRACT_SUBREG,
    
    // INSERT_SUBREG - This node is used to insert a sub-register value. 
    // This node takes a superreg, a subreg value, and a constant sub-register
    // index as operands.
    INSERT_SUBREG,
    
    // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
    // an unsigned/signed value of type i[2*N], then return the top part.
    MULHU, MULHS,

    // Bitwise operators - logical and, logical or, logical xor, shift left,
    // shift right algebraic (shift in sign bits), shift right logical (shift in
    // zeroes), rotate left, rotate right, and byteswap.
    AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,

    // Counting operators
    CTTZ, CTLZ, CTPOP,

    // Select(COND, TRUEVAL, FALSEVAL)
    SELECT, 
    
    // Select with condition operator - This selects between a true value and 
    // a false value (ops #2 and #3) based on the boolean result of comparing
    // the lhs and rhs (ops #0 and #1) of a conditional expression with the 
    // condition code in op #4, a CondCodeSDNode.
    SELECT_CC,

    // SetCC operator - This evaluates to a boolean (i1) true value if the
    // condition is true.  The operands to this are the left and right operands
    // to compare (ops #0, and #1) and the condition code to compare them with
    // (op #2) as a CondCodeSDNode.
    SETCC,

    // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
    // integer shift operations, just like ADD/SUB_PARTS.  The operation
    // ordering is:
    //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
    SHL_PARTS, SRA_PARTS, SRL_PARTS,

    // Conversion operators.  These are all single input single output
    // operations.  For all of these, the result type must be strictly
    // wider or narrower (depending on the operation) than the source
    // type.

    // SIGN_EXTEND - Used for integer types, replicating the sign bit
    // into new bits.
    SIGN_EXTEND,

    // ZERO_EXTEND - Used for integer types, zeroing the new bits.
    ZERO_EXTEND,

    // ANY_EXTEND - Used for integer types.  The high bits are undefined.
    ANY_EXTEND,
    
    // TRUNCATE - Completely drop the high bits.
    TRUNCATE,

    // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
    // depends on the first letter) to floating point.
    SINT_TO_FP,
    UINT_TO_FP,

    // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
    // sign extend a small value in a large integer register (e.g. sign
    // extending the low 8 bits of a 32-bit register to fill the top 24 bits
    // with the 7th bit).  The size of the smaller type is indicated by the 1th
    // operand, a ValueType node.
    SIGN_EXTEND_INREG,

    /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
    /// integer.
    FP_TO_SINT,
    FP_TO_UINT,

    /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
    /// down to the precision of the destination VT.  TRUNC is a flag, which is
    /// always an integer that is zero or one.  If TRUNC is 0, this is a
    /// normal rounding, if it is 1, this FP_ROUND is known to not change the
    /// value of Y.
    ///
    /// The TRUNC = 1 case is used in cases where we know that the value will
    /// not be modified by the node, because Y is not using any of the extra
    /// precision of source type.  This allows certain transformations like
    /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for 
    /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
    FP_ROUND,
    
    // FLT_ROUNDS_ - Returns current rounding mode:
    // -1 Undefined
    //  0 Round to 0
    //  1 Round to nearest
    //  2 Round to +inf
    //  3 Round to -inf
    FLT_ROUNDS_,

    /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
    /// rounds it to a floating point value.  It then promotes it and returns it
    /// in a register of the same size.  This operation effectively just
    /// discards excess precision.  The type to round down to is specified by
    /// the VT operand, a VTSDNode.
    FP_ROUND_INREG,

    /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
    FP_EXTEND,

    // BIT_CONVERT - Theis operator converts between integer and FP values, as
    // if one was stored to memory as integer and the other was loaded from the
    // same address (or equivalently for vector format conversions, etc).  The 
    // source and result are required to have the same bit size (e.g. 
    // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp 
    // conversions, but that is a noop, deleted by getNode().
    BIT_CONVERT,
    
    // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW - Perform unary floating point
    // negation, absolute value, square root, sine and cosine, powi, and pow
    // operations.
    FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
    
    // LOAD and STORE have token chains as their first operand, then the same
    // operands as an LLVM load/store instruction, then an offset node that
    // is added / subtracted from the base pointer to form the address (for
    // indexed memory ops).
    LOAD, STORE,

    // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
    // to a specified boundary.  This node always has two return values: a new
    // stack pointer value and a chain. The first operand is the token chain,
    // the second is the number of bytes to allocate, and the third is the
    // alignment boundary.  The size is guaranteed to be a multiple of the stack
    // alignment, and the alignment is guaranteed to be bigger than the stack
    // alignment (if required) or 0 to get standard stack alignment.
    DYNAMIC_STACKALLOC,

    // Control flow instructions.  These all have token chains.

    // BR - Unconditional branch.  The first operand is the chain
    // operand, the second is the MBB to branch to.
    BR,

    // BRIND - Indirect branch.  The first operand is the chain, the second
    // is the value to branch to, which must be of the same type as the target's
    // pointer type.
    BRIND,

    // BR_JT - Jumptable branch. The first operand is the chain, the second
    // is the jumptable index, the last one is the jumptable entry index.
    BR_JT,
    
    // BRCOND - Conditional branch.  The first operand is the chain,
    // the second is the condition, the third is the block to branch
    // to if the condition is true.
    BRCOND,

    // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
    // that the condition is represented as condition code, and two nodes to
    // compare, rather than as a combined SetCC node.  The operands in order are
    // chain, cc, lhs, rhs, block to branch to if condition is true.
    BR_CC,
    
    // RET - Return from function.  The first operand is the chain,
    // and any subsequent operands are pairs of return value and return value
    // signness for the function.  This operation can have variable number of
    // operands.
    RET,

    // INLINEASM - Represents an inline asm block.  This node always has two
    // return values: a chain and a flag result.  The inputs are as follows:
    //   Operand #0   : Input chain.
    //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
    //   Operand #2n+2: A RegisterNode.
    //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
    //   Operand #last: Optional, an incoming flag.
    INLINEASM,
    
    // LABEL - Represents a label in mid basic block used to track
    // locations needed for debug and exception handling tables.  This node
    // returns a chain.
    //   Operand #0 : input chain.
    //   Operand #1 : module unique number use to identify the label.
    //   Operand #2 : 0 indicates a debug label (e.g. stoppoint), 1 indicates
    //                a EH label, 2 indicates unknown label type.
    LABEL,

    // DECLARE - Represents a llvm.dbg.declare intrinsic. It's used to track
    // local variable declarations for debugging information. First operand is
    // a chain, while the next two operands are first two arguments (address
    // and variable) of a llvm.dbg.declare instruction.
    DECLARE,
    
    // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
    // value, the same type as the pointer type for the system, and an output
    // chain.
    STACKSAVE,
    
    // STACKRESTORE has two operands, an input chain and a pointer to restore to
    // it returns an output chain.
    STACKRESTORE,
    
    // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
    // a call sequence, and carry arbitrary information that target might want
    // to know.  The first operand is a chain, the rest are specified by the
    // target and not touched by the DAG optimizers.
    // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
    CALLSEQ_START,  // Beginning of a call sequence
    CALLSEQ_END,    // End of a call sequence
    
    // VAARG - VAARG has three operands: an input chain, a pointer, and a 
    // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
    VAARG,
    
    // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
    // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
    // source.
    VACOPY,
    
    // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
    // pointer, and a SRCVALUE.
    VAEND, VASTART,

    // SRCVALUE - This is a node type that holds a Value* that is used to
    // make reference to a value in the LLVM IR.
    SRCVALUE,

    // MEMOPERAND - This is a node that contains a MachineMemOperand which
    // records information about a memory reference. This is used to make
    // AliasAnalysis queries from the backend.
    MEMOPERAND,

    // PCMARKER - This corresponds to the pcmarker intrinsic.
    PCMARKER,

    // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
    // The only operand is a chain and a value and a chain are produced.  The
    // value is the contents of the architecture specific cycle counter like 
    // register (or other high accuracy low latency clock source)
    READCYCLECOUNTER,

    // HANDLENODE node - Used as a handle for various purposes.
    HANDLENODE,

    // LOCATION - This node is used to represent a source location for debug
    // info.  It takes token chain as input, then a line number, then a column
    // number, then a filename, then a working dir.  It produces a token chain
    // as output.
    LOCATION,
    
    // DEBUG_LOC - This node is used to represent source line information
    // embedded in the code.  It takes a token chain as input, then a line
    // number, then a column then a file id (provided by MachineModuleInfo.) It
    // produces a token chain as output.
    DEBUG_LOC,

    // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
    // It takes as input a token chain, the pointer to the trampoline,
    // the pointer to the nested function, the pointer to pass for the
    // 'nest' parameter, a SRCVALUE for the trampoline and another for
    // the nested function (allowing targets to access the original
    // Function*).  It produces the result of the intrinsic and a token
    // chain as output.
    TRAMPOLINE,

    // TRAP - Trapping instruction
    TRAP,

    // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
    // their first operand. The other operands are the address to prefetch,
    // read / write specifier, and locality specifier.
    PREFETCH,

    // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load, 
    //                       store-store, device)
    // This corresponds to the memory.barrier intrinsic.
    // it takes an input chain, 4 operands to specify the type of barrier, an
    // operand specifying if the barrier applies to device and uncached memory
    // and produces an output chain.
    MEMBARRIER,

    // Val, OUTCHAIN = ATOMIC_LCS(INCHAIN, ptr, cmp, swap)
    // this corresponds to the atomic.lcs intrinsic.
    // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
    // the return is always the original value in *ptr
    ATOMIC_LCS,

    // Val, OUTCHAIN = ATOMIC_LAS(INCHAIN, ptr, amt)
    // this corresponds to the atomic.las intrinsic.
    // *ptr + amt is stored to *ptr atomically.
    // the return is always the original value in *ptr
    ATOMIC_LAS,

    // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
    // this corresponds to the atomic.swap intrinsic.
    // amt is stored to *ptr atomically.
    // the return is always the original value in *ptr
    ATOMIC_SWAP,

    // Val, OUTCHAIN = ATOMIC_LSS(INCHAIN, ptr, amt)
    // this corresponds to the atomic.lss intrinsic.
    // *ptr - amt is stored to *ptr atomically.
    // the return is always the original value in *ptr
    ATOMIC_LSS,
    
    // Val, OUTCHAIN = ATOMIC_L[OpName]S(INCHAIN, ptr, amt)
    // this corresponds to the atomic.[OpName] intrinsic.
    // op(*ptr, amt) is stored to *ptr atomically.
    // the return is always the original value in *ptr
    ATOMIC_LOAD_AND,
    ATOMIC_LOAD_OR,
    ATOMIC_LOAD_XOR,
    ATOMIC_LOAD_MIN,
    ATOMIC_LOAD_MAX,
    ATOMIC_LOAD_UMIN,
    ATOMIC_LOAD_UMAX,
    
    // BUILTIN_OP_END - This must be the last enum value in this list.
    BUILTIN_OP_END
  };

  /// Node predicates

  /// isBuildVectorAllOnes - Return true if the specified node is a
  /// BUILD_VECTOR where all of the elements are ~0 or undef.
  bool isBuildVectorAllOnes(const SDNode *N);

  /// isBuildVectorAllZeros - Return true if the specified node is a
  /// BUILD_VECTOR where all of the elements are 0 or undef.
  bool isBuildVectorAllZeros(const SDNode *N);

  /// isScalarToVector - Return true if the specified node is a
  /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
  /// element is not an undef.
  bool isScalarToVector(const SDNode *N);

  /// isDebugLabel - Return true if the specified node represents a debug
  /// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
  /// is 0).
  bool isDebugLabel(const SDNode *N);
  
  //===--------------------------------------------------------------------===//
  /// MemIndexedMode enum - This enum defines the load / store indexed 
  /// addressing modes.
  ///
  /// UNINDEXED    "Normal" load / store. The effective address is already
  ///              computed and is available in the base pointer. The offset
  ///              operand is always undefined. In addition to producing a
  ///              chain, an unindexed load produces one value (result of the
  ///              load); an unindexed store does not produce a value.
  ///
  /// PRE_INC      Similar to the unindexed mode where the effective address is
  /// PRE_DEC      the value of the base pointer add / subtract the offset.
  ///              It considers the computation as being folded into the load /
  ///              store operation (i.e. the load / store does the address
  ///              computation as well as performing the memory transaction).
  ///              The base operand is always undefined. In addition to
  ///              producing a chain, pre-indexed load produces two values
  ///              (result of the load and the result of the address
  ///              computation); a pre-indexed store produces one value (result
  ///              of the address computation).
  ///
  /// POST_INC     The effective address is the value of the base pointer. The
  /// POST_DEC     value of the offset operand is then added to / subtracted
  ///              from the base after memory transaction. In addition to
  ///              producing a chain, post-indexed load produces two values
  ///              (the result of the load and the result of the base +/- offset
  ///              computation); a post-indexed store produces one value (the
  ///              the result of the base +/- offset computation).
  ///
  enum MemIndexedMode {
    UNINDEXED = 0,
    PRE_INC,
    PRE_DEC,
    POST_INC,
    POST_DEC,
    LAST_INDEXED_MODE
  };

  //===--------------------------------------------------------------------===//
  /// LoadExtType enum - This enum defines the three variants of LOADEXT
  /// (load with extension).
  ///
  /// SEXTLOAD loads the integer operand and sign extends it to a larger
  ///          integer result type.
  /// ZEXTLOAD loads the integer operand and zero extends it to a larger
  ///          integer result type.
  /// EXTLOAD  is used for three things: floating point extending loads, 
  ///          integer extending loads [the top bits are undefined], and vector
  ///          extending loads [load into low elt].
  ///
  enum LoadExtType {
    NON_EXTLOAD = 0,
    EXTLOAD,
    SEXTLOAD,
    ZEXTLOAD,
    LAST_LOADX_TYPE
  };

  //===--------------------------------------------------------------------===//
  /// ISD::CondCode enum - These are ordered carefully to make the bitfields
  /// below work out, when considering SETFALSE (something that never exists
  /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
  /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
  /// to.  If the "N" column is 1, the result of the comparison is undefined if
  /// the input is a NAN.
  ///
  /// All of these (except for the 'always folded ops') should be handled for
  /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
  /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
  ///
  /// Note that these are laid out in a specific order to allow bit-twiddling
  /// to transform conditions.
  enum CondCode {
    // Opcode          N U L G E       Intuitive operation
    SETFALSE,      //    0 0 0 0       Always false (always folded)
    SETOEQ,        //    0 0 0 1       True if ordered and equal
    SETOGT,        //    0 0 1 0       True if ordered and greater than
    SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
    SETOLT,        //    0 1 0 0       True if ordered and less than
    SETOLE,        //    0 1 0 1       True if ordered and less than or equal
    SETONE,        //    0 1 1 0       True if ordered and operands are unequal
    SETO,          //    0 1 1 1       True if ordered (no nans)
    SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
    SETUEQ,        //    1 0 0 1       True if unordered or equal
    SETUGT,        //    1 0 1 0       True if unordered or greater than
    SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
    SETULT,        //    1 1 0 0       True if unordered or less than
    SETULE,        //    1 1 0 1       True if unordered, less than, or equal
    SETUNE,        //    1 1 1 0       True if unordered or not equal
    SETTRUE,       //    1 1 1 1       Always true (always folded)
    // Don't care operations: undefined if the input is a nan.
    SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
    SETEQ,         //  1 X 0 0 1       True if equal
    SETGT,         //  1 X 0 1 0       True if greater than
    SETGE,         //  1 X 0 1 1       True if greater than or equal
    SETLT,         //  1 X 1 0 0       True if less than
    SETLE,         //  1 X 1 0 1       True if less than or equal
    SETNE,         //  1 X 1 1 0       True if not equal
    SETTRUE2,      //  1 X 1 1 1       Always true (always folded)

    SETCC_INVALID       // Marker value.
  };

  /// isSignedIntSetCC - Return true if this is a setcc instruction that
  /// performs a signed comparison when used with integer operands.
  inline bool isSignedIntSetCC(CondCode Code) {
    return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
  }

  /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
  /// performs an unsigned comparison when used with integer operands.
  inline bool isUnsignedIntSetCC(CondCode Code) {
    return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
  }

  /// isTrueWhenEqual - Return true if the specified condition returns true if
  /// the two operands to the condition are equal.  Note that if one of the two
  /// operands is a NaN, this value is meaningless.
  inline bool isTrueWhenEqual(CondCode Cond) {
    return ((int)Cond & 1) != 0;
  }

  /// getUnorderedFlavor - This function returns 0 if the condition is always
  /// false if an operand is a NaN, 1 if the condition is always true if the
  /// operand is a NaN, and 2 if the condition is undefined if the operand is a
  /// NaN.
  inline unsigned getUnorderedFlavor(CondCode Cond) {
    return ((int)Cond >> 3) & 3;
  }

  /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
  /// 'op' is a valid SetCC operation.
  CondCode getSetCCInverse(CondCode Operation, bool isInteger);

  /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
  /// when given the operation for (X op Y).
  CondCode getSetCCSwappedOperands(CondCode Operation);

  /// getSetCCOrOperation - Return the result of a logical OR between different
  /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
  /// function returns SETCC_INVALID if it is not possible to represent the
  /// resultant comparison.
  CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);

  /// getSetCCAndOperation - Return the result of a logical AND between
  /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
  /// function returns SETCC_INVALID if it is not possible to represent the
  /// resultant comparison.
  CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
}  // end llvm::ISD namespace


//===----------------------------------------------------------------------===//
/// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
/// values as the result of a computation.  Many nodes return multiple values,
/// from loads (which define a token and a return value) to ADDC (which returns
/// a result and a carry value), to calls (which may return an arbitrary number
/// of values).
///
/// As such, each use of a SelectionDAG computation must indicate the node that
/// computes it as well as which return value to use from that node.  This pair
/// of information is represented with the SDOperand value type.
///
class SDOperand {
public:
  SDNode *Val;        // The node defining the value we are using.
  unsigned ResNo;     // Which return value of the node we are using.

  SDOperand() : Val(0), ResNo(0) {}
  SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}

  bool operator==(const SDOperand &O) const {
    return Val == O.Val && ResNo == O.ResNo;
  }
  bool operator!=(const SDOperand &O) const {
    return !operator==(O);
  }
  bool operator<(const SDOperand &O) const {
    return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
  }

  SDOperand getValue(unsigned R) const {
    return SDOperand(Val, R);
  }

  // isOperandOf - Return true if this node is an operand of N.
  bool isOperandOf(SDNode *N) const;

  /// getValueType - Return the ValueType of the referenced return value.
  ///
  inline MVT::ValueType getValueType() const;

  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType()).
  ///
  unsigned getValueSizeInBits() const {
    return MVT::getSizeInBits(getValueType());
  }

  // Forwarding methods - These forward to the corresponding methods in SDNode.
  inline unsigned getOpcode() const;
  inline unsigned getNumOperands() const;
  inline const SDOperand &getOperand(unsigned i) const;
  inline uint64_t getConstantOperandVal(unsigned i) const;
  inline bool isTargetOpcode() const;
  inline unsigned getTargetOpcode() const;

  
  /// reachesChainWithoutSideEffects - Return true if this operand (which must
  /// be a chain) reaches the specified operand without crossing any 
  /// side-effecting instructions.  In practice, this looks through token
  /// factors and non-volatile loads.  In order to remain efficient, this only
  /// looks a couple of nodes in, it does not do an exhaustive search.
  bool reachesChainWithoutSideEffects(SDOperand Dest, 
                                      unsigned Depth = 2) const;
  
  /// hasOneUse - Return true if there is exactly one operation using this
  /// result value of the defining operator.
  inline bool hasOneUse() const;

  /// use_empty - Return true if there are no operations using this
  /// result value of the defining operator.
  inline bool use_empty() const;
};


template<> struct DenseMapInfo<SDOperand> {
  static inline SDOperand getEmptyKey() { 
    return SDOperand((SDNode*)-1, -1U); 
  }
  static inline SDOperand getTombstoneKey() { 
    return SDOperand((SDNode*)-1, 0);
  }
  static unsigned getHashValue(const SDOperand &Val) {
    return ((unsigned)((uintptr_t)Val.Val >> 4) ^
            (unsigned)((uintptr_t)Val.Val >> 9)) + Val.ResNo;
  }
  static bool isEqual(const SDOperand &LHS, const SDOperand &RHS) {
    return LHS == RHS;
  }
  static bool isPod() { return true; }
};

/// simplify_type specializations - Allow casting operators to work directly on
/// SDOperands as if they were SDNode*'s.
template<> struct simplify_type<SDOperand> {
  typedef SDNode* SimpleType;
  static SimpleType getSimplifiedValue(const SDOperand &Val) {
    return static_cast<SimpleType>(Val.Val);
  }
};
template<> struct simplify_type<const SDOperand> {
  typedef SDNode* SimpleType;
  static SimpleType getSimplifiedValue(const SDOperand &Val) {
    return static_cast<SimpleType>(Val.Val);
  }
};

/// SDUse - Represents a use of the SDNode referred by
/// the SDOperand.
class SDUse {
  SDOperand Operand;
  /// User - Parent node of this operand.
  SDNode    *User;
  /// Prev, next - Pointers to the uses list of the SDNode referred by 
  /// this operand.
  SDUse **Prev, *Next;
public:
  friend class SDNode;
  SDUse(): Operand(), User(NULL), Prev(NULL), Next(NULL) {}

  SDUse(SDNode *val, unsigned resno) : 
    Operand(val,resno), User(NULL), Prev(NULL), Next(NULL) {}

  SDUse& operator= (const SDOperand& Op) {
      Operand = Op;
      Next = NULL;
      Prev = NULL;
      return *this;
  }

  SDUse& operator= (const SDUse& Op) {
      Operand = Op;
      Next = NULL;
      Prev = NULL;
      return *this;
  }

  SDUse * getNext() { return Next; }

  SDNode *getUser() { return User; }

  void setUser(SDNode *p) { User = p; }

  operator SDOperand() const { return Operand; }

  const SDOperand& getSDOperand() const { return Operand; }

  SDNode* &getVal () { return Operand.Val; }

  bool operator==(const SDOperand &O) const {
    return Operand == O;
  }

  bool operator!=(const SDOperand &O) const {
    return !(Operand == O);
  }

  bool operator<(const SDOperand &O) const {
    return Operand < O;
  }

protected:
  void addToList(SDUse **List) {
    Next = *List;
    if (Next) Next->Prev = &Next;
    Prev = List;
    *List = this;
  }

  void removeFromList() {
    *Prev = Next;
    if (Next) Next->Prev = Prev;
  }
};


/// simplify_type specializations - Allow casting operators to work directly on
/// SDOperands as if they were SDNode*'s.
template<> struct simplify_type<SDUse> {
  typedef SDNode* SimpleType;
  static SimpleType getSimplifiedValue(const SDUse &Val) {
    return static_cast<SimpleType>(Val.getSDOperand().Val);
  }
};
template<> struct simplify_type<const SDUse> {
  typedef SDNode* SimpleType;
  static SimpleType getSimplifiedValue(const SDUse &Val) {
    return static_cast<SimpleType>(Val.getSDOperand().Val);
  }
};


/// SDOperandPtr - A helper SDOperand pointer class, that can handle
/// arrays of SDUse and arrays of SDOperand objects. This is required
/// in many places inside the SelectionDAG.
/// 
class SDOperandPtr {
  const SDOperand *ptr; // The pointer to the SDOperand object
  int object_size;      // The size of the object containg the SDOperand
public:
  SDOperandPtr() : ptr(0), object_size(0) {}

  SDOperandPtr(SDUse * use_ptr) { 
    ptr = &use_ptr->getSDOperand(); 
    object_size = (int)sizeof(SDUse); 
  }

  SDOperandPtr(const SDOperand * op_ptr) { 
    ptr = op_ptr; 
    object_size = (int)sizeof(SDOperand); 
  }

  const SDOperand operator *() { return *ptr; }
  const SDOperand *operator ->() { return ptr; }
  SDOperandPtr operator ++ () { 
    ptr = (SDOperand*)((char *)ptr + object_size); 
    return *this; 
  }

  SDOperandPtr operator ++ (int) { 
    SDOperandPtr tmp = *this;
    ptr = (SDOperand*)((char *)ptr + object_size); 
    return tmp; 
  }

  SDOperand operator[] (int idx) const {
    return *(SDOperand*)((char*) ptr + object_size * idx);
  } 
};

/// SDNode - Represents one node in the SelectionDAG.
///
class SDNode : public FoldingSetNode {
private:
  /// NodeType - The operation that this node performs.
  ///
  unsigned short NodeType;
  
  /// OperandsNeedDelete - This is true if OperandList was new[]'d.  If true,
  /// then they will be delete[]'d when the node is destroyed.
  bool OperandsNeedDelete : 1;

  /// NodeId - Unique id per SDNode in the DAG.
  int NodeId;

  /// OperandList - The values that are used by this operation.
  ///
  SDUse *OperandList;
  
  /// ValueList - The types of the values this node defines.  SDNode's may
  /// define multiple values simultaneously.
  const MVT::ValueType *ValueList;

  /// NumOperands/NumValues - The number of entries in the Operand/Value list.
  unsigned short NumOperands, NumValues;
  
  /// Prev/Next pointers - These pointers form the linked list of of the
  /// AllNodes list in the current DAG.
  SDNode *Prev, *Next;
  friend struct ilist_traits<SDNode>;

  /// UsesSize - The size of the uses list.
  unsigned UsesSize;

  /// Uses - List of uses for this SDNode.
  SDUse *Uses;

  /// addUse - add SDUse to the list of uses.
  void addUse(SDUse &U) { U.addToList(&Uses); }

  // Out-of-line virtual method to give class a home.
  virtual void ANCHOR();
public:
  virtual ~SDNode() {
    assert(NumOperands == 0 && "Operand list not cleared before deletion");
    NodeType = ISD::DELETED_NODE;
  }
  
  //===--------------------------------------------------------------------===//
  //  Accessors
  //
  unsigned getOpcode()  const { return NodeType; }
  bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
  unsigned getTargetOpcode() const {
    assert(isTargetOpcode() && "Not a target opcode!");
    return NodeType - ISD::BUILTIN_OP_END;
  }

  size_t use_size() const { return UsesSize; }
  bool use_empty() const { return Uses == NULL; }
  bool hasOneUse() const { return use_size() == 1; }

  /// getNodeId - Return the unique node id.
  ///
  int getNodeId() const { return NodeId; }

  /// setNodeId - Set unique node id.
  void setNodeId(int Id) { NodeId = Id; }

  /// use_iterator - This class provides iterator support for SDUse
  /// operands that use a specific SDNode. 
  class use_iterator
    : public forward_iterator<SDUse, ptrdiff_t> {
    SDUse *Op;
    explicit use_iterator(SDUse *op) : Op(op) {
    }
    friend class SDNode;
  public:
    typedef forward_iterator<SDUse, ptrdiff_t>::reference reference;
    typedef forward_iterator<SDUse, ptrdiff_t>::pointer pointer;

    use_iterator(const use_iterator &I) : Op(I.Op) {}
    use_iterator() : Op(0) {}

    bool operator==(const use_iterator &x) const {
      return Op == x.Op;
    }
    bool operator!=(const use_iterator &x) const {
      return !operator==(x);
    }
 
    /// atEnd - return true if this iterator is at the end of uses list.
    bool atEnd() const { return Op == 0; }

    // Iterator traversal: forward iteration only.
    use_iterator &operator++() {          // Preincrement
      assert(Op && "Cannot increment end iterator!");
      Op = Op->getNext();
      return *this;
    }

    use_iterator operator++(int) {        // Postincrement
      use_iterator tmp = *this; ++*this; return tmp;
    }


    /// getOperandNum - Retrive a number of a current operand.
    unsigned getOperandNum() const {
      assert(Op && "Cannot dereference end iterator!");
      return (unsigned)(Op - Op->getUser()->OperandList);
    }

    /// Retrieve a reference to the current operand.
    SDUse &operator*() const {
      assert(Op && "Cannot dereference end iterator!");
      return *Op;
    }

    /// Retrieve a pointer to the current operand.
    SDUse *operator->() const {
      assert(Op && "Cannot dereference end iterator!");
      return Op;
    }
  };

  /// use_begin/use_end - Provide iteration support to walk over all uses
  /// of an SDNode.

  use_iterator use_begin(SDNode *node) const {
    return use_iterator(node->Uses);
  }

  use_iterator use_begin() const {
    return use_iterator(Uses);
  }

  static use_iterator use_end() { return use_iterator(0); }


  /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
  /// indicated value.  This method ignores uses of other values defined by this
  /// operation.
  bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;

  /// hasAnyUseOfValue - Return true if there are any use of the indicated
  /// value. This method ignores uses of other values defined by this operation.
  bool hasAnyUseOfValue(unsigned Value) const;

  /// isOnlyUseOf - Return true if this node is the only use of N.
  ///
  bool isOnlyUseOf(SDNode *N) const;

  /// isOperandOf - Return true if this node is an operand of N.
  ///
  bool isOperandOf(SDNode *N) const;

  /// isPredecessorOf - Return true if this node is a predecessor of N. This
  /// node is either an operand of N or it can be reached by recursively
  /// traversing up the operands.
  /// NOTE: this is an expensive method. Use it carefully.
  bool isPredecessorOf(SDNode *N) const;

  /// getNumOperands - Return the number of values used by this operation.
  ///
  unsigned getNumOperands() const { return NumOperands; }

  /// getConstantOperandVal - Helper method returns the integer value of a 
  /// ConstantSDNode operand.
  uint64_t getConstantOperandVal(unsigned Num) const;

  const SDOperand &getOperand(unsigned Num) const {
    assert(Num < NumOperands && "Invalid child # of SDNode!");
    return OperandList[Num].getSDOperand();
  }

  typedef SDUse* op_iterator;
  op_iterator op_begin() const { return OperandList; }
  op_iterator op_end() const { return OperandList+NumOperands; }


  SDVTList getVTList() const {
    SDVTList X = { ValueList, NumValues };
    return X;
  };
  
  /// getNumValues - Return the number of values defined/returned by this
  /// operator.
  ///
  unsigned getNumValues() const { return NumValues; }

  /// getValueType - Return the type of a specified result.
  ///
  MVT::ValueType getValueType(unsigned ResNo) const {
    assert(ResNo < NumValues && "Illegal result number!");
    return ValueList[ResNo];
  }

  /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
  ///
  unsigned getValueSizeInBits(unsigned ResNo) const {
    return MVT::getSizeInBits(getValueType(ResNo));
  }

  typedef const MVT::ValueType* value_iterator;
  value_iterator value_begin() const { return ValueList; }
  value_iterator value_end() const { return ValueList+NumValues; }

  /// getOperationName - Return the opcode of this operation for printing.
  ///
  std::string getOperationName(const SelectionDAG *G = 0) const;
  static const char* getIndexedModeName(ISD::MemIndexedMode AM);
  void dump() const;
  void dump(const SelectionDAG *G) const;

  static bool classof(const SDNode *) { return true; }

  /// Profile - Gather unique data for the node.
  ///
  void Profile(FoldingSetNodeID &ID);

protected:
  friend class SelectionDAG;
  
  /// getValueTypeList - Return a pointer to the specified value type.
  ///
  static const MVT::ValueType *getValueTypeList(MVT::ValueType VT);
  static SDVTList getSDVTList(MVT::ValueType VT) {
    SDVTList Ret = { getValueTypeList(VT), 1 };
    return Ret;
  }

  SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps)
    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
    OperandsNeedDelete = true;
    NumOperands = NumOps;
    OperandList = NumOps ? new SDUse[NumOperands] : 0;
    
    for (unsigned i = 0; i != NumOps; ++i) {
      OperandList[i] = Ops[i];
      OperandList[i].setUser(this);
      Ops[i].Val->addUse(OperandList[i]);
      ++Ops[i].Val->UsesSize;
    }
    
    ValueList = VTs.VTs;
    NumValues = VTs.NumVTs;
    Prev = 0; Next = 0;
  }

  SDNode(unsigned Opc, SDVTList VTs, SDOperandPtr Ops, unsigned NumOps)
    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
    OperandsNeedDelete = true;
    NumOperands = NumOps;
    OperandList = NumOps ? new SDUse[NumOperands] : 0;
    
    for (unsigned i = 0; i != NumOps; ++i) {
      OperandList[i] = Ops[i];
      OperandList[i].setUser(this);
      Ops[i].Val->addUse(OperandList[i]);
      ++Ops[i].Val->UsesSize;
    }
    
    ValueList = VTs.VTs;
    NumValues = VTs.NumVTs;
    Prev = 0; Next = 0;
  }

  SDNode(unsigned Opc, SDVTList VTs)
    : NodeType(Opc), NodeId(-1), UsesSize(0), Uses(NULL) {
    OperandsNeedDelete = false;  // Operands set with InitOperands.
    NumOperands = 0;
    OperandList = 0;
    ValueList = VTs.VTs;
    NumValues = VTs.NumVTs;
    Prev = 0; Next = 0;
  }
  
  /// InitOperands - Initialize the operands list of this node with the
  /// specified values, which are part of the node (thus they don't need to be
  /// copied in or allocated).
  void InitOperands(SDUse *Ops, unsigned NumOps) {
    assert(OperandList == 0 && "Operands already set!");
    NumOperands = NumOps;
    OperandList = Ops;
    UsesSize = 0;
    Uses = NULL;
    
    for (unsigned i = 0; i != NumOps; ++i) {
      OperandList[i].setUser(this);
      Ops[i].getVal()->addUse(OperandList[i]);
      ++Ops[i].getVal()->UsesSize;
    }
  }
  
  /// MorphNodeTo - This frees the operands of the current node, resets the
  /// opcode, types, and operands to the specified value.  This should only be
  /// used by the SelectionDAG class.
  void MorphNodeTo(unsigned Opc, SDVTList L,
                   SDOperandPtr Ops, unsigned NumOps);
  
  void addUser(unsigned i, SDNode *User) {
    assert(User->OperandList[i].getUser() && "Node without parent");
    addUse(User->OperandList[i]);
    ++UsesSize;
  }

  void removeUser(unsigned i, SDNode *User) {
    assert(User->OperandList[i].getUser() && "Node without parent");
    SDUse &Op = User->OperandList[i];
    Op.removeFromList();
    --UsesSize;
  }
};


// Define inline functions from the SDOperand class.

inline unsigned SDOperand::getOpcode() const {
  return Val->getOpcode();
}
inline MVT::ValueType SDOperand::getValueType() const {
  return Val->getValueType(ResNo);
}
inline unsigned SDOperand::getNumOperands() const {
  return Val->getNumOperands();
}
inline const SDOperand &SDOperand::getOperand(unsigned i) const {
  return Val->getOperand(i);
}
inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
  return Val->getConstantOperandVal(i);
}
inline bool SDOperand::isTargetOpcode() const {
  return Val->isTargetOpcode();
}
inline unsigned SDOperand::getTargetOpcode() const {
  return Val->getTargetOpcode();
}
inline bool SDOperand::hasOneUse() const {
  return Val->hasNUsesOfValue(1, ResNo);
}
inline bool SDOperand::use_empty() const {
  return !Val->hasAnyUseOfValue(ResNo);
}

/// UnarySDNode - This class is used for single-operand SDNodes.  This is solely
/// to allow co-allocation of node operands with the node itself.
class UnarySDNode : public SDNode {
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
  SDUse Op;
public:
  UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X)
    : SDNode(Opc, VTs) {
    Op = X;
    InitOperands(&Op, 1);
  }
};

/// BinarySDNode - This class is used for two-operand SDNodes.  This is solely
/// to allow co-allocation of node operands with the node itself.
class BinarySDNode : public SDNode {
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
  SDUse Ops[2];
public:
  BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y)
    : SDNode(Opc, VTs) {
    Ops[0] = X;
    Ops[1] = Y;
    InitOperands(Ops, 2);
  }
};

/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
/// to allow co-allocation of node operands with the node itself.
class TernarySDNode : public SDNode {
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
  SDUse Ops[3];
public:
  TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y,
                SDOperand Z)
    : SDNode(Opc, VTs) {
    Ops[0] = X;
    Ops[1] = Y;
    Ops[2] = Z;
    InitOperands(Ops, 3);
  }
};


/// HandleSDNode - This class is used to form a handle around another node that
/// is persistant and is updated across invocations of replaceAllUsesWith on its
/// operand.  This node should be directly created by end-users and not added to
/// the AllNodes list.
class HandleSDNode : public SDNode {
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
  SDUse Op;
public:
  // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
  // fixed.
#ifdef __GNUC__
  explicit __attribute__((__noinline__)) HandleSDNode(SDOperand X)
#else
  explicit HandleSDNode(SDOperand X)
#endif
    : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)) {
    Op = X;
    InitOperands(&Op, 1);
  }
  ~HandleSDNode();  
  SDUse getValue() const { return Op; }
};

class AtomicSDNode : public SDNode {
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
  SDUse Ops[4];
  MVT::ValueType OrigVT;
public:
  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr, 
               SDOperand Cmp, SDOperand Swp, MVT::ValueType VT)
    : SDNode(Opc, VTL) {
    Ops[0] = Chain;
    Ops[1] = Ptr;
    Ops[2] = Swp;
    Ops[3] = Cmp;
    InitOperands(Ops, 4);
    OrigVT=VT;
  }
  AtomicSDNode(unsigned Opc, SDVTList VTL, SDOperand Chain, SDOperand Ptr, 
               SDOperand Val, MVT::ValueType VT)
    : SDNode(Opc, VTL) {
    Ops[0] = Chain;
    Ops[1] = Ptr;
    Ops[2] = Val;
    InitOperands(Ops, 3);
    OrigVT=VT;
  }
  MVT::ValueType getVT() const { return OrigVT; }
  bool isCompareAndSwap() const { return getOpcode() == ISD::ATOMIC_LCS; }
};

class StringSDNode : public SDNode {
  std::string Value;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  explicit StringSDNode(const std::string &val)
    : SDNode(ISD::STRING, getSDVTList(MVT::Other)), Value(val) {
  }
public:
  const std::string &getValue() const { return Value; }
  static bool classof(const StringSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::STRING;
  }
};  

class ConstantSDNode : public SDNode {
  APInt Value;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  ConstantSDNode(bool isTarget, const APInt &val, MVT::ValueType VT)
    : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)),
      Value(val) {
  }
public:

  const APInt &getAPIntValue() const { return Value; }
  uint64_t getValue() const { return Value.getZExtValue(); }

  int64_t getSignExtended() const {
    unsigned Bits = MVT::getSizeInBits(getValueType(0));
    return ((int64_t)Value.getZExtValue() << (64-Bits)) >> (64-Bits);
  }

  bool isNullValue() const { return Value == 0; }
  bool isAllOnesValue() const {
    return Value == MVT::getIntVTBitMask(getValueType(0));
  }

  static bool classof(const ConstantSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::Constant ||
           N->getOpcode() == ISD::TargetConstant;
  }
};

class ConstantFPSDNode : public SDNode {
  APFloat Value;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  ConstantFPSDNode(bool isTarget, const APFloat& val, MVT::ValueType VT)
    : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
             getSDVTList(VT)), Value(val) {
  }
public:

  const APFloat& getValueAPF() const { return Value; }

  /// isExactlyValue - We don't rely on operator== working on double values, as
  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
  /// As such, this method can be used to do an exact bit-for-bit comparison of
  /// two floating point values.

  /// We leave the version with the double argument here because it's just so
  /// convenient to write "2.0" and the like.  Without this function we'd 
  /// have to duplicate its logic everywhere it's called.
  bool isExactlyValue(double V) const {
    // convert is not supported on this type
    if (&Value.getSemantics() == &APFloat::PPCDoubleDouble)
      return false;
    APFloat Tmp(V);
    Tmp.convert(Value.getSemantics(), APFloat::rmNearestTiesToEven);
    return isExactlyValue(Tmp);
  }
  bool isExactlyValue(const APFloat& V) const;

  bool isValueValidForType(MVT::ValueType VT, const APFloat& Val);

  static bool classof(const ConstantFPSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ConstantFP || 
           N->getOpcode() == ISD::TargetConstantFP;
  }
};

class GlobalAddressSDNode : public SDNode {
  GlobalValue *TheGlobal;
  int Offset;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
                      int o = 0);
public:

  GlobalValue *getGlobal() const { return TheGlobal; }
  int getOffset() const { return Offset; }

  static bool classof(const GlobalAddressSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::GlobalAddress ||
           N->getOpcode() == ISD::TargetGlobalAddress ||
           N->getOpcode() == ISD::GlobalTLSAddress ||
           N->getOpcode() == ISD::TargetGlobalTLSAddress;
  }
};

class FrameIndexSDNode : public SDNode {
  int FI;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
    : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)),
      FI(fi) {
  }
public:

  int getIndex() const { return FI; }

  static bool classof(const FrameIndexSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::FrameIndex ||
           N->getOpcode() == ISD::TargetFrameIndex;
  }
};

class JumpTableSDNode : public SDNode {
  int JTI;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
    : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)),
      JTI(jti) {
  }
public:
    
  int getIndex() const { return JTI; }
  
  static bool classof(const JumpTableSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::JumpTable ||
           N->getOpcode() == ISD::TargetJumpTable;
  }
};

class ConstantPoolSDNode : public SDNode {
  union {
    Constant *ConstVal;
    MachineConstantPoolValue *MachineCPVal;
  } Val;
  int Offset;  // It's a MachineConstantPoolValue if top bit is set.
  unsigned Alignment;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
                     int o=0)
    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
             getSDVTList(VT)), Offset(o), Alignment(0) {
    assert((int)Offset >= 0 && "Offset is too large");
    Val.ConstVal = c;
  }
  ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
                     unsigned Align)
    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 
             getSDVTList(VT)), Offset(o), Alignment(Align) {
    assert((int)Offset >= 0 && "Offset is too large");
    Val.ConstVal = c;
  }
  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
                     MVT::ValueType VT, int o=0)
    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 
             getSDVTList(VT)), Offset(o), Alignment(0) {
    assert((int)Offset >= 0 && "Offset is too large");
    Val.MachineCPVal = v;
    Offset |= 1 << (sizeof(unsigned)*8-1);
  }
  ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
                     MVT::ValueType VT, int o, unsigned Align)
    : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
             getSDVTList(VT)), Offset(o), Alignment(Align) {
    assert((int)Offset >= 0 && "Offset is too large");
    Val.MachineCPVal = v;
    Offset |= 1 << (sizeof(unsigned)*8-1);
  }
public:

  bool isMachineConstantPoolEntry() const {
    return (int)Offset < 0;
  }

  Constant *getConstVal() const {
    assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
    return Val.ConstVal;
  }

  MachineConstantPoolValue *getMachineCPVal() const {
    assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
    return Val.MachineCPVal;
  }

  int getOffset() const {
    return Offset & ~(1 << (sizeof(unsigned)*8-1));
  }
  
  // Return the alignment of this constant pool object, which is either 0 (for
  // default alignment) or log2 of the desired value.
  unsigned getAlignment() const { return Alignment; }

  const Type *getType() const;

  static bool classof(const ConstantPoolSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ConstantPool ||
           N->getOpcode() == ISD::TargetConstantPool;
  }
};

class BasicBlockSDNode : public SDNode {
  MachineBasicBlock *MBB;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  explicit BasicBlockSDNode(MachineBasicBlock *mbb)
    : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) {
  }
public:

  MachineBasicBlock *getBasicBlock() const { return MBB; }

  static bool classof(const BasicBlockSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::BasicBlock;
  }
};

/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
/// used when the SelectionDAG needs to make a simple reference to something
/// in the LLVM IR representation.
///
/// Note that this is not used for carrying alias information; that is done
/// with MemOperandSDNode, which includes a Value which is required to be a
/// pointer, and several other fields specific to memory references.
///
class SrcValueSDNode : public SDNode {
  const Value *V;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  /// Create a SrcValue for a general value.
  explicit SrcValueSDNode(const Value *v)
    : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v) {}

public:
  /// getValue - return the contained Value.
  const Value *getValue() const { return V; }

  static bool classof(const SrcValueSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::SRCVALUE;
  }
};


/// MemOperandSDNode - An SDNode that holds a MachineMemOperand. This is
/// used to represent a reference to memory after ISD::LOAD
/// and ISD::STORE have been lowered.
///
class MemOperandSDNode : public SDNode {
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  /// Create a MachineMemOperand node
  explicit MemOperandSDNode(const MachineMemOperand &mo)
    : SDNode(ISD::MEMOPERAND, getSDVTList(MVT::Other)), MO(mo) {}

public:
  /// MO - The contained MachineMemOperand.
  const MachineMemOperand MO;

  static bool classof(const MemOperandSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::MEMOPERAND;
  }
};


class RegisterSDNode : public SDNode {
  unsigned Reg;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  RegisterSDNode(unsigned reg, MVT::ValueType VT)
    : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) {
  }
public:

  unsigned getReg() const { return Reg; }

  static bool classof(const RegisterSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::Register;
  }
};

class ExternalSymbolSDNode : public SDNode {
  const char *Symbol;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
    : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
             getSDVTList(VT)), Symbol(Sym) {
  }
public:

  const char *getSymbol() const { return Symbol; }

  static bool classof(const ExternalSymbolSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ExternalSymbol ||
           N->getOpcode() == ISD::TargetExternalSymbol;
  }
};

class CondCodeSDNode : public SDNode {
  ISD::CondCode Condition;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  explicit CondCodeSDNode(ISD::CondCode Cond)
    : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) {
  }
public:

  ISD::CondCode get() const { return Condition; }

  static bool classof(const CondCodeSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::CONDCODE;
  }
};

namespace ISD {
  struct ArgFlagsTy {
  private:
    static const uint64_t NoFlagSet      = 0ULL;
    static const uint64_t ZExt           = 1ULL<<0;  ///< Zero extended
    static const uint64_t ZExtOffs       = 0;
    static const uint64_t SExt           = 1ULL<<1;  ///< Sign extended
    static const uint64_t SExtOffs       = 1;
    static const uint64_t InReg          = 1ULL<<2;  ///< Passed in register
    static const uint64_t InRegOffs      = 2;
    static const uint64_t SRet           = 1ULL<<3;  ///< Hidden struct-ret ptr
    static const uint64_t SRetOffs       = 3;
    static const uint64_t ByVal          = 1ULL<<4;  ///< Struct passed by value
    static const uint64_t ByValOffs      = 4;
    static const uint64_t Nest           = 1ULL<<5;  ///< Nested fn static chain
    static const uint64_t NestOffs       = 5;
    static const uint64_t ByValAlign     = 0xFULL << 6; //< Struct alignment
    static const uint64_t ByValAlignOffs = 6;
    static const uint64_t Split          = 1ULL << 10;
    static const uint64_t SplitOffs      = 10;
    static const uint64_t OrigAlign      = 0x1FULL<<27;
    static const uint64_t OrigAlignOffs  = 27;
    static const uint64_t ByValSize      = 0xffffffffULL << 32; //< Struct size
    static const uint64_t ByValSizeOffs  = 32;

    static const uint64_t One            = 1ULL; //< 1 of this type, for shifts

    uint64_t Flags;
  public:
    ArgFlagsTy() : Flags(0) { }

    bool isZExt()   const { return Flags & ZExt; }
    void setZExt()  { Flags |= One << ZExtOffs; }

    bool isSExt()   const { return Flags & SExt; }
    void setSExt()  { Flags |= One << SExtOffs; }

    bool isInReg()  const { return Flags & InReg; }
    void setInReg() { Flags |= One << InRegOffs; }

    bool isSRet()   const { return Flags & SRet; }
    void setSRet()  { Flags |= One << SRetOffs; }

    bool isByVal()  const { return Flags & ByVal; }
    void setByVal() { Flags |= One << ByValOffs; }

    bool isNest()   const { return Flags & Nest; }
    void setNest()  { Flags |= One << NestOffs; }

    unsigned getByValAlign() const {
      return (unsigned) 
        ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
    }
    void setByValAlign(unsigned A) {
      Flags = (Flags & ~ByValAlign) |
        (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
    }
            
    bool isSplit()   const { return Flags & Split; }
    void setSplit()  { Flags |= One << SplitOffs; }

    unsigned getOrigAlign() const {
      return (unsigned)
        ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
    }
    void setOrigAlign(unsigned A) {
      Flags = (Flags & ~OrigAlign) |
        (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
    }

    unsigned getByValSize() const {
      return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
    }
    void setByValSize(unsigned S) {
      Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
    }

    /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
    std::string getArgFlagsString();

    /// getRawBits - Represent the flags as a bunch of bits.
    uint64_t getRawBits() const { return Flags; }
  };
}

/// ARG_FLAGSSDNode - Leaf node holding parameter flags.
class ARG_FLAGSSDNode : public SDNode {
  ISD::ArgFlagsTy TheFlags;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  explicit ARG_FLAGSSDNode(ISD::ArgFlagsTy Flags)
    : SDNode(ISD::ARG_FLAGS, getSDVTList(MVT::Other)), TheFlags(Flags) {
  }
public:
  ISD::ArgFlagsTy getArgFlags() const { return TheFlags; }

  static bool classof(const ARG_FLAGSSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::ARG_FLAGS;
  }
};

/// VTSDNode - This class is used to represent MVT::ValueType's, which are used
/// to parameterize some operations.
class VTSDNode : public SDNode {
  MVT::ValueType ValueType;
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
protected:
  friend class SelectionDAG;
  explicit VTSDNode(MVT::ValueType VT)
    : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) {
  }
public:

  MVT::ValueType getVT() const { return ValueType; }

  static bool classof(const VTSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::VALUETYPE;
  }
};

/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
///
class LSBaseSDNode : public SDNode {
private:
  // AddrMode - unindexed, pre-indexed, post-indexed.
  ISD::MemIndexedMode AddrMode;

  // MemoryVT - VT of in-memory value.
  MVT::ValueType MemoryVT;

  //! SrcValue - Memory location for alias analysis.
  const Value *SrcValue;

  //! SVOffset - Memory location offset.
  int SVOffset;

  //! Alignment - Alignment of memory location in bytes.
  unsigned Alignment;

  //! IsVolatile - True if the store is volatile.
  bool IsVolatile;
protected:
  //! Operand array for load and store
  /*!
    \note Moving this array to the base class captures more
    common functionality shared between LoadSDNode and
    StoreSDNode
   */
  SDUse Ops[4];
public:
  LSBaseSDNode(ISD::NodeType NodeTy, SDOperand *Operands, unsigned NumOperands,
               SDVTList VTs, ISD::MemIndexedMode AM, MVT::ValueType VT, 
               const Value *SV, int SVO, unsigned Align, bool Vol)
    : SDNode(NodeTy, VTs),
      AddrMode(AM), MemoryVT(VT),
      SrcValue(SV), SVOffset(SVO), Alignment(Align), IsVolatile(Vol) {
    for (unsigned i = 0; i != NumOperands; ++i)
      Ops[i] = Operands[i];
    InitOperands(Ops, NumOperands);
    assert(Align != 0 && "Loads and stores should have non-zero aligment");
    assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
           "Only indexed loads and stores have a non-undef offset operand");
  }

  const SDOperand &getChain() const { return getOperand(0); }
  const SDOperand &getBasePtr() const {
    return getOperand(getOpcode() == ISD::LOAD ? 1 : 2);
  }
  const SDOperand &getOffset() const {
    return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
  }

  const Value *getSrcValue() const { return SrcValue; }
  int getSrcValueOffset() const { return SVOffset; }
  unsigned getAlignment() const { return Alignment; }
  MVT::ValueType getMemoryVT() const { return MemoryVT; }
  bool isVolatile() const { return IsVolatile; }

  ISD::MemIndexedMode getAddressingMode() const { return AddrMode; }

  /// isIndexed - Return true if this is a pre/post inc/dec load/store.
  bool isIndexed() const { return AddrMode != ISD::UNINDEXED; }

  /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
  bool isUnindexed() const { return AddrMode == ISD::UNINDEXED; }

  /// getMemOperand - Return a MachineMemOperand object describing the memory
  /// reference performed by this load or store.
  MachineMemOperand getMemOperand() const;

  static bool classof(const LSBaseSDNode *N) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::LOAD ||
           N->getOpcode() == ISD::STORE;
  }
};

/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
///
class LoadSDNode : public LSBaseSDNode {
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
  
  // ExtType - non-ext, anyext, sext, zext.
  ISD::LoadExtType ExtType;

protected:
  friend class SelectionDAG;
  LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs,
             ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
             const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
    : LSBaseSDNode(ISD::LOAD, ChainPtrOff, 3,
                   VTs, AM, LVT, SV, O, Align, Vol),
      ExtType(ETy) {}
public:

  ISD::LoadExtType getExtensionType() const { return ExtType; }
  const SDOperand &getBasePtr() const { return getOperand(1); }
  const SDOperand &getOffset() const { return getOperand(2); }
  
  static bool classof(const LoadSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::LOAD;
  }
};

/// StoreSDNode - This class is used to represent ISD::STORE nodes.
///
class StoreSDNode : public LSBaseSDNode {
  virtual void ANCHOR();  // Out-of-line virtual method to give class a home.
    
  // IsTruncStore - True if the op does a truncation before store.
  bool IsTruncStore;
protected:
  friend class SelectionDAG;
  StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs,
              ISD::MemIndexedMode AM, bool isTrunc, MVT::ValueType SVT,
              const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
    : LSBaseSDNode(ISD::STORE, ChainValuePtrOff, 4,
                   VTs, AM, SVT, SV, O, Align, Vol),
      IsTruncStore(isTrunc) {}
public:

  bool isTruncatingStore() const { return IsTruncStore; }
  const SDOperand &getValue() const { return getOperand(1); }
  const SDOperand &getBasePtr() const { return getOperand(2); }
  const SDOperand &getOffset() const { return getOperand(3); }
  
  static bool classof(const StoreSDNode *) { return true; }
  static bool classof(const SDNode *N) {
    return N->getOpcode() == ISD::STORE;
  }
};


class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
  SDNode *Node;
  unsigned Operand;

  SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
public:
  bool operator==(const SDNodeIterator& x) const {
    return Operand == x.Operand;
  }
  bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }

  const SDNodeIterator &operator=(const SDNodeIterator &I) {
    assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
    Operand = I.Operand;
    return *this;
  }

  pointer operator*() const {
    return Node->getOperand(Operand).Val;
  }
  pointer operator->() const { return operator*(); }

  SDNodeIterator& operator++() {                // Preincrement
    ++Operand;
    return *this;
  }
  SDNodeIterator operator++(int) { // Postincrement
    SDNodeIterator tmp = *this; ++*this; return tmp;
  }

  static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
  static SDNodeIterator end  (SDNode *N) {
    return SDNodeIterator(N, N->getNumOperands());
  }

  unsigned getOperand() const { return Operand; }
  const SDNode *getNode() const { return Node; }
};

template <> struct GraphTraits<SDNode*> {
  typedef SDNode NodeType;
  typedef SDNodeIterator ChildIteratorType;
  static inline NodeType *getEntryNode(SDNode *N) { return N; }
  static inline ChildIteratorType child_begin(NodeType *N) {
    return SDNodeIterator::begin(N);
  }
  static inline ChildIteratorType child_end(NodeType *N) {
    return SDNodeIterator::end(N);
  }
};

template<>
struct ilist_traits<SDNode> {
  static SDNode *getPrev(const SDNode *N) { return N->Prev; }
  static SDNode *getNext(const SDNode *N) { return N->Next; }
  
  static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
  static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
  
  static SDNode *createSentinel() {
    return new SDNode(ISD::EntryToken, SDNode::getSDVTList(MVT::Other));
  }
  static void destroySentinel(SDNode *N) { delete N; }
  //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
  
  
  void addNodeToList(SDNode *NTy) {}
  void removeNodeFromList(SDNode *NTy) {}
  void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
                             const ilist_iterator<SDNode> &X,
                             const ilist_iterator<SDNode> &Y) {}
};

namespace ISD {
  /// isNormalLoad - Returns true if the specified node is a non-extending
  /// and unindexed load.
  inline bool isNormalLoad(const SDNode *N) {
    if (N->getOpcode() != ISD::LOAD)
      return false;
    const LoadSDNode *Ld = cast<LoadSDNode>(N);
    return Ld->getExtensionType() == ISD::NON_EXTLOAD &&
      Ld->getAddressingMode() == ISD::UNINDEXED;
  }

  /// isNON_EXTLoad - Returns true if the specified node is a non-extending
  /// load.
  inline bool isNON_EXTLoad(const SDNode *N) {
    return N->getOpcode() == ISD::LOAD &&
      cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
  }

  /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
  ///
  inline bool isEXTLoad(const SDNode *N) {
    return N->getOpcode() == ISD::LOAD &&
      cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
  }

  /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
  ///
  inline bool isSEXTLoad(const SDNode *N) {
    return N->getOpcode() == ISD::LOAD &&
      cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
  }

  /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
  ///
  inline bool isZEXTLoad(const SDNode *N) {
    return N->getOpcode() == ISD::LOAD &&
      cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
  }

  /// isUNINDEXEDLoad - Returns true if the specified node is a unindexed load.
  ///
  inline bool isUNINDEXEDLoad(const SDNode *N) {
    return N->getOpcode() == ISD::LOAD &&
      cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
  }

  /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
  /// store.
  inline bool isNON_TRUNCStore(const SDNode *N) {
    return N->getOpcode() == ISD::STORE &&
      !cast<StoreSDNode>(N)->isTruncatingStore();
  }

  /// isTRUNCStore - Returns true if the specified node is a truncating
  /// store.
  inline bool isTRUNCStore(const SDNode *N) {
    return N->getOpcode() == ISD::STORE &&
      cast<StoreSDNode>(N)->isTruncatingStore();
  }
}


} // end llvm namespace

#endif