summaryrefslogtreecommitdiff
path: root/doc/manual.html
blob: 2a92d2aaf4942229180214e18219c251e9f4f9bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>

<head>
<TITLE>Lua: 5.0 reference manual</TITLE>
</head>

<body BGCOLOR="#FFFFFF">

<hr>
<h1>
<A HREF="http://www.lua.org/home.html"><IMG SRC="logo.gif" ALT="Lua" BORDER=0></A>
Lua 5.0 Reference Manual
</h1>

by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes
<p>
<small>
<a HREF="http://www.lua.org/copyright.html">Copyright</a>
&copy; 2003 Tecgraf, PUC-Rio.  All rights reserved.
</small>
<hr>

<p>
<p>
<!-- ====================================================================== -->



<a name="1"><h1>1 - Introduction</h1></a>

<p>Lua is an extension programming language designed to support
general procedural programming with data description
facilities.
It also offers good support for object-oriented programming,
functional programming, and data-driven programming.
Lua is intended to be used as a powerful, light-weight
configuration language for any program that needs one.
Lua is implemented as a library, written in <em>clean</em> C
(that is, in the common subset of ANSI C and C++).

<p>Being an extension language, Lua has no notion of a "main" program:
it only works <em>embedded</em> in a host client,
called the <em>embedding program</em> or simply the <em>host</em>.
This host program can invoke functions to execute a piece of Lua code,
can write and read Lua variables,
and can register C&nbsp;functions to be called by Lua code.
Through the use of C&nbsp;functions, Lua can be augmented to cope with
a wide range of different domains,
thus creating customized programming languages sharing a syntactical framework.

<p>The Lua distribution includes a stand-alone embedding program,
<code>lua</code>, that uses the Lua library to offer a complete Lua interpreter.

<p>Lua is free software,
and is provided as usual with no guarantees,
as stated in its copyright notice.
The implementation described in this manual is available
at Lua's official web site, <code>www.lua.org</code>.

<p>Like any other reference manual,
this document is dry in places.
For a discussion of the decisions behind the design of Lua,
see the papers below,
which are available at Lua's web site.
<ul>
<li>
R.&nbsp;Ierusalimschy, L.&nbsp;H.&nbsp;de Figueiredo, and W.&nbsp;Celes.
Lua---an extensible extension language.
<em>Software: Practice &#038; Experience</em> <b>26</b> #6 (1996) 635-652.
<li>
L.&nbsp;H.&nbsp;de Figueiredo, R.&nbsp;Ierusalimschy, and W.&nbsp;Celes.
The design and implementation of a language for extending applications.
<em>Proceedings of XXI Brazilian Seminar on Software and Hardware</em> (1994) 273-283.
<li>
L.&nbsp;H.&nbsp;de Figueiredo, R.&nbsp;Ierusalimschy, and W.&nbsp;Celes.
Lua: an extensible embedded language.
<em>Dr. Dobb's Journal</em> <b>21</b> #12 (Dec 1996) 26-33.
<li>
R.&nbsp;Ierusalimschy, L.&nbsp;H.&nbsp;de Figueiredo, and W.&nbsp;Celes.
The evolution of an extension language: a history of Lua,
<em>Proceedings of V Brazilian Symposium on Programming Languages</em> (2001) B-14-B-28.
</ul>

<p>Lua means "moon" in Portuguese and is pronounced LOO-ah.

<p>
<a name="language"><a name="2"><h1>2 - The Language</h1></a></a>

<p>This section describes the lexis, the syntax, and the semantics of Lua.
In other words,
this section describes
which tokens are valid,
how they can be combined,
and what their combinations mean.

<p>The language constructs will be explained using the usual extended BNF,
in which
{<em>a</em>}&nbsp;means 0 or more <em>a</em>'s, and
[<em>a</em>]&nbsp;means an optional <em>a</em>.
Non-terminals are shown in <em>italics</em>,
keywords are shown in <b>bold</b>,
and other terminal symbols are shown in <code>typewriter</code> font,
enclosed in single quotes.

<p><a name="lexical"><a name="2.1"><h2>2.1 - Lexical Conventions</h2></a></a>

<p><em>Identifiers</em> in Lua can be any string of letters,
digits, and underscores,
not beginning with a digit.
This coincides with the definition of identifiers in most languages.
(The definition of letter depends on the current locale:
any character considered alphabetic by the current locale
can be used in an identifier.)

<p>The following <em>keywords</em> are reserved
and cannot be used as identifiers:

<PRE>
       and       break     do        else      elseif
       end       false     for       function  if
       in        local     nil       not       or
       repeat    return    then      true      until     while
</PRE>

<p>Lua is a case-sensitive language:
<code>and</code> is a reserved word, but <code>And</code> and <code>AND</code>
are two different, valid identifiers.
As a convention, identifiers starting with an underscore followed by
uppercase letters (such as <code>_VERSION</code>)
are reserved for internal variables used by Lua.

<p>The following strings denote other tokens:
<PRE>
       +     -     *     /     ^     =
       ~=    &#060;=    >=    &#060;     >     ==
       (     )     {     }     [     ]
       ;     :     ,     .     ..    ...
</PRE>

<p><em>Literal strings</em>
can be delimited by matching single or double quotes,
and can contain the following C-like escape sequences:
<ul>
<li><b><code>\a</code></b> --- bell
<li><b><code>\b</code></b> --- backspace
<li><b><code>\f</code></b> --- form feed
<li><b><code>\n</code></b> --- newline
<li><b><code>\r</code></b> --- carriage return
<li><b><code>\t</code></b> --- horizontal tab
<li><b><code>\v</code></b> --- vertical tab
<li><b><code>\\</code></b> --- backslash
<li><b><code>\"</code></b> --- quotation mark
<li><b><code>\'</code></b> --- apostrophe
<li><b><code>\[</code></b> --- left square bracket
<li><b><code>\]</code></b> --- right square bracket
</ul>
Moreover, a `<code>\</code><em>newline</em>&acute;
(that is, a backslash followed by a real newline)
results in a newline in the string.
A character in a string may also be specified by its numerical value
using the escape sequence `<code>\</code><em>ddd</em>&acute;,
where <em>ddd</em> is a sequence of up to three decimal digits.
Strings in Lua may contain any 8-bit value, including embedded zeros,
which can be specified as `<code>\0</code>&acute;.

<p>Literal strings can also be delimited by matching double square brackets
<code>[[</code> &middot; &middot; &middot; <code>]]</code>.
Literals in this bracketed form may run for several lines,
may contain nested <code>[[</code> &middot; &middot; &middot; <code>]]</code> pairs,
and do not interpret any escape sequences.
For convenience,
when the opening `<code>[[</code>&acute; is immediately followed by a newline,
the newline is not included in the string.  
As an example, in a system using ASCII
(in which `<code>a</code>&acute; is coded as&nbsp;97,
newline is coded as&nbsp;10, and `<code>1</code>&acute; is coded as&nbsp;49),
the four literals below denote the same string:
<PRE>
      (1)   "alo\n123\""
      (2)   '\97lo\10\04923"'
      (3)   [[alo
            123"]]
      (4)   [[
            alo
            123"]]
</PRE>

<p><em>Numerical constants</em> may be written with an optional decimal part
and an optional decimal exponent.
Examples of valid numerical constants are
<PRE>
       3     3.0     3.1416  314.16e-2   0.31416E1
</PRE>

<p><em>Comments</em> start anywhere outside a string with a
double hyphen (<code>--</code>).
If the text immediately after <code>--</code> is different from <code>[[</code>,
the comment is a <em>short comment</em>,
which runs until the end of the line.
Otherwise, it is a <em>long comment</em>,
which runs until the corresponding <code>]]</code>.
Long comments may run for several lines
and may contain nested <code>[[</code> &middot; &middot; &middot; <code>]]</code> pairs.

<p>For convenience,
the first line of a chunk is skipped if it starts with <code>#</code>.
This facility allows the use of Lua as a script interpreter
in Unix systems (see <a href="#lua-sa">6</a>).

<p><a name="TypesSec"><a name="2.2"><h2>2.2 - Values and Types</h2></a></a>

<p>Lua is a <em>dynamically typed language</em>.
That means that
variables do not have types; only values do.
There are no type definitions in the language.
All values carry their own type.

<p>There are eight basic types in Lua:
<em>nil</em>, <em>boolean</em>, <em>number</em>,
<em>string</em>, <em>function</em>, <em>userdata</em>, <em>thread</em>, and <em>table</em>.
<em>Nil</em> is the type of the value <B>nil</B>,
whose main property is to be different from any other value;
usually it represents the absence of a useful value.
<em>Boolean</em> is the type of the values <B>false</B> and <B>true</B>.
In Lua, both <B>nil</B> and <B>false</B> make a condition false;
any other value makes it true.
<em>Number</em> represents real (double-precision floating-point) numbers.
(It is easy to build Lua interpreters that use other
internal representations for numbers,
such as single-precision float or long integers.)
<em>String</em> represents arrays of characters.

Lua is 8-bit clean:
Strings may contain any 8-bit character,
including embedded zeros (<code>'\0'</code>) (see <a href="#lexical">2.1</a>).

<p>Functions are <em>first-class values</em> in Lua.
That means that functions can be stored in variables,
passed as arguments to other functions, and returned as results.
Lua can call (and manipulate) functions written in Lua and
functions written in C
(see <a href="#functioncall">2.5.7</a>).

<p>The type <em>userdata</em> is provided to allow arbitrary C data to
be stored in Lua variables.
This type corresponds to a block of raw memory
and has no pre-defined operations in Lua,
except assignment and identity test.
However, by using <em>metatables</em>,
the programmer can define operations for userdata values
(see <a href="#metatable">2.8</a>).
Userdata values cannot be created or modified in Lua,
only through the C&nbsp;API.
This guarantees the integrity of data owned by the host program.

<p>The type <em>thread</em> represents independent threads of execution
and it is used to implement coroutines.

<p>The type <em>table</em> implements associative arrays,
that is, arrays that can be indexed not only with numbers,
but with any value (except <B>nil</B>).
Moreover,
tables can be <em>heterogeneous</em>,
that is, they can contain values of all types (except <B>nil</B>).
Tables are the sole data structuring mechanism in Lua;
they may be used to represent ordinary arrays,
symbol tables, sets, records, graphs, trees, etc.
To represent records, Lua uses the field name as an index.
The language supports this representation by
providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>.
There are several convenient ways to create tables in Lua
(see <a href="#tableconstructor">2.5.6</a>).

<p>Like indices,
the value of a table field can be of any type (except <B>nil</B>).
In particular,
because functions are first class values,
table fields may contain functions.
Thus tables may also carry <em>methods</em> (see <a href="#func-def">2.5.8</a>).

<p>Tables, functions, and userdata values are <em>objects</em>:
variables do not actually <em>contain</em> these values,
only <em>references</em> to them.
Assignment, parameter passing, and function returns
always manipulate references to such values;
these operations do not imply any kind of copy.

<p>The library function <code>type</code> returns a string describing the type
of a given value (see <a href="#pdf-type">5.1</a>).

<p><a name="coercion"><a name="2.2.1"><h3>2.2.1 - Coercion</h3></a></a>

<p>Lua provides automatic conversion between
string and number values at run time.
Any arithmetic operation applied to a string tries to convert
that string to a number, following the usual rules.
Conversely, whenever a number is used where a string is expected,
the number is converted to a string, in a reasonable format.
For complete control of how numbers are converted to strings,
use the <code>format</code> function from the string library (see <a href="#format">5.3</a>).

<p><a name="variables"><a name="2.3"><h2>2.3 - Variables</h2></a></a>

<p>Variables are places that store values.

There are three kinds of variables in Lua:
global variables, local variables, and table fields.

<p>A single name can denote a global variable or a local variable
(or a formal parameter of a function,
which is a particular form of local variable):
<pre>
	var ::= Name
</pre>
Variables are assumed to be global unless explicitly declared local
(see <a href="#localvar">2.4.7</a>).
Local variables are <em>lexically scoped</em>:
Local variables can be freely accessed by functions
defined inside their scope (see <a href="#visibility">2.6</a>).

<p>Before the first assignment to a variable, its value is <B>nil</B>.

<p>Square brackets are used to index a table:
<pre>
	var ::= prefixexp `<b>[</b>&acute; exp `<b>]</b>&acute;
</pre>
The first expression (<em>prefixexp</em>)should result in a table value;
the second expression (<em>exp</em>)
identifies a specific entry inside that table.
The expression denoting the table to be indexed has a restricted syntax;
see <a href="#expressions">2.5</a> for details.

<p>The syntax <code>var.NAME</code> is just syntactic sugar for
<code>var["NAME"]</code>:
<pre>
	var ::= prefixexp `<b>.</b>&acute; Name
</pre>

<p>The meaning of accesses to global variables 
and table fields can be changed via metatables.
An access to an indexed variable <code>t[i]</code> is equivalent to
a call <code>gettable_event(t,i)</code>.
(See <a href="#metatable">2.8</a> for a complete description of the
<code>gettable_event</code> function.
This function is not defined or callable in Lua.
We use it here only for explanatory purposes.)

<p>All global variables live as fields in ordinary Lua tables,
called <em>environment tables</em> or simply <em>environments</em>.
Functions written in C and exported to Lua (<em>C functions</em>)
all share a common <em>global environment</em>.
Each function written in Lua (a <em>Lua function</em>)
has its own reference to an environment,
so that all global variables in that function
will refer to that environment table.
When a function is created,
it inherits the environment from the function that created it.
To change or get the environment table of a Lua function,
you call <code>setfenv</code> or <code>getfenv</code> (see <a href="#setfenv">5.1</a>).

<p>An access to a global variable <code>x</code>
is equivalent to <code>_env.x</code>,
which in turn is equivalent to
<PRE>
       gettable_event(_env, "x")
</PRE>
where <code>_env</code> is the environment of the running function.
(The <code>_env</code> variable is not defined in Lua.
We use it here only for explanatory purposes.)

<p><a name="stats"><a name="2.4"><h2>2.4 - Statements</h2></a></a>

<p>Lua supports an almost conventional set of statements,
similar to those in Pascal or C.
This set includes
assignment, control structures, procedure calls,
table constructors, and variable declarations.

<p><a name="chunks"><a name="2.4.1"><h3>2.4.1 - Chunks</h3></a></a>

<p>The unit of execution of Lua is called a <em>chunk</em>.
A chunk is simply a sequence of statements,
which are executed sequentially.
Each statement can be optionally followed by a semicolon:
<pre>
	chunk ::= {stat [`<b>;</b>&acute;]}
</pre>

<p>Lua handles a chunk as the body of an anonymous function (see <a href="#func-def">2.5.8</a>).
As such, chunks can define local variables and return values.

<p>A chunk may be stored in a file or in a string inside the host program.
When a chunk is executed, first it is pre-compiled into opcodes for
a virtual machine,
and then the compiled code is executed
by an interpreter for the virtual machine.

<p>Chunks may also be pre-compiled into binary form;
see program <code>luac</code> for details.
Programs in source and compiled forms are interchangeable;
Lua automatically detects the file type and acts accordingly.


<p><a name="2.4.2"><h3>2.4.2 - Blocks</h3></a>
A block is a list of statements;
syntactically, a block is equal to a chunk:
<pre>
	block ::= chunk
</pre>

<p>A block may be explicitly delimited to produce a single statement:
<pre>
	stat ::= <b>do</b> block <b>end</b>
</pre>
Explicit blocks are useful
to control the scope of variable declarations.
Explicit blocks are also sometimes used to
add a <b>return</b> or <b>break</b> statement in the middle
of another block (see <a href="#control">2.4.4</a>).


<p><a name="assignment"><a name="2.4.3"><h3>2.4.3 - Assignment</h3></a></a>

<p>Lua allows multiple assignment.
Therefore, the syntax for assignment
defines a list of variables on the left side
and a list of expressions on the right side.
The elements in both lists are separated by commas:
<pre>
	stat ::= varlist1 `<b>=</b>&acute; explist1
	varlist1 ::= var {`<b>,</b>&acute; var}
	explist1 ::= exp {`<b>,</b>&acute; exp}
</pre>
Expressions are discussed in <a href="#expressions">2.5</a>.

<p>Before the assignment,
the list of values is <em>adjusted</em> to the length of
the list of variables.
If there are more values than needed,
the excess values are thrown away.
If there are fewer values than needed,
the list is extended with as many  <B>nil</B>'s as needed.
If the list of expressions ends with a function call,
then all values returned by that function call enter in the list of values,
before the adjustment
(except when the call is enclosed in parentheses; see <a href="#expressions">2.5</a>).

<p>The assignment statement first evaluates all its expressions
and only then are the assignments performed.
Thus the code
<PRE>
       i = 3
       i, a[i] = i+1, 20
</PRE>
sets <code>a[3]</code> to 20, without affecting <code>a[4]</code>
because the <code>i</code> in <code>a[i]</code> is evaluated (to 3)
before it is assigned&nbsp;4.
Similarly, the line
<PRE>
       x, y = y, x
</PRE>
exchanges the values of <code>x</code> and <code>y</code>.

<p>The meaning of assignments to global variables
and table fields can be changed via metatables.
An assignment to an indexed variable <code>t[i] = val</code> is equivalent to
<code>settable_event(t,i,val)</code>.
(See <a href="#metatable">2.8</a> for a complete description of the
<code>settable_event</code> function.
This function is not defined or callable in Lua.
We use it here only for explanatory purposes.)

<p>An assignment to a global variable <code>x = val</code>
is equivalent to the assignment
<code>_env.x = val</code>,
which in turn is equivalent to
<PRE>
       settable_event(_env, "x", val)
</PRE>
where <code>_env</code> is the environment of the running function.
(The <code>_env</code> variable is not defined in Lua.
We use it here only for explanatory purposes.)

<p><a name="control"><a name="2.4.4"><h3>2.4.4 - Control Structures</h3></a></a>
The control structures
<b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and
familiar syntax:



<pre>
	stat ::= <b>while</b> exp <b>do</b> block <b>end</b>
	stat ::= <b>repeat</b> block <b>until</b> exp
	stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b>
</pre>
Lua also has a <b>for</b> statement, in two flavors (see <a href="#for">2.4.5</a>).

<p>The condition expression <em>exp</em> of a
control structure may return any value.
Both <B>false</B> and <B>nil</B> are considered false.
All values different from <B>nil</B> and <B>false</B> are considered true
(in particular, the number 0 and the empty string are also true).

<p>The <b>return</b> statement is used to return values
from a function or from a chunk.

Functions and chunks may return more than one value,
so the syntax for the <b>return</b> statement is
<pre>
	stat ::= <b>return</b> [explist1]
</pre>

<p>The <b>break</b> statement can be used to terminate the execution of a
<b>while</b>, <b>repeat</b>, or <b>for</b> loop,
skipping to the next statement after the loop:

<pre>
	stat ::= <b>break</b>
</pre>
A <b>break</b> ends the innermost enclosing loop.

<p>For syntactic reasons, <b>return</b> and <b>break</b>
statements can only be written as the <em>last</em> statement of a block.
If it is really necessary to <b>return</b> or <b>break</b> in the
middle of a block,
then an explicit inner block can be used,
as in the idioms
`<code>do return end</code>&acute; and
`<code>do break end</code>&acute;,
because now <b>return</b> and <b>break</b> are the last statements in
their (inner) blocks.
In practice,
those idioms are only used during debugging.

<p><a name="for"><a name="2.4.5"><h3>2.4.5 - For Statement</h3></a></a>

<p>The <b>for</b> statement has two forms:
one numeric and one generic.


<p>The numeric <b>for</b> loop repeats a block of code while a
control variable runs through an arithmetic progression.
It has the following syntax:
<pre>
	stat ::= <b>for</b> Name `<b>=</b>&acute; exp `<b>,</b>&acute; exp [`<b>,</b>&acute; exp] <b>do</b> block <b>end</b>
</pre>
The <em>block</em> is repeated for <em>name</em> starting at the value of
the first <em>exp</em>, until it passes the second <em>exp</em> by steps of the
third <em>exp</em>.
More precisely, a <b>for</b> statement like
<PRE>
       for var = e1, e2, e3 do block end
</PRE>
is equivalent to the code:
<PRE>
       do
         local var, _limit, _step = tonumber(e1), tonumber(e2), tonumber(e3)
         if not (var and _limit and _step) then error() end
         while (_step>0 and var&#060;=_limit) or (_step&#060;=0 and var>=_limit) do
           block
           var = var + _step
         end
       end
</PRE>
Note the following:
<ul>
<li> All three control expressions are evaluated only once,
before the loop starts.
They must all result in numbers.
<li> <code>_limit</code> and <code>_step</code> are invisible variables.
The names are here for explanatory purposes only.
<li> The behavior is <em>undefined</em> if you assign to <code>var</code> inside
the block.
<li> If the third expression (the step) is absent, then a step of&nbsp;1 is used.
<li> You can use <b>break</b> to exit a <b>for</b> loop.
<li> The loop variable <code>var</code> is local to the statement;
you cannot use its value after the <b>for</b> ends or is broken.
If you need the value of the loop variable <code>var</code>,
then assign it to another variable before breaking or exiting the loop.
</ul>

<p>The generic <b>for</b> statement works over functions,
called <em>iterators</em>.
For each iteration, it calls its iterator function to produce a new value,
stopping when the new value is <B>nil</B>.
The generic <b>for</b> loop has the following syntax:
<pre>
	stat ::= <b>for</b> Name {`<b>,</b>&acute; Name} <b>in</b> explist1 <b>do</b> block <b>end</b>
</pre>
A <b>for</b> statement like
<PRE>
       for var_1, ..., var_n in explist do block end
</PRE>
is equivalent to the code:
<PRE>
       do
         local _f, _s, var_1 = explist
         local var_2, ... , var_n
         while true do
           var_1, ..., var_n = _f(_s, var_1)
           if var_1 == nil then break end
           block
         end
       end
</PRE>
Note the following:
<ul>
<li> <code>explist</code> is evaluated only once.
Its results are an <em>iterator</em> function,
a <em>state</em>, and an initial value for the first <em>iterator variable</em>.
<li> <code>_f</code> and <code>_s</code> are invisible variables.
The names are here for explanatory purposes only.
<li> The behavior is <em>undefined</em> if you assign to
<code>var_1</code> inside the block.
<li> You can use <b>break</b> to exit a <b>for</b> loop.
<li> The loop variables <code>var_i</code> are local to the statement;
you cannot use their values after the <b>for</b> ends.
If you need these values,
then assign them to other variables before breaking or exiting the loop.
</ul>

<p><a name="funcstat"><a name="2.4.6"><h3>2.4.6 - Function Calls as Statements</h3></a></a>
To allow possible side-effects,
function calls can be executed as statements:
<pre>
	stat ::= functioncall
</pre>
In this case, all returned values are thrown away.
Function calls are explained in <a href="#functioncall">2.5.7</a>.

<p><a name="localvar"><a name="2.4.7"><h3>2.4.7 - Local Declarations</h3></a></a>
Local variables may be declared anywhere inside a block.
The declaration may include an initial assignment:
<pre>
	stat ::= <b>local</b> namelist [`<b>=</b>&acute; explist1]
	namelist ::= Name {`<b>,</b>&acute; Name}
</pre>
If present, an initial assignment has the same semantics
of a multiple assignment (see <a href="#assignment">2.4.3</a>).
Otherwise, all variables are initialized with <B>nil</B>.

<p>A chunk is also a block (see <a href="#chunks">2.4.1</a>),
so local variables can be declared in a chunk outside any explicit block.
Such local variables die when the chunk ends.

<p>The visibility rules for local variables are explained in <a href="#visibility">2.6</a>.

<p><a name="expressions"><a name="2.5"><h2>2.5 - Expressions</h2></a></a>

<p>
The basic expressions in Lua are the following:
<pre>
	exp ::= prefixexp
	exp ::= <b>nil</b> | <b>false</b> | <b>true</b>
	exp ::= Number
	exp ::= Literal
	exp ::= function
	exp ::= tableconstructor
	prefixexp ::= var | functioncall | `<b>(</b>&acute; exp `<b>)</b>&acute;
</pre>

<p>Numbers and literal strings are explained in <a href="#lexical">2.1</a>;
variables are explained in <a href="#variables">2.3</a>;
function definitions are explained in <a href="#func-def">2.5.8</a>;
function calls are explained in <a href="#functioncall">2.5.7</a>;
table constructors are explained in <a href="#tableconstructor">2.5.6</a>.


<p>An expression enclosed in parentheses always results in only one value.
Thus,
<code>(f(x,y,z))</code> is always a single value,
even if <code>f</code> returns several values.
(The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code>
or <B>nil</B> if <code>f</code> does not return any values.)

<p>Expressions can also be built with arithmetic operators, relational operators,
and logical operators, all of which are explained below.

<p><a name="2.5.1"><h3>2.5.1 - Arithmetic Operators</h3></a>
Lua supports the usual arithmetic operators:
the binary <code>+</code> (addition),
<code>-</code> (subtraction), <code>*</code> (multiplication),
<code>/</code> (division), and <code>^</code> (exponentiation);
and unary <code>-</code> (negation).
If the operands are numbers, or strings that can be converted to
numbers (see <a href="#coercion">2.2.1</a>),
then all operations except exponentiation have the usual meaning.
Exponentiation calls a global function <code>__pow</code>;
otherwise, an appropriate metamethod is called (see <a href="#metatable">2.8</a>).
The standard mathematical library defines function <code>__pow</code>,
giving the expected meaning to exponentiation
(see <a href="#mathlib">5.5</a>).

<p><a name="rel-ops"><a name="2.5.2"><h3>2.5.2 - Relational Operators</h3></a></a>
The relational operators in Lua are
<PRE>
       ==    ~=    &#060;     >     &#060;=    >=
</PRE>
These operators always result in <B>false</B> or <B>true</B>.

<p>Equality (<code>==</code>) first compares the type of its operands.
If the types are different, then the result is <B>false</B>.
Otherwise, the values of the operands are compared.
Numbers and strings are compared in the usual way.
Objects (tables, userdata, threads, and functions)
are compared by <em>reference</em>:
Two objects are considered equal only if they are the <em>same</em> object.
Every time you create a new object (a table, userdata, or function),
this new object is different from any previously existing object.

<p>You can change the way that Lua compares tables and userdata 
using the "eq" metamethod (see <a href="#metatable">2.8</a>).

<p>The conversion rules of <a href="#coercion">2.2.1</a>
<em>do not</em> apply to equality comparisons.
Thus, <code>"0"==0</code> evaluates to <B>false</B>,
and <code>t[0]</code> and <code>t["0"]</code> denote different
entries in a table.


<p>The operator <code>~=</code> is exactly the negation of equality (<code>==</code>).

<p>The order operators work as follows.
If both arguments are numbers, then they are compared as such.
Otherwise, if both arguments are strings,
then their values are compared according to the current locale.
Otherwise, Lua tries to call the "lt" or the "le"
metamethod (see <a href="#metatable">2.8</a>).

<p><a name="2.5.3"><h3>2.5.3 - Logical Operators</h3></a>
The logical operators in Lua are

<PRE>
       and   or    not
</PRE>
Like the control structures (see <a href="#control">2.4.4</a>),
all logical operators consider both <B>false</B> and <B>nil</B> as false
and anything else as true.


<p>The operator <b>not</b> always return <B>false</B> or <B>true</B>.

<p>The conjunction operator <b>and</b> returns its first argument
if this value is <B>false</B> or <B>nil</B>;
otherwise, <b>and</b> returns its second argument.
The disjunction operator <b>or</b> returns its first argument
if this value is different from <B>nil</B> and <B>false</B>;
otherwise, <b>or</b> returns its second argument.
Both <b>and</b> and <b>or</b> use short-cut evaluation,
that is,
the second operand is evaluated only if necessary.
For example,
<PRE>
       10 or error()       -> 10
       nil or "a"          -> "a"
       nil and 10          -> nil
       false and error()   -> false
       false and nil       -> false
       false or nil        -> nil
       10 and 20           -> 20
</PRE>

<p><a name="concat"><a name="2.5.4"><h3>2.5.4 - Concatenation</h3></a></a>
The string concatenation operator in Lua is
denoted by two dots (`<code>..</code>&acute;).
If both operands are strings or numbers, then they are converted to
strings according to the rules mentioned in <a href="#coercion">2.2.1</a>.
Otherwise, the "concat" metamethod is called (see <a href="#metatable">2.8</a>).

<p><a name="2.5.5"><h3>2.5.5 - Precedence</h3></a>
Operator precedence in Lua follows the table below,
from lower to higher priority:
<PRE>
       or
       and
       &#060;     >     &#060;=    >=    ~=    ==
       ..
       +     -
       *     /
       not   - (unary)
       ^
</PRE>
You can use parentheses to change the precedences in an expression.
The concatenation (`<code>..</code>&acute;) and exponentiation (`<code>^</code>&acute;)
operators are right associative.
All other binary operators are left associative.

<p><a name="tableconstructor"><a name="2.5.6"><h3>2.5.6 - Table Constructors</h3></a></a>
Table constructors are expressions that create tables.
Every time a constructor is evaluated, a new table is created.
Constructors can be used to create empty tables,
or to create a table and initialize some of its fields.
The general syntax for constructors is
<pre>
	tableconstructor ::= `<b>{</b>&acute; [fieldlist] `<b>}</b>&acute;
	fieldlist ::= field {fieldsep field} [fieldsep]
	field ::= `<b>[</b>&acute; exp `<b>]</b>&acute; `<b>=</b>&acute; exp | Name `<b>=</b>&acute; exp | exp
	fieldsep ::= `<b>,</b>&acute; | `<b>;</b>&acute;
</pre>

<p>Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry
with key <code>exp1</code> and value <code>exp2</code>.
A field of the form <code>name = exp</code> is equivalent to
<code>["name"] = exp</code>.
Finally, fields of the form <code>exp</code> are equivalent to
<code>[i] = exp</code>, where <code>i</code> are consecutive numerical integers,
starting with 1.
Fields in the other formats do not affect this counting.
For example,
<PRE>
       a = {[f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45}
</PRE>
is equivalent to
<PRE>
       do
         local temp = {}
         temp[f(1)] = g
         temp[1] = "x"         -- 1st exp
         temp[2] = "y"         -- 2nd exp
         temp.x = 1            -- temp["x"] = 1
         temp[3] = f(x)        -- 3rd exp
         temp[30] = 23
         temp[4] = 45          -- 4th exp
         a = temp
       end
</PRE>

<p>If the last field in the list has the form <code>exp</code>
and the expression is a function call,
then all values returned by the call enter the list consecutively
(see <a href="#functioncall">2.5.7</a>).
To avoid this,
enclose the function call in parentheses (see <a href="#expressions">2.5</a>).

<p>The field list may have an optional trailing separator,
as a convenience for machine-generated code.

<p><a name="functioncall"><a name="2.5.7"><h3>2.5.7 - Function Calls</h3></a></a>
A function call in Lua has the following syntax:
<pre>
	functioncall ::= prefixexp args
</pre>
In a function call,
first <em>prefixexp</em> and <em>args</em> are evaluated.
If the value of <em>prefixexp</em> has type <em>function</em>,
then that function is called
with the given arguments.
Otherwise, its "call" metamethod is called,
having as first parameter the value of <em>prefixexp</em>,
followed by the original call arguments
(see <a href="#metatable">2.8</a>).

<p>The form
<pre>
	functioncall ::= prefixexp `<b>:</b>&acute; Name args
</pre>
can be used to call "methods".
A call <code>v:name(...)</code>
is syntactic sugar for <code>v.name(v,...)</code>,
except that <code>v</code> is evaluated only once.

<p>Arguments have the following syntax:
<pre>
	args ::= `<b>(</b>&acute; [explist1] `<b>)</b>&acute;
	args ::= tableconstructor
	args ::= Literal
</pre>
All argument expressions are evaluated before the call.
A call of the form <code>f{...}</code> is syntactic sugar for
<code>f({...})</code>, that is,
the argument list is a single new table.
A call of the form <code>f'...'</code>
(or <code>f"..."</code> or <code>f[[...]]</code>) is syntactic sugar for
<code>f('...')</code>, that is,
the argument list is a single literal string.

<p>Because a function can return any number of results
(see <a href="#control">2.4.4</a>),
the number of results must be adjusted before they are used.
If the function is called as a statement (see <a href="#funcstat">2.4.6</a>),
then its return list is adjusted to zero elements,
thus discarding all returned values.
If the function is called inside another expression
or in the middle of a list of expressions,
then its return list is adjusted to one element,
thus discarding all returned values except the first one.
If the function is called as the last element of a list of expressions,
then no adjustment is made
(unless the call is enclosed in parentheses).

<p>Here are some examples:
<PRE>
       f()                -- adjusted to 0 results
       g(f(), x)          -- f() is adjusted to 1 result
       g(x, f())          -- g gets x plus all values returned by f()
       a,b,c = f(), x     -- f() is adjusted to 1 result (and c gets nil)
       a,b,c = x, f()     -- f() is adjusted to 2 results
       a,b,c = f()        -- f() is adjusted to 3 results
       return f()         -- returns all values returned by f()
       return x,y,f()     -- returns x, y, and all values returned by f()
       {f()}              -- creates a list with all values returned by f()
       {f(), nil}         -- f() is adjusted to 1 result
</PRE>

<p>If you enclose a function call in parentheses,
then it is adjusted to return exactly one value:
<PRE>
       return x,y,(f())   -- returns x, y, and the first value from f()
       {(f())}            -- creates a table with exactly one element
</PRE>

<p>As an exception to the free-format syntax of Lua,
you cannot put a line break before the `<code>(</code>&acute; in a function call.
That restriction avoids some ambiguities in the language.
If you write
<PRE>
       a = f
       (g).x(a)
</PRE>
Lua would read that as <code>a = f(g).x(a)</code>.
So, if you want two statements, you must add a semi-colon between them.
If you actually want to call <code>f</code>,
you must remove the line break before <code>(g)</code>.

<p>A call of the form <code>return</code> <em>functioncall</em> is called
a <em>tail call</em>.
Lua implements <em>proper tail calls</em>
(or <em>proper tail recursion</em>):
In a tail call,
the called function reuses the stack entry of the calling function.
Therefore, there is no limit on the number of nested tail calls that
a program can execute.
However, a tail call erases any debug information about the
calling function.
Note that a tail call only happens with a particular syntax,
where the <b>return</b> has one single function call as argument;
this syntax makes the calling function returns exactly
the returns of the called function.
So, all the following examples are not tails calls:
<PRE>
  return (f(x))        -- results adjusted to 1
  return 2 * f(x)
  return x, f(x)       -- additional results
  f(x); return         -- results discarded
  return x or f(x)     -- results adjusted to 1
</PRE>

<p><a name="func-def"><a name="2.5.8"><h3>2.5.8 - Function Definitions</h3></a></a>

<p>The syntax for function definition is
<pre>
	function ::= <b>function</b> funcbody
	funcbody ::= `<b>(</b>&acute; [parlist1] `<b>)</b>&acute; block <b>end</b>
</pre>

<p>The following syntactic sugar simplifies function definitions:
<pre>
	stat ::= <b>function</b> funcname funcbody
	stat ::= <b>local</b> <b>function</b> Name funcbody
	funcname ::= Name {`<b>.</b>&acute; Name} [`<b>:</b>&acute; Name]
</pre>
The statement
<PRE>
       function f () ... end
</PRE>
translates to
<PRE>
       f = function () ... end
</PRE>
The statement
<PRE>
       function t.a.b.c.f () ... end
</PRE>
translates to
<PRE>
       t.a.b.c.f = function () ... end
</PRE>
The statement
<PRE>
       local function f () ... end
</PRE>
translates to
<PRE>
       local f; f = function () ... end
</PRE>

<p>A function definition is an executable expression,
whose value has type <em>function</em>.
When Lua pre-compiles a chunk,
all its function bodies are pre-compiled too.
Then, whenever Lua executes the function definition,
the function is <em>instantiated</em> (or <em>closed</em>).
This function instance (or <em>closure</em>)
is the final value of the expression.
Different instances of the same function
may refer to different  external local variables
and may have different environment tables.

<p>Parameters act as local variables that are
initialized with the argument values:
<pre>
	parlist1 ::= namelist [`<b>,</b>&acute; `<b>...</b>&acute;]
	parlist1 ::= `<b>...</b>&acute;
</pre>
When a function is called,
the list of arguments is adjusted to
the length of the list of parameters,
unless the function is a variadic or <em>vararg function</em>,
which is
indicated by three dots (`<code>...</code>&acute;) at the end of its parameter list.
A vararg function does not adjust its argument list;
instead, it collects all extra arguments into an implicit parameter,
called <code>arg</code>.
The value of <a name="vararg"><code>arg</code></a> is a table,
with a field&nbsp;<code>n</code> that holds the number of extra arguments
and with the extra arguments at positions 1,&nbsp;2,&nbsp;...,&nbsp;<code>n</code>.

<p>As an example, consider the following definitions:
<PRE>
       function f(a, b) end
       function g(a, b, ...) end
       function r() return 1,2,3 end
</PRE>
Then, we have the following mapping from arguments to parameters:
<PRE>
       CALL            PARAMETERS

       f(3)             a=3, b=nil
       f(3, 4)          a=3, b=4
       f(3, 4, 5)       a=3, b=4
       f(r(), 10)       a=1, b=10
       f(r())           a=1, b=2

       g(3)             a=3, b=nil, arg={n=0}
       g(3, 4)          a=3, b=4,   arg={n=0}
       g(3, 4, 5, 8)    a=3, b=4,   arg={5, 8; n=2}
       g(5, r())        a=5, b=1,   arg={2, 3; n=2}
</PRE>

<p>Results are returned using the <b>return</b> statement (see <a href="#control">2.4.4</a>).
If control reaches the end of a function
without encountering a <b>return</b> statement,
then the function returns with no results.

<p>The <em>colon</em> syntax
is used for defining <em>methods</em>,
that is, functions that have an implicit extra parameter <code>self</code>.
Thus, the statement
<PRE>
       function t.a.b.c:f (...) ... end
</PRE>
is syntactic sugar for
<PRE>
       t.a.b.c.f = function (self, ...) ... end
</PRE>

<p><a name="visibility"><a name="2.6"><h2>2.6 - Visibility Rules</h2></a></a>


<p>Lua is a lexically scoped language.
The scope of variables begins at the first statement <em>after</em>
their declaration and lasts until the end of the innermost block that
includes the declaration.
For instance:
<PRE>
  x = 10                -- global variable
  do                    -- new block
    local x = x         -- new `x', with value 10
    print(x)            --> 10
    x = x+1
    do                  -- another block
      local x = x+1     -- another `x'
      print(x)          --> 12
    end
    print(x)            --> 11
  end
  print(x)              --> 10  (the global one)
</PRE>
Notice that, in a declaration like <code>local x = x</code>,
the new <code>x</code> being declared is not in scope yet,
and so the second <code>x</code> refers to the outside variable.

<p>Because of the lexical scoping rules,
local variables can be freely accessed by functions
defined inside their scope.
For instance:
<PRE>
  local counter = 0
  function inc (x)
    counter = counter + x
    return counter
  end
</PRE>
A local variable used by an inner function is called
an <em>upvalue</em>, or <em>external local variable</em>,
inside the inner function.

<p>Notice that each execution of a <b>local</b> statement
defines new local variables.
Consider the following example:
<PRE>
  a = {}
  local x = 20
  for i=1,10 do
    local y = 0
    a[i] = function () y=y+1; return x+y end
  end
</PRE>
The loop creates ten closures
(that is, ten instances of the anonymous function).
Each of these closures uses a different <code>y</code> variable,
while all of them share the same <code>x</code>.

<p><a name="error"><a name="2.7"><h2>2.7 - Error Handling</h2></a></a>

<p>Because Lua is an extension language,
all Lua actions start from C&nbsp;code in the host program
calling a function from the Lua library (see <a href="#lua_pcall">3.15</a>).
Whenever an error occurs during Lua compilation or execution,
control returns to C,
which can take appropriate measures
(such as print an error message).

<p>Lua code can explicitly generate an error by calling the
<code>error</code> function (see <a href="#pdf-error">5.1</a>).
If you need to catch errors in Lua,
you can use the <code>pcall</code> function (see <a href="#pdf-pcall">5.1</a>).

<p><a name="metatable"><a name="2.8"><h2>2.8 - Metatables</h2></a></a>

<p>Every table and userdata object in Lua may have a <em>metatable</em>.
This <em>metatable</em> is an ordinary Lua table
that defines the behavior of the original table and userdata
under certain special operations.
You can change several aspects of the behavior
of an object by setting specific fields in its metatable.
For instance, when an object is the operand of an addition,
Lua checks for a function in the field <code>"__add"</code> in its metatable.
If it finds one,
Lua calls that function to perform the addition.

<p>We call the keys in a metatable <em>events</em>
and the values <em>metamethods</em>.
In the previous example, the event is <code>"add"</code> 
and the metamethod is the function that performs the addition.

<p>You can query and change the metatable of an object
through the <code>set/getmetatable</code>
functions (see <a href="#pdf-getmetatable">5.1</a>).

<p>A metatable may control how an object behaves in arithmetic operations,
order comparisons, concatenation, and indexing.
A metatable can also define a function to be called when a userdata
is garbage collected.
For each of those operations Lua associates a specific key
called an <em>event</em>.
When Lua performs one of those operations over a table or a userdata,
it checks whether that object has a metatable with the corresponding event.
If so, the value associated with that key (the <em>metamethod</em>)
controls how Lua will perform the operation.

<p>Metatables control the operations listed next.
Each operation is identified by its corresponding name.
The key for each operation is a string with its name prefixed by
two underscores;
for instance, the key for operation "add" is the
string <code>"__add"</code>.
The semantics of these operations is better explained by a Lua function
describing how the interpreter executes that operation.

<p>The code shown here in Lua is only illustrative;
the real behavior is hard coded in the interpreter
and it is much more efficient than this simulation.
All functions used in these descriptions
(<code>rawget</code>, <code>tonumber</code>, etc.)
are described in <a href="#predefined">5.1</a>.
In particular, to retrieve the metamethod of a given object,
we use the expression
<PRE>
  metatable(obj)[event]
</PRE>
This should be read as
<PRE>
  rawget(metatable(obj) or {}, event)
</PRE>
That is, the access to a metamethod does not invoke other metamethods,
and the access to objects with no metatables does not fail
(it simply results in <B>nil</B>).

<p><ul>

<p><li><b>"add":</b>
the <code>+</code> operation.

<p>The function <code>getbinhandler</code> below defines how Lua chooses a handler
for a binary operation.
First, Lua tries the first operand.
If its type does not define a handler for the operation,
then Lua tries the second operand.
<PRE>
 function getbinhandler (op1, op2, event)
   return metatable(op1)[event] or metatable(op2)[event]
 end
</PRE>
Using that function,
the behavior of the <code>op1 + op2</code> is
<PRE>
 function add_event (op1, op2)
   local o1, o2 = tonumber(op1), tonumber(op2)
   if o1 and o2 then  -- both operands are numeric?
     return o1 + o2   -- `+' here is the primitive `add'
   else  -- at least one of the operands is not numeric
     local h = getbinhandler(op1, op2, "__add")
     if h then
       -- call the handler with both operands
       return h(op1, op2)
     else  -- no handler available: default behavior
       error("...")
     end
   end
 end
</PRE>

<p><li><b>"sub":</b>
the <code>-</code> operation.
Behavior similar to the "add" operation.

<p><li><b>"mul":</b>
the <code>*</code> operation.
Behavior similar to the "add" operation.

<p><li><b>"div":</b>
the <code>/</code> operation.
Behavior similar to the "add" operation.

<p><li><b>"pow":</b>
the <code>^</code> (exponentiation) operation.
<PRE>
 function pow_event (op1, op2)
   local o1, o2 = tonumber(op1), tonumber(op2)
   if o1 and o2 then  -- both operands are numeric?
     return __pow(o1, o2)   -- call global `__pow'
   else  -- at least one of the operands is not numeric
     local h = getbinhandler(op1, op2, "__pow")
     if h then
       -- call the handler with both operands
       return h(op1, op2)
     else  -- no handler available: default behavior
       error("...")
     end
   end
  end
</PRE>

<p><li><b>"unm":</b>
the unary <code>-</code> operation.
<PRE>
 function unm_event (op)
   local o = tonumber(op)
   if o then  -- operand is numeric?
     return -o  -- `-' here is the primitive `unm'
   else  -- the operand is not numeric.
     -- Try to get a handler from the operand
     local h = metatable(op).__unm
     if h then
       -- call the handler with the operand and nil
       return h(op, nil)
     else  -- no handler available: default behavior
       error("...")
     end
   end
 end
</PRE>

<p><li><b>"concat":</b>
the <code>..</code> (concatenation) operation.
<PRE>
 function concat_event (op1, op2)
   if (type(op1) == "string" or type(op1) == "number") and
      (type(op2) == "string" or type(op2) == "number") then
     return op1 .. op2  -- primitive string concatenation
   else
     local h = getbinhandler(op1, op2, "__concat")
     if h then
       return h(op1, op2)
     else
       error("...")
     end
   end
 end
</PRE>

<p><li><b>"eq":</b>
the <code>==</code> operation.
The function <code>getcomphandler</code> defines how Lua chooses a metamethod
for comparison operators.
A metamethod only is selected when both objects
being compared have the same type
and the same metamethod for the selected operation.
<PRE>
 function getcomphandler (op1, op2, event)
   if type(op1) ~= type(op2) then return nil end
   local mm1 = metatable(op1)[event]
   local mm2 = metatable(op2)[event]
   if mm1 == mm2 then return mm1 else return nil end
 end
</PRE>
The "eq" event is defined as follows:
<PRE>
 function eq_event (op1, op2)
   if type(op1) ~= type(op2) then  -- different types?
     return false   -- different objects
   end
   if op1 == op2 then   -- primitive equal?
     return true   -- objects are equal
   end
   -- try metamethod
   local h = getcomphandler(op1, op2, "__eq")
   if h then
     return h(op1, op2)
   else
     return false
   end
 end
</PRE>
<code>a ~= b</code> is equivalent to <code>not (a == b)</code>.

<p><li><b>"lt":</b>
the <code>&#060;</code> operation.
<PRE>
 function lt_event (op1, op2)
   if type(op1) == "number" and type(op2) == "number" then
     return op1 &#060; op2   -- numeric comparison
   elseif type(op1) == "string" and type(op2) == "string" then
     return op1 &#060; op2   -- lexicographic comparison
   else
     local h = getcomphandler(op1, op2, "__lt")
     if h then
       return h(op1, op2)
     else
       error("...");
     end
   end
 end
</PRE>
<code>a > b</code> is equivalent to <code>b &#060; a</code>.

<p><li><b>"le":</b>
the <code>&#060;=</code> operation.
<PRE>
 function le_event (op1, op2)
   if type(op1) == "number" and type(op2) == "number" then
     return op1 &#060;= op2   -- numeric comparison
   elseif type(op1) == "string" and type(op2) == "string" then
     return op1 &#060;= op2   -- lexicographic comparison
   else
     local h = getcomphandler(op1, op2, "__le")
     if h then
       return h(op1, op2)
     else
       h = getcomphandler(op1, op2, "__lt")
       if h then
         return not h(op2, op1)
       else
         error("...");
       end
     end
   end
 end
</PRE>
<code>a >= b</code> is equivalent to <code>b &#060;= a</code>.
Note that, in the absence of a "le" metamethod,
Lua tries the "lt", assuming that <code>a &#060;= b</code> is
equivalent to <code>not (b &#060; a)</code>.

<p><li><b>"index":</b>
The indexing access <code>table[key]</code>.
<PRE>
 function gettable_event (table, key)
   local h
   if type(table) == "table" then
     local v = rawget(table, key)
     if v ~= nil then return v end
     h = metatable(table).__index
     if h == nil then return nil end
   else
     h = metatable(table).__index
     if h == nil then
       error("...");
     end
   end
   if type(h) == "function" then
     return h(table, key)      -- call the handler
   else return h[key]          -- or repeat operation on it
 end
</PRE>

<p><li><b>"newindex":</b>
The indexing assignment <code>table[key] = value</code>.
<PRE>
 function settable_event (table, key, value)
   local h
   if type(table) == "table" then
     local v = rawget(table, key)
     if v ~= nil then rawset(table, key, value); return end
     h = metatable(table).__newindex
     if h == nil then rawset(table, key, value); return end
   else
     h = metatable(table).__newindex
     if h == nil then
       error("...");
     end
   end
   if type(h) == "function" then
     return h(table, key,value)    -- call the handler
   else h[key] = value             -- or repeat operation on it
 end
</PRE>

<p><li><b>"call":</b>
called when Lua calls a value.
<PRE>
 function function_event (func, ...)
   if type(func) == "function" then
     return func(unpack(arg))   -- primitive call
   else
     local h = metatable(func).__call
     if h then
       return h(func, unpack(arg))
     else
       error("...")
     end
   end
 end
</PRE>

<p></ul>

<p><a name="GC"><a name="2.9"><h2>2.9 - Garbage Collection</h2></a></a>

<p>Lua does automatic memory management.
That means that
you do not have to worry about allocating memory for new objects
and freeing it when the objects are no longer needed.
Lua manages memory automatically by running
a <em>garbage collector</em> from time to time
to collect all <em>dead objects</em>
(that is, those objects that are no longer accessible from Lua).
All objects in Lua are subject to automatic management:
tables, userdata, functions, threads, and strings.

<p>Lua uses two numbers to control its garbage-collection cycles.
One number counts how many bytes of dynamic memory Lua is using;
the other is a threshold.
When the number of bytes crosses the threshold,
Lua runs the garbage collector,
which reclaims the memory of all dead objects.
The byte counter is adjusted,
and then the threshold is reset to twice the new value of the byte counter.

<p>Through the C&nbsp;API, you can query those numbers
and change the threshold (see <a href="#GC-API">3.7</a>).
Setting the threshold to zero actually forces an immediate
garbage-collection cycle,
while setting it to a huge number effectively stops the garbage collector.
Using Lua code you have a more limited control over garbage-collection cycles,
through the <code>gcinfo</code> and <code>collectgarbage</code> functions
(see <a href="#predefined">5.1</a>).

<p><a name="2.9.1"><h3>2.9.1 - Garbage-Collection Metamethods</h3></a>

<p>Using the C&nbsp;API,
you can set garbage-collector metamethods for userdata (see <a href="#metatable">2.8</a>).
These metamethods are also called <em>finalizers</em>.
Finalizers allow you to coordinate Lua's garbage collection
with external resource management
(such as closing files, network or database connections,
or freeing your own memory).

<p>Free userdata with a field <code>__gc</code> in their metatables are not
collected immediately by the garbage collector.
Instead, Lua puts them in a list.
After the collection,
Lua does the equivalent of the following function
for each userdata in that list:
<PRE>
 function gc_event (udata)
   local h = metatable(udata).__gc
   if h then
     h(udata)
   end
 end
</PRE>

<p>At the end of each garbage-collection cycle,
the finalizers for userdata are called in <em>reverse</em>
order of their creation,
among those collected in that cycle.
That is, the first finalizer to be called is the one associated
with the userdata created last in the program.

<p><a name="weak-table"><a name="2.9.2"><h3>2.9.2 - Weak Tables</h3></a></a>

<p>A <em>weak table</em> is a table whose elements are
<em>weak references</em>.
A weak reference is ignored by the garbage collector.
In other words,
if the only references to an object are weak references,
then the garbage collector will collect that object.

<p>A weak table can have weak keys, weak values, or both.
A table with weak keys allows the collection of its keys,
but prevents the collection of its values.
A table with both weak keys and weak values allows the collection of
both keys and values.
In any case, if either the key or the value is collected,
the whole pair is removed from the table.
The weakness of a table is controlled by the value of the
<code>__mode</code> field of its metatable.
If the <code>__mode</code> field is a string containing the character&nbsp;`<code>k</code>&acute;,
the keys in the table are weak.
If <code>__mode</code> contains `<code>v</code>&acute;,
the values in the table are weak.

<p>After you use a table as a metatable,
you should not change the value of its field <code>__mode</code>.
Otherwise, the weak behavior of the tables controlled by this
metatable is undefined.

<p><a name="coroutine"><a name="2.10"><h2>2.10 - Coroutines</h2></a></a>

<p>Lua supports coroutines,
also called <em>semi-coroutines</em>
or <em>collaborative multithreading</em>.
A coroutine in Lua represents an independent thread of execution.
Unlike threads in multithread systems, however,
a coroutine only suspends its execution by explicitly calling
a yield function.

<p>You create a coroutine with a call to <code>coroutine.create</code>.
Its sole argument is a function
that is the main function of the coroutine.
The <code>create</code> function only creates a new coroutine and
returns a handle to it (an object of type <em>thread</em>);
it does not start the coroutine execution.

<p>When you first call <code>coroutine.resume</code>,
passing as its first argument the thread returned by <code>coroutine.create</code>,
the coroutine starts its execution,
at the first line of its main function.
Extra arguments passed to <code>coroutine.resume</code> are given as
parameters for the coroutine main function.
After the coroutine starts running,
it runs until it terminates or <em>yields</em>.

<p>A coroutine can terminate its execution in two ways:
Normally, when its main function returns
(explicitly or implicitly, after the last instruction);
and abnormally, if there is an unprotected error.
In the first case, <code>coroutine.resume</code> returns <B>true</B>,
plus any values returned by the coroutine main function.
In case of errors, <code>coroutine.resume</code> returns <B>false</B>
plus an error message.

<p>A coroutine yields by calling <code>coroutine.yield</code>.
When a coroutine yields,
the corresponding <code>coroutine.resume</code> returns immediately,
even if the yield happens inside nested function calls
(that is, not in the main function,
but in a function directly or indirectly called by the main function).
In the case of a yield, <code>coroutine.resume</code> also returns <B>true</B>,
plus any values passed to <code>coroutine.yield</code>.
The next time you resume the same coroutine,
it continues its execution from the point where it yielded,
with the call to <code>coroutine.yield</code> returning any extra
arguments passed to <code>coroutine.resume</code>.

<p>The <code>coroutine.wrap</code> function creates a coroutine
like <code>coroutine.create</code>,
but instead of returning the coroutine itself,
it returns a function that, when called, resumes the coroutine.
Any arguments passed to that function
go as extra arguments to resume.
The function returns all the values returned by resume,
except the first one (the boolean error code).
Unlike <code>coroutine.resume</code>,
this function does not catch errors;
any error is propagated to the caller.

<p>As an example,
consider the next code:
<PRE>
function foo1 (a)
  print("foo", a)
  return coroutine.yield(2*a)
end

co = coroutine.create(function (a,b)
      print("co-body", a, b)
      local r = foo1(a+1)
      print("co-body", r)
      local r, s = coroutine.yield(a+b, a-b)
      print("co-body", r, s)
      return b, "end"
end)
       
a, b = coroutine.resume(co, 1, 10)
print("main", a, b)
a, b, c = coroutine.resume(co, "r")
print("main", a, b, c)
a, b, c = coroutine.resume(co, "x", "y")
print("main", a, b, c)
a, b = coroutine.resume(co, "x", "y")
print("main", a, b)
</PRE>
When you run it, it produces the following output:
<PRE>
co-body 1       10
foo     2
main    true    4
co-body r
main    true    11      -9
co-body x       y
main    true    10      end
main    false   cannot resume dead coroutine
</PRE>

<p>
<a name="API"><a name="3"><h1>3 - The Application Program Interface</h1></a></a>


<p>This section describes the C API for Lua, that is,
the set of C&nbsp;functions available to the host program to communicate
with Lua.
All API functions and related types and constants
are declared in the header file <code>lua.h</code>.

<p>Even when we use the term "function",
any facility in the API may be provided as a <em>macro</em> instead.
All such macros use each of its arguments exactly once
(except for the first argument, which is always a Lua state),
and so do not generate hidden side-effects.

<p><a name="mangstate"><a name="3.1"><h2>3.1 - States</h2></a></a>

<p>The Lua library is fully reentrant:
it has no global variables.

The whole state of the Lua interpreter
(global variables, stack, etc.)
is stored in a dynamically allocated structure of type <code>lua_State</code>.

A pointer to this state must be passed as the first argument to
every function in the library, except to <code>lua_open</code>,
which creates a Lua state from scratch.

<p>Before calling any API function,
you must create a state by calling <code>lua_open</code>:
<PRE>
       lua_State *lua_open (void);
</PRE>


<p>To release a state created with <code>lua_open</code>, call <code>lua_close</code>:
<PRE>
       void lua_close (lua_State *L);
</PRE>

This function destroys all objects in the given Lua state
(calling the corresponding garbage-collection metamethods, if any)
and frees all dynamic memory used by that state.
On several platforms, you may not need to call this function,
because all resources are naturally released when the host program ends.
On the other hand,
long-running programs,
such as a daemon or a web server,
might need to release states as soon as they are not needed,
to avoid growing too large.

<p><a name="3.2"><h2>3.2 - The Stack and Indices</h2></a>

<p>Lua uses a <em>virtual stack</em> to pass values to and from C.
Each element in this stack represents a Lua value
(<B>nil</B>, number, string, etc.).

<p>Whenever Lua calls C, the called function gets a new stack,
which is independent of previous stacks and of stacks of
C functions that are still active.
That stack initially contains any arguments to the C function,
and it is where the C function pushes its results to be returned to the caller (see <a href="#LuacallC">3.16</a>)
to be returned to the caller.

<p>For convenience,
most query operations in the API do not follow a strict stack discipline.
Instead, they can refer to any element in the stack by using an <em>index</em>:
A positive index represents an <em>absolute</em> stack position
(starting at&nbsp;1);
a negative index represents an <em>offset</em> from the top of the stack.
More specifically, if the stack has <em>n</em> elements,
then index&nbsp;1 represents the first element
(that is, the element that was pushed onto the stack first)
and
index&nbsp;<em>n</em> represents the last element;
index&nbsp;<em>-1</em> also represents the last element
(that is, the element at the top)
and index <em>-n</em> represents the first element.
We say that an index is <em>valid</em>
if it lies between&nbsp;1 and the stack top
(that is, if <code>1 &#060;= abs(index) &#060;= top</code>).
 

<p>At any time, you can get the index of the top element by calling
<code>lua_gettop</code>:
<PRE>
       int lua_gettop (lua_State *L);
</PRE>
Because indices start at&nbsp;1,
the result of <code>lua_gettop</code> is equal to the number of elements in the stack
(and so 0&nbsp;means an empty stack).

<p>When you interact with Lua API,
<em>you are responsible for controlling stack overflow</em>.
The function
<PRE>
       int lua_checkstack (lua_State *L, int extra);
</PRE>

grows the stack size to <code>top + extra</code> elements;
it returns false if it cannot grow the stack to that size.
This function never shrinks the stack;
if the stack is already larger than the new size,
it is left unchanged.

<p>Whenever Lua calls C, 
it ensures that at least <code>LUA_MINSTACK</code> stack positions are available.
<code>LUA_MINSTACK</code> is defined in <code>lua.h</code> as 20,
so that usually you do not have to worry about stack space
unless your code has loops pushing elements onto the stack.

<p>Most query functions accept as indices any value inside the
available stack space, that is, indices up to the maximum stack size
you have set through <code>lua_checkstack</code>.
Such indices are called <em>acceptable indices</em>.
More formally, we define an <em>acceptable index</em>
as follows:
<PRE>
     (index &#060; 0 &#038;&#038; abs(index) &#060;= top) || (index > 0 &#038;&#038; index &#060;= stackspace)
</PRE>
Note that 0 is never an acceptable index.

<p>Unless otherwise noted,
any function that accepts valid indices can also be called with
<em>pseudo-indices</em>,
which represent some Lua values that are accessible to the C&nbsp;code
but are not in the stack.
Pseudo-indices are used to access the global environment,
the registry, and the upvalues of a C&nbsp;function (see <a href="#c-closure">3.17</a>).

<p><a name="3.3"><h2>3.3 - Stack Manipulation</h2></a>
The API offers the following functions for basic stack manipulation:
<PRE>
       void lua_settop    (lua_State *L, int index);
       void lua_pushvalue (lua_State *L, int index);
       void lua_remove    (lua_State *L, int index);
       void lua_insert    (lua_State *L, int index);
       void lua_replace   (lua_State *L, int index);
</PRE>



<p><code>lua_settop</code> accepts any acceptable index,
or 0,
and sets the stack top to that index.
If the new top is larger than the old one,
then the new elements are filled with <B>nil</B>.
If <code>index</code> is 0, then all stack elements are removed.
A useful macro defined in the <code>lua.h</code> is
<PRE>
       #define lua_pop(L,n)   lua_settop(L, -(n)-1)
</PRE>

which pops <code>n</code> elements from the stack.

<p><code>lua_pushvalue</code> pushes onto the stack a copy of the element
at the given index.
<code>lua_remove</code> removes the element at the given position,
shifting down the elements above that position to fill the gap.
<code>lua_insert</code> moves the top element into the given position,
shifting up the elements above that position to open space.
<code>lua_replace</code> moves the top element into the given position,
without shifting any element (therefore replacing the value at
the given position).
All these functions accept only valid indices.
(You cannot call <code>lua_remove</code> or <code>lua_insert</code> with
pseudo-indices, as they do not represent a stack position.)

<p>As an example, if the stack starts as <code>10 20 30 40 50*</code>
(from bottom to top; the `<code>*</code>&acute; marks the top),
then
<PRE>
       lua_pushvalue(L, 3)    --> 10 20 30 40 50 30*
       lua_pushvalue(L, -1)   --> 10 20 30 40 50 30 30*
       lua_remove(L, -3)      --> 10 20 30 40 30 30*
       lua_remove(L,  6)      --> 10 20 30 40 30*
       lua_insert(L,  1)      --> 30 10 20 30 40*
       lua_insert(L, -1)      --> 30 10 20 30 40*  (no effect)
       lua_replace(L, 2)      --> 30 40 20 30*
       lua_settop(L, -3)      --> 30 40*
       lua_settop(L,  6)      --> 30 40 nil nil nil nil*
</PRE>

<p><a name="3.4"><h2>3.4 - Querying the Stack</h2></a>

<p>To check the type of a stack element,
the following functions are available:
<PRE>
       int lua_type            (lua_State *L, int index);
       int lua_isnil           (lua_State *L, int index);
       int lua_isboolean       (lua_State *L, int index);
       int lua_isnumber        (lua_State *L, int index);
       int lua_isstring        (lua_State *L, int index);
       int lua_istable         (lua_State *L, int index);
       int lua_isfunction      (lua_State *L, int index);
       int lua_iscfunction     (lua_State *L, int index);
       int lua_isuserdata      (lua_State *L, int index);
       int lua_islightuserdata (lua_State *L, int index);
</PRE>





These functions can be called with any acceptable index.

<p><code>lua_type</code> returns the type of a value in the stack,
or <code>LUA_TNONE</code> for a non-valid index
(that is, if that stack position is "empty").
The types returned by <code>lua_type</code> are coded by the following constants
defined in <code>lua.h</code>:
<code>LUA_TNIL</code>,
<code>LUA_TNUMBER</code>,
<code>LUA_TBOOLEAN</code>,
<code>LUA_TSTRING</code>,
<code>LUA_TTABLE</code>,
<code>LUA_TFUNCTION</code>,
<code>LUA_TUSERDATA</code>,
<code>LUA_TTHREAD</code>,
<code>LUA_TLIGHTUSERDATA</code>.
The following function translates these constants to strings:
<PRE>
       const char *lua_typename  (lua_State *L, int type);
</PRE>


<p>The <code>lua_is*</code> functions return&nbsp;1 if the object is compatible
with the given type, and 0 otherwise.
<code>lua_isboolean</code> is an exception to this rule:
It succeeds only for boolean values
(otherwise it would be useless,
as any value has a boolean value).
They always return 0 for a non-valid index.
<code>lua_isnumber</code> accepts numbers and numerical strings;
<code>lua_isstring</code> accepts strings and numbers (see <a href="#coercion">2.2.1</a>);
<code>lua_isfunction</code> accepts both Lua functions and C&nbsp;functions;
and <code>lua_isuserdata</code> accepts both full and light userdata.
To distinguish between Lua functions and C&nbsp;functions,
you can use <code>lua_iscfunction</code>.
To distinguish between full and light userdata,
you can use <code>lua_islightuserdata</code>.
To distinguish between numbers and numerical strings,
you can use <code>lua_type</code>.

<p>The API also contains functions to compare two values in the stack:
<PRE>
       int lua_equal    (lua_State *L, int index1, int index2);
       int lua_rawequal (lua_State *L, int index1, int index2);
       int lua_lessthan (lua_State *L, int index1, int index2);
</PRE>

<code>lua_equal</code> and <code>lua_lessthan</code>
are equivalent to their counterparts in Lua (see <a href="#rel-ops">2.5.2</a>).
<code>lua_rawequal</code> compares the values for primitive equality,
without metamethods.
These functions return 0 (false) if any of the indices are non-valid.

<p><a name="lua-to"><a name="3.5"><h2>3.5 - Getting Values from the Stack</h2></a></a>

<p>To translate a value in the stack to a specific C&nbsp;type,
you can use the following conversion functions:
<PRE>
       int            lua_toboolean   (lua_State *L, int index);
       lua_Number     lua_tonumber    (lua_State *L, int index);
       const char    *lua_tostring    (lua_State *L, int index);
       size_t         lua_strlen      (lua_State *L, int index);
       lua_CFunction  lua_tocfunction (lua_State *L, int index);
       void          *lua_touserdata  (lua_State *L, int index);
       lua_State     *lua_tothread    (lua_State *L, int index);
       void          *lua_topointer   (lua_State *L, int index);
</PRE>



These functions can be called with any acceptable index.
When called with a non-valid index,
they act as if the given value had an incorrect type.

<p><code>lua_toboolean</code> converts the Lua value at the given index
to a C "boolean" value (0&nbsp;or&nbsp;1).
Like all tests in Lua, <code>lua_toboolean</code> returns 1 for any Lua value
different from <B>false</B> and <B>nil</B>;
otherwise it returns 0.
It also returns 0 when called with a non-valid index.
(If you want to accept only real boolean values,
use <code>lua_isboolean</code> to test the type of the value.)

<p><code>lua_tonumber</code> converts the Lua value at the given index
to a number (by default, <code>lua_Number</code> is <code>double</code>).

The Lua value must be a number or a string convertible to number
(see <a href="#coercion">2.2.1</a>); otherwise, <code>lua_tonumber</code> returns&nbsp;0.

<p><code>lua_tostring</code> converts the Lua value at the given index to a string
(<code>const char*</code>).
The Lua value must be a string or a number;
otherwise, the function returns <code>NULL</code>.
If the value is a number,
then <code>lua_tostring</code> also
<em>changes the actual value in the stack to a string</em>.
(This change confuses <code>lua_next</code>
when <code>lua_tostring</code> is applied to keys.)
<code>lua_tostring</code> returns a fully aligned pointer
to a string inside the Lua state.
This string always has a zero (<code>'\0'</code>)
after its last character (as in&nbsp;C),
but may contain other zeros in its body.
If you do not know whether a string may contain zeros,
you can use <code>lua_strlen</code> to get its actual length.
Because Lua has garbage collection,
there is no guarantee that the pointer returned by <code>lua_tostring</code>
will be valid after the corresponding value is removed from the stack.
If you need the string after the current function returns,
then you should duplicate it or put it into the registry (see <a href="#registry">3.18</a>).

<p><code>lua_tocfunction</code> converts a value in the stack to a C&nbsp;function.
This value must be a C&nbsp;function;
otherwise, <code>lua_tocfunction</code> returns <code>NULL</code>.
The type <code>lua_CFunction</code> is explained in <a href="#LuacallC">3.16</a>.

<p><code>lua_tothread</code> converts a value in the stack to a Lua thread
(represented as <code>lua_State *</code>).
This value must be a thread;
otherwise, <code>lua_tothread</code> returns <code>NULL</code>.

<p><code>lua_topointer</code> converts a value in the stack to a generic
C pointer (<code>void *</code>).
The value may be a userdata, a table, a thread, or a function;
otherwise, <code>lua_topointer</code> returns <code>NULL</code>.
Lua ensures that different objects of the
same type return different pointers.
There is no direct way to convert the pointer back to its original value.
Typically this function is used for debug information.

<p><code>lua_touserdata</code> is explained in <a href="#userdata">3.8</a>.

<p><a name="pushing"><a name="3.6"><h2>3.6 - Pushing Values onto the Stack</h2></a></a>

<p>The API has the following functions to
push C&nbsp;values onto the stack:
<PRE>
       void lua_pushboolean       (lua_State *L, int b);
       void lua_pushnumber        (lua_State *L, lua_Number n);
       void lua_pushlstring       (lua_State *L, const char *s, size_t len);
       void lua_pushstring        (lua_State *L, const char *s);
       void lua_pushnil           (lua_State *L);
       void lua_pushcfunction     (lua_State *L, lua_CFunction f);
       void lua_pushlightuserdata (lua_State *L, void *p);
</PRE>

<p>


These functions receive a C&nbsp;value,
convert it to a corresponding Lua value,
and push the result onto the stack.
In particular, <code>lua_pushlstring</code> and <code>lua_pushstring</code>
make an internal copy of the given string.
<code>lua_pushstring</code> can only be used to push proper C&nbsp;strings
(that is, strings that end with a zero and do not contain embedded zeros);
otherwise, you should use the more general <code>lua_pushlstring</code>,
which accepts an explicit size.

<p>You can also push "formatted" strings:
<PRE>
       const char *lua_pushfstring  (lua_State *L, const char *fmt, ...);
       const char *lua_pushvfstring (lua_State *L, const char *fmt, va_list argp);
</PRE>

These functions push onto the stack a formatted string
and return a pointer to that string.
They are similar to <code>sprintf</code> and <code>vsprintf</code>,
but with some important differences:
<ul>
<li> You do not have to allocate the space for the result:
The result is a Lua string and Lua takes care of memory allocation
(and deallocation, through garbage collection).
<li> The conversion specifiers are quite restricted.
There are no flags, widths, or precisions.
The conversion specifiers can be simply
`<code>%%</code>&acute; (inserts a `<code>%</code>&acute; in the string),
`<code>%s</code>&acute; (inserts a zero-terminated string, with no size restrictions),
`<code>%f</code>&acute; (inserts a <code>lua_Number</code>),
`<code>%d</code>&acute; (inserts an <code>int</code>), and
`<code>%c</code>&acute; (inserts an <code>int</code> as a character).
</ul>

<p>The function
<PRE>
       void lua_concat (lua_State *L, int n);
</PRE>

concatenates the <code>n</code> values at the top of the stack,
pops them, and leaves the result at the top.
If <code>n</code>&nbsp;is&nbsp;1, the result is that single string
(that is, the function does nothing);
if <code>n</code> is 0, the result is the empty string.
Concatenation is done following the usual semantics of Lua
(see <a href="#concat">2.5.4</a>).

<p><a name="GC-API"><a name="3.7"><h2>3.7 - Controlling Garbage Collection</h2></a></a>

<p>Lua uses two numbers to control its garbage collection:
the <em>count</em> and the <em>threshold</em> (see <a href="#GC">2.9</a>).
The first counts the amount of memory in use by Lua;
when the count reaches the threshold,
Lua runs its garbage collector.
After the collection, the count is updated
and the threshold  is set to twice the count value.

<p>You can access the current values of these two numbers through the
following functions:
<PRE>
       int  lua_getgccount     (lua_State *L);
       int  lua_getgcthreshold (lua_State *L);
</PRE>
 
Both return their respective values in Kbytes.
You can change the threshold value with
<PRE>
       void  lua_setgcthreshold (lua_State *L, int newthreshold);
</PRE>

Again, the <code>newthreshold</code> value is given in Kbytes.
When you call this function,
Lua sets the new threshold and checks it against the byte counter.
If the new threshold is less than the byte counter,
then Lua immediately runs the garbage collector.
In particular
<code>lua_setgcthreshold(L,0)</code> forces a garbage collection.
After the collection,
a new threshold is set according to the previous rule.

<p><a name="userdata"><a name="3.8"><h2>3.8 - Userdata</h2></a></a>

<p>Userdata represents C values in Lua.
Lua supports two types of userdata:
<em>full userdata</em> and <em>light userdata</em>.

<p>A full userdata represents a block of memory.
It is an object (like a table):
You must create it, it can have its own metatable,
and you can detect when it is being collected.
A full userdata is only equal to itself (under raw equality).

<p>A light userdata represents a pointer.
It is a value (like a number):
You do not create it, it has no metatables,
it is not collected (as it was never created).
A light userdata is equal to "any"
light userdata with the same C address.

<p>In Lua code, there is no way to test whether a userdata is full or light;
both have type <code>userdata</code>.
In C code, <code>lua_type</code> returns <code>LUA_TUSERDATA</code> for full userdata,
and <code>LUA_TLIGHTUSERDATA</code> for light userdata.

<p>You can create a new full userdata with the following function:
<PRE>
       void *lua_newuserdata (lua_State *L, size_t size);
</PRE>

This function allocates a new block of memory with the given size,
pushes on the stack a new userdata with the block address,
and returns this address.

<p>To push a light userdata into the stack you use
<code>lua_pushlightuserdata</code> (see <a href="#pushing">3.6</a>).

<p><code>lua_touserdata</code> (see <a href="#lua-to">3.5</a>) retrieves the value of a userdata.
When applied on a full userdata, it returns the address of its block;
when applied on a light userdata, it returns its pointer;
when applied on a non-userdata value, it returns <code>NULL</code>.

<p>When Lua collects a full userdata,
it calls the userdata's <code>gc</code> metamethod, if any,
and then it frees the userdata's corresponding memory.

<p><a name="3.9"><h2>3.9 - Metatables</h2></a>

<p>The following functions allow you to manipulate the metatables
of an object:
<PRE>
       int lua_getmetatable (lua_State *L, int index);
       int lua_setmetatable (lua_State *L, int index);
</PRE>

<code>lua_getmetatable</code> pushes on the stack the metatable of a given object.
If the index is not valid,
or if the object does not have a metatable,
<code>lua_getmetatable</code> returns 0 and pushes nothing on the stack.

<p><code>lua_setmetatable</code> pops a table from the stack and
sets it as the new metatable for the given object.
<code>lua_setmetatable</code> returns 0 when it cannot
set the metatable of the given object
(that is, when the object is neither a userdata nor a table);
even then it pops the table from the stack.

<p><a name="3.10"><h2>3.10 - Loading Lua Chunks</h2></a>

<p>You can load a Lua chunk with <code>lua_load</code>:
<PRE>
       typedef const char * (*lua_Chunkreader)
                                (lua_State *L, void *data, size_t *size);

       int lua_load (lua_State *L, lua_Chunkreader reader, void *data,
                                   const char *chunkname);
</PRE>

The return values of <code>lua_load</code> are:
<ul>
<li> 0 --- no errors;
<li> <code>LUA_ERRSYNTAX</code> ---
syntax error during pre-compilation.
<li> <code>LUA_ERRMEM</code> ---
memory allocation error.
</ul>
If there are no errors,
<code>lua_load</code> pushes the compiled chunk as a Lua
function on top of the stack.
Otherwise, it pushes an error message.

<p><code>lua_load</code> automatically detects whether the chunk is text or binary,
and loads it accordingly (see program <code>luac</code>).

<p><code>lua_load</code> uses a user-supplied <em>reader</em> function to read the chunk.
Everytime it needs another piece of the chunk,
<code>lua_load</code> calls the reader,
passing along its <code>data</code> parameter.
The reader must return a pointer to a block of memory
with a new piece of the chunk
and set <code>size</code> to the block size.
To signal the end of the chunk, the reader returns <code>NULL</code>.
The reader function may return pieces of any size greater than zero.

<p>In the current implementation,
the reader function cannot call any Lua function;
to ensure that, it always receives <code>NULL</code> as the Lua state.

<p>The <em>chunkname</em> is used for error messages
and debug information (see <a href="#debugI">4</a>).

<p>See the auxiliary library (<code>lauxlib.c</code>)
for examples of how to use <code>lua_load</code>
and for some ready-to-use functions to load chunks
from files and strings.

<p><a name="3.11"><h2>3.11 - Manipulating Tables</h2></a>

<p>Tables are created by calling
the function
<PRE>
       void lua_newtable (lua_State *L);
</PRE>

This function creates a new, empty table and pushes it onto the stack.

<p>To read a value from a table that resides somewhere in the stack,
call
<PRE>
       void lua_gettable (lua_State *L, int index);
</PRE>

where <code>index</code> points to the table.
<code>lua_gettable</code> pops a key from the stack
and returns (on the stack) the contents of the table at that key.
The table is left where it was in the stack.
As in Lua, this function may trigger a metamethod
for the "index" event (see <a href="#metatable">2.8</a>).
To get the real value of any table key,
without invoking any metamethod,
use the <em>raw</em> version:
<PRE>
       void lua_rawget (lua_State *L, int index);
</PRE>


<p>To store a value into a table that resides somewhere in the stack,
you push the key and then the value onto the stack,
and call
<PRE>
       void lua_settable (lua_State *L, int index);
</PRE>

where <code>index</code> points to the table.
<code>lua_settable</code> pops from the stack both the key and the value.
The table is left where it was in the stack.
As in Lua, this operation may trigger a metamethod
for the "settable" or "newindex" events.
To set the real value of any table index,
without invoking any metamethod,
use the <em>raw</em> version:
<PRE>
       void lua_rawset (lua_State *L, int index);
</PRE>


<p>You can traverse a table with the function
<PRE>
       int lua_next (lua_State *L, int index);
</PRE>

where <code>index</code> points to the table to be traversed.
The function pops a key from the stack,
and pushes a key-value pair from the table
(the "next" pair after the given key).
If there are no more elements, then <code>lua_next</code> returns 0
(and pushes nothing).
Use a <B>nil</B> key to signal the start of a traversal.

<p>A typical traversal looks like this:
<PRE>
       /* table is in the stack at index `t' */
       lua_pushnil(L);  /* first key */
       while (lua_next(L, t) != 0) {
         /* `key' is at index -2 and `value' at index -1 */
         printf("%s - %s\n",
           lua_typename(L, lua_type(L, -2)), lua_typename(L, lua_type(L, -1)));
         lua_pop(L, 1);  /* removes `value'; keeps `key' for next iteration */
       }
</PRE>

<p>While traversing a table,
do not call <code>lua_tostring</code> directly on a key,
unless you know that the key is actually a string.
Recall that <code>lua_tostring</code> <em>changes</em> the value at the given index;
this confuses the next call to <code>lua_next</code>.

<p><a name="globals"><a name="3.12"><h2>3.12 - Manipulating Environments</h2></a></a>

<p>All global variables are kept in ordinary Lua tables,
called environments.
The initial environment is called the global environment.
This table is always at pseudo-index <code>LUA_GLOBALSINDEX</code>.

<p>To access and change the value of global variables,
you can use regular table operations over an environment table.
For instance, to access the value of a global variable, do
<PRE>
       lua_pushstring(L, varname);
       lua_gettable(L, LUA_GLOBALSINDEX);
</PRE>

<p>You can change the global environment of a Lua thread using <code>lua_replace</code>.

<p>The following functions get and set the environment of Lua functions:
<PRE>
       void lua_getfenv (lua_State *L, int index);
       int  lua_setfenv (lua_State *L, int index);
</PRE>

<code>lua_getfenv</code> pushes on the stack the environment table of
the function at index <code>index</code> in the stack.
If the function is a C function,
<code>lua_getfenv</code> pushes the global environment.
<code>lua_setfenv</code> pops a table from the stack and sets it as
the new environment for the function at index <code>index</code> in the stack.
If the object at the given index is not a Lua function,
<code>lua_setfenv</code> returns 0.

<p><a name="3.13"><h2>3.13 - Using Tables as Arrays</h2></a>
The API has functions that help to use Lua tables as arrays,
that is,
tables indexed by numbers only:
<PRE>
       void lua_rawgeti (lua_State *L, int index, int n);
       void lua_rawseti (lua_State *L, int index, int n);
</PRE>



<p><code>lua_rawgeti</code> pushes the value of the <em>n</em>-th element of the table
at stack position <code>index</code>.
<code>lua_rawseti</code> sets the value of the <em>n</em>-th element of the table
at stack position <code>index</code> to the value at the top of the stack,
removing this value from the stack.

<p><a name="3.14"><h2>3.14 - Calling Functions</h2></a>

<p>Functions defined in Lua
and C&nbsp;functions registered in Lua
can be called from the host program.
This is done using the following protocol:
First, the function to be called is pushed onto the stack;
then, the arguments to the function are pushed
in <em>direct order</em>, that is, the first argument is pushed first.
Finally, the function is called using
<PRE>
       void lua_call (lua_State *L, int nargs, int nresults);
</PRE>

<code>nargs</code> is the number of arguments that you pushed onto the stack.
All arguments and the function value are popped from the stack,
and the function results are pushed.
The number of results are adjusted to <code>nresults</code>,
unless <code>nresults</code> is <code>LUA_MULTRET</code>.
In that case, <em>all</em> results from the function are pushed.
Lua takes care that the returned values fit into the stack space.
The function results are pushed onto the stack in direct order
(the first result is pushed first),
so that after the call the last result is on the top.

<p>The following example shows how the host program may do the
equivalent to this Lua code:
<PRE>
       a = f("how", t.x, 14)
</PRE>
Here it is in&nbsp;C:
<PRE>
    lua_pushstring(L, "t");
    lua_gettable(L, LUA_GLOBALSINDEX);          /* global `t' (for later use) */
    lua_pushstring(L, "a");                                       /* var name */
    lua_pushstring(L, "f");                                  /* function name */
    lua_gettable(L, LUA_GLOBALSINDEX);               /* function to be called */
    lua_pushstring(L, "how");                                 /* 1st argument */
    lua_pushstring(L, "x");                            /* push the string "x" */
    lua_gettable(L, -5);                      /* push result of t.x (2nd arg) */
    lua_pushnumber(L, 14);                                    /* 3rd argument */
    lua_call(L, 3, 1);         /* call function with 3 arguments and 1 result */
    lua_settable(L, LUA_GLOBALSINDEX);             /* set global variable `a' */
    lua_pop(L, 1);                               /* remove `t' from the stack */
</PRE>
Note that the code above is "balanced":
at its end, the stack is back to its original configuration.
This is considered good programming practice.

<p>(We did this example using only the raw functions provided by Lua's API,
to show all the details.
Usually programmers define and use several macros and auxiliary functions
that provide higher level access to Lua.
See the source code of the standard libraries for examples.)

<p><a name="lua_pcall"><a name="3.15"><h2>3.15 - Protected Calls</h2></a></a>

<p>When you call a function with <code>lua_call</code>,
any error inside the called function is propagated upwards
(with a <code>longjmp</code>).
If you need to handle errors,
then you should use <code>lua_pcall</code>:
<PRE>
       int lua_pcall (lua_State *L, int nargs, int nresults, int errfunc);
</PRE>
Both <code>nargs</code> and <code>nresults</code> have the same meaning as
in <code>lua_call</code>.
If there are no errors during the call,
<code>lua_pcall</code> behaves exactly like <code>lua_call</code>.
However, if there is any error,
<code>lua_pcall</code> catches it,
pushes a single value at the stack (the error message),
and returns an error code.
Like <code>lua_call</code>,
<code>lua_pcall</code> always removes the function
and its arguments from the stack.

<p>If <code>errfunc</code> is 0,
then the error message returned is exactly the original error message.
Otherwise, <code>errfunc</code> gives the stack index for an
<em>error handler function</em>.
(In the current implementation, that index cannot be a pseudo-index.)
In case of runtime errors,
that function will be called with the error message
and its return value will be the message returned by <code>lua_pcall</code>.

<p>Typically, the error handler function is used to add more debug
information to the error message, such as a stack traceback.
Such information cannot be gathered after the return of <code>lua_pcall</code>,
since by then the stack has unwound.

<p>The <code>lua_pcall</code> function returns 0 in case of success
or one of the following error codes
(defined in <code>lua.h</code>):
<ul>
<li> <code>LUA_ERRRUN</code> --- a runtime error.
<li> <code>LUA_ERRMEM</code> --- memory allocation error.
For such errors, Lua does not call the error handler function.
<li> <code>LUA_ERRERR</code> ---
error while running the error handler function.
</ul>

<p><a name="LuacallC"><a name="3.16"><h2>3.16 - Defining C Functions</h2></a></a>

<p>Lua can be extended with functions written in&nbsp;C.
These functions must be of type <code>lua_CFunction</code>,
which is defined as
<PRE>
       typedef int (*lua_CFunction) (lua_State *L);
</PRE>

A C&nbsp;function receives a Lua state and returns an integer,
the number of values it wants to return to Lua.

<p>In order to communicate properly with Lua,
a C&nbsp;function must follow the following protocol,
which defines the way parameters and results are passed:
A C&nbsp;function receives its arguments from Lua in its stack
in direct order (the first argument is pushed first).
So, when the function starts,
its first argument (if any) is at index 1.
To return values to Lua, a C&nbsp;function just pushes them onto the stack,
in direct order (the first result is pushed first),
and returns the number of results.
Any other value in the stack below the results will be properly
discharged by Lua.
Like a Lua function, a C&nbsp;function called by Lua can also return
many results.

<p>As an example, the following function receives a variable number
of numerical arguments and returns their average and sum:
<PRE>
       static int foo (lua_State *L) {
         int n = lua_gettop(L);    /* number of arguments */
         lua_Number sum = 0;
         int i;
         for (i = 1; i &#060;= n; i++) {
           if (!lua_isnumber(L, i)) {
             lua_pushstring(L, "incorrect argument to function `average'");
             lua_error(L);
           }
           sum += lua_tonumber(L, i);
         }
         lua_pushnumber(L, sum/n);        /* first result */
         lua_pushnumber(L, sum);         /* second result */
         return 2;                   /* number of results */
       }
</PRE>

<p>To register a C&nbsp;function to Lua,
there is the following convenience macro:
<PRE>
       #define lua_register(L,n,f) \
               (lua_pushstring(L, n), \
                lua_pushcfunction(L, f), \
                lua_settable(L, LUA_GLOBALSINDEX))
     /* lua_State *L;    */
     /* const char *n;   */
     /* lua_CFunction f; */
</PRE>

which receives the name the function will have in Lua
and a pointer to the function.
Thus,
the C&nbsp;function <code>foo</code> above may be registered in Lua as
<code>average</code> by calling
<PRE>
       lua_register(L, "average", foo);
</PRE>

<p><a name="c-closure"><a name="3.17"><h2>3.17 - Defining C Closures</h2></a></a>

<p>When a C&nbsp;function is created,
it is possible to associate some values with it,
thus creating a <em>C&nbsp;closure</em>;
these values are then accessible to the function whenever it is called.
To associate values with a C&nbsp;function,
first these values should be pushed onto the stack
(when there are multiple values, the first value is pushed first).
Then the function
<PRE>
       void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);
</PRE>

is used to push the C&nbsp;function onto the stack,
with the argument <code>n</code> telling how many values should be
associated with the function
(<code>lua_pushcclosure</code> also pops these values from the stack);
in fact, the macro <code>lua_pushcfunction</code> is defined as
<code>lua_pushcclosure</code> with <code>n</code> set to 0.

<p>Then, whenever the C&nbsp;function is called,
those values are located at specific pseudo-indices.
Those pseudo-indices are produced by a macro <code>lua_upvalueindex</code>.
The first value associated with a function is at position
<code>lua_upvalueindex(1)</code>, and so on.
Any access to <code>lua_upvalueindex(<em>n</em>)</code>,
where <em>n</em> is greater than the number of upvalues of the
current function,
produces an acceptable (but invalid) index.

<p>For examples of C&nbsp;functions and closures,
see the standard libraries in the official Lua distribution
(<code>src/lib/*.c</code>).

<p><a name="registry"><a name="3.18"><h2>3.18 - Registry</h2></a></a>

<p>Lua provides a registry,
a pre-defined table that can be used by any C&nbsp;code to
store whatever Lua value it needs to store,
specially if the C&nbsp;code needs to keep that Lua value
outside the life span of a C&nbsp;function.
This table is always located at pseudo-index
<code>LUA_REGISTRYINDEX</code>.
Any C&nbsp;library can store data into this table,
as long as it chooses keys different from other libraries.
Typically, you should use as key a string containing your library name
or a light userdata with the address of a C object in your code.

<p>The integer keys in the registry are used by the reference mechanism,
implemented by the auxiliary library,
and therefore should not be used by other purposes.

<p><a name="3.19"><h2>3.19 - Error Handling in C</h2></a>

<p>Internally, Lua uses the C <code>longjmp</code> facility to handle errors.
When Lua faces any error
(such as memory allocation errors, type errors, syntax errors)
it <em>raises</em> an error, that is, it does a long jump.
A <em>protected environment</em> uses <code>setjmp</code>
to set a recover point;
any error jumps to the most recent active recover point.

<p>If an error happens outside any protected environment,
Lua calls a <em>panic function</em>
and then calls <code>exit(EXIT_FAILURE)</code>.
You can change the panic function with
<PRE>
       lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);
</PRE>
Your new panic function may avoid the application exit by
never returning (e.g., by doing a long jump).
Nevertheless, the corresponding Lua state will not be consistent;
the only safe operation with it is to close it.

<p>Almost any function in the API may raise an error,
for instance due to a memory allocation error.
The following functions run in protected mode
(that is, they create a protected environment to run),
so they never raise an error:
<code>lua_open</code>, <code>lua_close</code>, <code>lua_load</code>,
and <code>lua_pcall</code>.

<p>There is yet another function that runs a given C function in protected mode:
<PRE>
       int lua_cpcall (lua_State *L, lua_CFunction func, void *ud);
</PRE>

<code>lua_cpcall</code> calls <code>func</code> in protected mode.
<code>func</code> starts with only one element in its stack,
a light userdata containing <code>ud</code>.
In case of errors,
<code>lua_cpcall</code> returns the same error codes as <code>lua_pcall</code>
(see <a href="#lua_pcall">3.15</a>),
plus the error object on the top of the stack;
otherwise, it returns zero, and does not change the stack.
Any value returned by <code>func</code> is discarded.

<p>C code can generate a Lua error calling the function
<PRE>
       void lua_error (lua_State *L);
</PRE>

The error message (which actually can be any type of object)
must be on the stack top.
This function does a long jump,
and therefore never returns.

<p><a name="3.20"><h2>3.20 - Threads</h2></a>

<p>Lua offers partial support for multiple threads of execution.
If you have a C&nbsp;library that offers multi-threading, 
then Lua can cooperate with it to implement the equivalent facility in Lua.
Also, Lua implements its own coroutine system on top of threads.
The following function creates a new thread in Lua:
<PRE>
       lua_State *lua_newthread (lua_State *L);
</PRE>

This function pushes the thread on the stack and returns a pointer to
a <code>lua_State</code> that represents this new thread.
The new state returned by this function shares with the original state
all global objects (such as tables),
but has an independent run-time stack.

<p>Each thread has an independent global environment table.
When you create a thread, this table is the same as that of the given state,
but you can change each one independently.

<p>There is no explicit function to close or to destroy a thread.
Threads are subject to garbage collection,
like any Lua object.

<p>To manipulate threads as coroutines,
Lua offers the following functions:
<PRE>
       int lua_resume (lua_State *L, int narg);
       int lua_yield  (lua_State *L, int nresults);
</PRE>

To start a coroutine, you first create a new thread;
then you push on its stack the body function plus any eventual arguments;
then you call <code>lua_resume</code>,
with <code>narg</code> being the number of arguments.
This call returns when the coroutine suspends or finishes its execution.
When it returns, the stack contains all values passed to <code>lua_yield</code>,
or all values returned by the body function.
<code>lua_resume</code> returns 0 if there are no errors running the coroutine,
or an error code (see <a href="#lua_pcall">3.15</a>).
In case of errors,
the stack contains only the error message.
To restart a coroutine, you put on its stack only the values to
be passed as results from <code>yield</code>,
and then call <code>lua_resume</code>.

<p>The <code>lua_yield</code> function can only be called as the
return expression of a C function, as follows:
<PRE>
       return lua_yield (L, nresults);
</PRE>
When a C function calls <code>lua_yield</code> in that way,
the running coroutine suspends its execution,
and the call to <code>lua_resume</code> that started this coroutine returns.
The parameter <code>nresults</code> is the number of values from the stack
that are passed as results to <code>lua_resume</code>.

<p>To exchange values between different threads,
you may use <code>lua_xmove</code>:
<PRE>
       void lua_xmove (lua_State *from, lua_State *to, int n);
</PRE>
It pops <code>n</code> values from the stack <code>from</code>,
and puhses them into the stack <code>to</code>.

<p>
<a name="debugI"><a name="4"><h1>4 - The Debug Interface</h1></a></a>

<p>Lua has no built-in debugging facilities.
Instead, it offers a special interface
by means of functions and <em>hooks</em>.
This interface allows the construction of different
kinds of debuggers, profilers, and other tools
that need "inside information" from the interpreter.

<p><a name="4.1"><h2>4.1 - Stack and Function Information</h2></a>

<p>The main function to get information about the interpreter runtime stack is
<PRE>
       int lua_getstack (lua_State *L, int level, lua_Debug *ar);
</PRE>

This function fills parts of a <code>lua_Debug</code> structure with
an identification of the <em>activation record</em>
of the function executing at a given level.
Level&nbsp;0 is the current running function,
whereas level <em>n+1</em> is the function that has called level <em>n</em>.
When there are no errors, <code>lua_getstack</code> returns 1;
when called with a level greater than the stack depth,
it returns 0.

<p>The structure <code>lua_Debug</code> is used to carry different pieces of
information about an active function:
<PRE>
      typedef struct lua_Debug {
        int event;
        const char *name;      /* (n) */
        const char *namewhat;  /* (n) `global', `local', `field', `method' */
        const char *what;      /* (S) `Lua' function, `C' function, Lua `main' */
        const char *source;    /* (S) */
        int currentline;       /* (l) */
        int nups;              /* (u) number of upvalues */
        int linedefined;       /* (S) */
        char short_src[LUA_IDSIZE]; /* (S) */

        /* private part */
        ...
      } lua_Debug;
</PRE>

<code>lua_getstack</code> fills only the private part
of this structure, for later use.
To fill the other fields of <code>lua_Debug</code> with useful information,
call
<PRE>
       int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);
</PRE>

This function returns 0 on error
(for instance, an invalid option in <code>what</code>).
Each character in the string <code>what</code>
selects some fields of the structure <code>ar</code> to be filled,
as indicated by the letter in parentheses in the definition of <code>lua_Debug</code>
above:
`<code>S</code>&acute; fills in the fields <code>source</code>, <code>linedefined</code>,
and <code>what</code>;
`<code>l</code>&acute; fills in the field <code>currentline</code>, etc.
Moreover, `<code>f</code>&acute; pushes onto the stack the function that is
running at the given level.

<p>To get information about a function that is not active
(that is, not in the stack),
you push it onto the stack
and start the <code>what</code> string with the character `<code>></code>&acute;.
For instance, to know in which line a function <code>f</code> was defined,
you can write
<PRE>
       lua_Debug ar;
       lua_pushstring(L, "f");
       lua_gettable(L, LUA_GLOBALSINDEX);  /* get global `f' */
       lua_getinfo(L, ">S", &#038;ar);
       printf("%d\n", ar.linedefined);
</PRE>
The fields of <code>lua_Debug</code> have the following meaning:
<ul>

<p><li><b><code>source</code></b>
If the function was defined in a string,
then <code>source</code> is that string.
If the function was defined in a file,
then <code>source</code> starts with a `<code>@</code>&acute; followed by the file name.

<p><li><b><code>short_src</code></b>
A "printable" version of <code>source</code>, to be used in error messages.

<p><li><b><code>linedefined</code></b>
the line number where the definition of the function starts.

<p><li><b><code>what</code></b> the string <code>"Lua"</code> if this is a Lua function,
<code>"C"</code> if this is a C&nbsp;function,
<code>"main"</code> if this is the main part of a chunk,
and <code>"tail"</code> if this was a function that did a tail call.
In the latter case,
Lua has no other information about this function.

<p><li><b><code>currentline</code></b>
the current line where the given function is executing.
When no line information is available,
<code>currentline</code> is set to <em>-1</em>.

<p><li><b><code>name</code></b>
a reasonable name for the given function.
Because functions in Lua are first class values,
they do not have a fixed name:
Some functions may be the value of multiple global variables,
while others may be stored only in a table field.
The <code>lua_getinfo</code> function checks how the function was
called or whether it is the value of a global variable to
find a suitable name.
If it cannot find a name,
then <code>name</code> is set to <code>NULL</code>.

<p><li><b><code>namewhat</code></b>
Explains the <code>name</code> field.
The value of <code>namewhat</code> can be
<code>"global"</code>, <code>"local"</code>, <code>"method"</code>,
<code>"field"</code>, or <code>""</code> (the empty string),
according to how the function was called.
(Lua uses the empty string when no other option seems to apply.)

<p><li><b><code>nups</code></b>
The number of upvalues of the function.

<p></ul>

<p><a name="4.2"><h2>4.2 - Manipulating Local Variables and Upvalues</h2></a>

<p>For the manipulation of local variables and upvalues,
the debug interface uses indices:
The first parameter or local variable has index&nbsp;1, and so on,
until the last active local variable.
Upvalues have no particular order,
as they are active through the whole function.

<p>The following functions allow the manipulation of the
local variables of a given activation record:
<PRE>
       const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);
       const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);
</PRE>

The parameter <code>ar</code> must be a valid activation record that was
filled by a previous call to <code>lua_getstack</code> or
given as argument to a hook (see <a href="#sub-hooks">4.3</a>).
<code>lua_getlocal</code> gets the index <code>n</code> of a local variable,
pushes the variable's value onto the stack,
and returns its name.
<code>lua_setlocal</code> assigns the value at the top of the stack
to the variable and returns its name.
Both functions return <code>NULL</code>
when the index is greater than
the number of active local variables.

<p>The following functions allow the manipulation of the
upvalues of a given function
(unlike local variables,
the upvalues of a function are accessible even when the
function is not active):
<PRE>
       const char *lua_getupvalue (lua_State *L, int funcindex, int n);
       const char *lua_setupvalue (lua_State *L, int funcindex, int n);
</PRE>

These functions operate both on Lua functions and on C&nbsp;functions.
(For Lua functions,
upvalues are the external local variables that the function uses,
and that consequently are included in its closure.)
<code>funcindex</code> points to a function in the stack.
<code>lua_getpuvalue</code> gets the index <code>n</code> of an upvalue,
pushes the upvalue's value onto the stack,
and returns its name.
<code>lua_setupvalue</code> assigns the value at the top of the stack
to the upvalue and returns its name.
Both functions return <code>NULL</code>
when the index is greater than the number of upvalues.
For C&nbsp;functions, these functions use the empty string <code>""</code>
as a name for all upvalues.

<p>As an example, the following function lists the names of all
local variables and upvalues for a function at a given level of the stack:
<PRE>
       int listvars (lua_State *L, int level) {
         lua_Debug ar;
         int i;
         const char *name;
         if (lua_getstack(L, level, &#038;ar) == 0)
           return 0;  /* failure: no such level in the stack */
         i = 1;
         while ((name = lua_getlocal(L, &#038;ar, i++)) != NULL) {
           printf("local %d %s\n", i-1, name);
           lua_pop(L, 1);  /* remove variable value */
         }
         lua_getinfo(L, "f", &#038;ar);  /* retrieves function */
         i = 1;
         while ((name = lua_getpuvalue(L, -1, i++)) != NULL) {
           printf("upvalue %d %s\n", i-1, name);
           lua_pop(L, 1);  /* remove upvalue value */
         }
         return 1;
       }
</PRE>

<p><a name="sub-hooks"><a name="4.3"><h2>4.3 - Hooks</h2></a></a>

<p>Lua offers a mechanism of hooks, which are
user-defined C functions that are called during the program execution.
A hook may be called in four different events:
a <em>call</em> event, when Lua calls a function;
a <em>return</em> event, when Lua returns from a function;
a <em>line</em> event, when Lua starts executing a new line of code;
and a <em>count</em> event, which happens every "count" instructions.
Lua identifies these events with the following constants:
<code>LUA_HOOKCALL</code>,
<code>LUA_HOOKRET</code> (or <code>LUA_HOOKTAILRET</code>, see below),
<code>LUA_HOOKLINE</code>,
and <code>LUA_HOOKCOUNT</code>.

<p>A hook has type <code>lua_Hook</code>, defined as follows:
<PRE>
       typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);
</PRE>

You can set the hook with the following function:
<PRE>
       int lua_sethook (lua_State *L, lua_Hook func, int mask, int count);
</PRE>

<code>func</code> is the hook.
<code>mask</code> specifies on which events the hook will be called:
It is formed by a disjunction of the constants
<code>LUA_MASKCALL</code>,
<code>LUA_MASKRET</code>,
<code>LUA_MASKLINE</code>,
and <code>LUA_MASKCOUNT</code>.
The <code>count</code> argument is only meaningful when the mask
includes <code>LUA_MASKCOUNT</code>.
For each event, the hook is called as explained below:
<ul>
<li><b>The call hook</b> is called when the interpreter calls a function.
The hook is called just after Lua enters the new function.
<li><b>The return hook</b> is called when the interpreter returns from a function.
The hook is called just before Lua leaves the function.
<li><b>The line hook</b> is called when the interpreter is about to
start the execution of a new line of code,
or when it jumps back in the code (even to the same line).
(This event only happens while Lua is executing a Lua function.)
<li><b>The count hook</b> is called after the interpreter executes every
<code>count</code> instructions.
(This event only happens while Lua is executing a Lua function.)
</ul>

<p>A hook is disabled by setting <code>mask</code> to zero.

<p>You can get the current hook, the current mask,
and the current count with the next functions:
<PRE>
       lua_Hook lua_gethook      (lua_State *L);
       int      lua_gethookmask  (lua_State *L);
       int      lua_gethookcount (lua_State *L);
</PRE>


<p>Whenever a hook is called, its <code>ar</code> argument has its field
<code>event</code> set to the specific event that triggered the hook.
Moreover, for line events, the field <code>currentline</code> is also set.
To get the value of any other field in <code>ar</code>,
the hook must call <code>lua_getinfo</code>.
For return events, <code>event</code> may be <code>LUA_HOOKRET</code>,
the normal value, or <code>LUA_HOOKTAILRET</code>.
In the latter case, Lua is simulating a return from
a function that did a tail call;
in this case, it is useless to call <code>lua_getinfo</code>.

<p>While Lua is running a hook, it disables other calls to hooks.
Therefore, if a hook calls back Lua to execute a function or a chunk,
that execution occurs without any calls to hooks.

<p>
<a name="libraries"><a name="5"><h1>5 - Standard Libraries</h1></a></a>

<p>The standard libraries provide useful functions
that are implemented directly through the C API.
Some of these functions provide essential services to the language
(e.g., <code>type</code> and <code>getmetatable</code>);
others provide access to "outside" services (e.g., I/O);
and others could be implemented in Lua itself,
but are quite useful or have critical performance to
deserve an implementation in C (e.g., <code>sort</code>).

<p>All libraries are implemented through the official C API
and are provided as separate C&nbsp;modules.
Currently, Lua has the following standard libraries:
<ul>
<li> basic library;
<li> string manipulation;
<li> table manipulation;
<li> mathematical functions (sin, log, etc.);
<li> input and output;
<li> operating system facilities;
<li> debug facilities.
</ul>
Except for the basic library,
each library provides all its functions as fields of a global table
or as methods of its objects.

<p>To have access to these libraries,
the C&nbsp;host program must first call the functions
<code>luaopen_base</code> (for the basic library),
<code>luaopen_string</code> (for the string library),
<code>luaopen_table</code> (for the table library),
<code>luaopen_math</code> (for the mathematical library),
<code>luaopen_io</code> (for the I/O and the Operating System libraries),
and <code>luaopen_debug</code> (for the debug library).
These functions are declared in <code>lualib.h</code>.







<p><a name="predefined"><a name="5.1"><h2>5.1 - Basic Functions</h2></a></a>

<p>The basic library provides some core functions to Lua.
If you do not include this library in your application,
you should check carefully whether you need to provide some alternative
implementation for some of its facilities.

<p><h3><code>assert (v [, message])</code></h3>
Issues an  error when
the value of its argument <code>v</code> is <B>nil</B> or <B>false</B>;
otherwise, returns this value.
<code>message</code> is an error message;
when absent, it defaults to "assertion failed!"

<p><h3><code>collectgarbage ([limit])</code></h3>

<p>Sets the garbage-collection threshold to the given limit
(in Kbytes) and checks it against the byte counter.
If the new threshold is smaller than the byte counter,
then Lua immediately runs the garbage collector (see <a href="#GC">2.9</a>).
If <code>limit</code> is absent, it defaults to zero
(thus forcing a garbage-collection cycle).

<p><h3><code>dofile (filename)</code></h3>
Opens the named file and executes its contents as a Lua chunk.
When called without arguments,
<code>dofile</code> executes the contents of the standard input (<code>stdin</code>).
Returns any value returned by the chunk.
In case of errors, <code>dofile</code> propagates the error
to its caller (that is, it does not run in protected mode).

<p><a name="pdf-error"><h3><code>error (message [, level])</code></h3></a>

Terminates the last protected function called
and returns <code>message</code> as the error message.
Function <code>error</code> never returns.

<p>The <code>level</code> argument specifies where the error
message points the error.
With level 1 (the default), the error position is where the
<code>error</code> function was called.
Level 2 points the error to where the function
that called <code>error</code> was called; and so on.

<p><h3><code>_G</code></h3>
A global variable (not a function) that
holds the global environment (that is, <code>_G._G = _G</code>).
Lua itself does not use this variable;
changing its value does not affect any environment.
(Use <code>setfenv</code> to change environments.)

<p><h3><code>getfenv (f)</code></h3>
Returns the current environment in use by the function.
<code>f</code> can be a Lua function or a number,
which specifies the function at that stack level:
Level 1 is the function calling <code>getfenv</code>.
If the given function is not a Lua function,
or if <code>f</code> is 0,
<code>getfenv</code> returns the global environment.
The default for <code>f</code> is 1.

<p>If the environment has a <code>"__fenv"</code> field,
returns the associated value, instead of the environment.

<p><a name="pdf-getmetatable"><h3><code>getmetatable (object)</code></h3></a>


<p>If the object does not have a metatable, returns <B>nil</B>.
Otherwise,
if the object's metatable has a <code>"__metatable"</code> field,
returns the associated value.
Otherwise, returns the metatable of the given object.

<p><h3><code>gcinfo ()</code></h3>

<p>Returns two results:
the number of Kbytes of dynamic memory that Lua is using
and the current garbage collector threshold (also in Kbytes).

<p><h3><code>ipairs (t)</code></h3>

<p>Returns an iterator function, the table <code>t</code>, and 0,
so that the construction
<PRE>
       for i,v in ipairs(t) do ... end
</PRE>
will iterate over the pairs (<code>1,t[1]</code>), (<code>2,t[2]</code>), ...,
up to the first integer key with a nil value in the table.

<p><h3><code>loadfile (filename)</code></h3>

<p>Loads a file as a Lua chunk (without running it).
If there are no errors, 
returns the compiled chunk as a function;
otherwise, returns <B>nil</B> plus the error message.
The environment of the returned function is the global environment.

<p><h3><code>loadlib (libname, funcname)</code></h3>

<p>Links the program with the dynamic C library <code>libname</code>.
Inside this library, looks for a function <code>funcname</code>
and returns this function as a C function.

<p><code>libname</code> must be the complete file name of the C library,
including any eventual path and extension.

<p>This function is not supported by ANSI C.
As such, it is only available on some platforms
(Windows, Linux, Solaris, BSD, plus other Unix systems that
support the <code>dlfcn</code> standard).

<p><h3><code>loadstring (string [, chunkname])</code></h3>
Loads a string as a Lua chunk (without running it).
If there are no errors, 
returns the compiled chunk as a function;
otherwise, returns <B>nil</B> plus the error message.
The environment of the returned function is the global environment.

<p>The optional parameter <code>chunkname</code>
is the name to be used in error messages and debug information.

<p>To load and run a given string, use the idiom
<PRE>
      assert(loadstring(s))()
</PRE>

<p><h3><code>next (table [, index])</code></h3>
Allows a program to traverse all fields of a table.
Its first argument is a table and its second argument
is an index in this table.
<code>next</code> returns the next index of the table and the
value associated with the index.
When called with <B>nil</B> as its second argument,
<code>next</code> returns the first index
of the table and its associated value.
When called with the last index,
or with <B>nil</B> in an empty table,
<code>next</code> returns <B>nil</B>.
If the second argument is absent, then it is interpreted as <B>nil</B>.

<p>Lua has no declaration of fields;
There is no difference between a
field not present in a table or a field with value <B>nil</B>.
Therefore, <code>next</code> only considers fields with non-<B>nil</B> values.
The order in which the indices are enumerated is not specified,
<em>even for numeric indices</em>.
(To traverse a table in numeric order,
use a numerical <b>for</b> or the <code>ipairs</code> function.)

<p>The behavior of <code>next</code> is <em>undefined</em> if,
during the traversal,
you assign any value to a non-existent field in the table.

<p><h3><code>pairs (t)</code></h3>

<p>Returns the <code>next</code> function and the table <code>t</code> (plus a <B>nil</B>),
so that the construction
<PRE>
       for k,v in pairs(t) do ... end
</PRE>
will iterate over all key-value pairs of table <code>t</code>.

<p><a name="pdf-pcall"><h3><code>pcall (f, arg1, arg2, ...)</code></h3></a>

<p>Calls function <code>f</code> with
the given arguments in protected mode.
That means that any error inside&nbsp;<code>f</code> is not propagated;
instead, <code>pcall</code> catches the error
and returns a status code.
Its first result is the status code (a boolean),
which is <B>true</B> if the call succeeds without errors.
In such case, <code>pcall</code> also returns all results from the call,
after this first result.
In case of any error, <code>pcall</code> returns <B>false</B> plus the error message.

<p><h3><code>print (e1, e2, ...)</code></h3>
Receives any number of arguments,
and prints their values in <code>stdout</code>,
using the <code>tostring</code> function to convert them to strings.
This function is not intended for formatted output,
but only as a quick way to show a value,
typically for debugging.
For formatted output, use <code>format</code> (see <a href="#format">5.3</a>).

<p><h3><code>rawequal (v1, v2)</code></h3>
Checks whether <code>v1</code> is equal to <code>v2</code>,
without invoking any metamethod.
Returns a boolean.

<p><h3><code>rawget (table, index)</code></h3>
Gets the real value of <code>table[index]</code>,
without invoking any metamethod.
<code>table</code> must be a table;
<code>index</code> is any value different from <B>nil</B>.

<p><h3><code>rawset (table, index, value)</code></h3>
Sets the real value of <code>table[index]</code> to <code>value</code>,
without invoking any metamethod.
<code>table</code> must be a table,
<code>index</code> is any value different from <B>nil</B>,
and <code>value</code> is any Lua value.

<p><h3><code>require (packagename)</code></h3>

<p>Loads the given package.
The function starts by looking into the table <code>_LOADED</code>
to determine whether <code>packagename</code> is already loaded.
If it is, then <code>require</code> returns the value that the package
returned when it was first loaded.
Otherwise, it searches a path looking for a file to load.

<p>If the global variable <code>LUA_PATH</code> is a string, 
this string is the path.
Otherwise, <code>require</code> tries the environment variable <code>LUA_PATH</code>.
As a last resort, it uses the predefined path <code>"?;?.lua"</code>.

<p>The path is a sequence of <em>templates</em> separated by semicolons.
For each template, <code>require</code> will change each interrogation
mark in the template to <code>packagename</code>,
and then will try to load the resulting file name.
So, for instance, if the path is
<PRE>
  "./?.lua;./?.lc;/usr/local/?/?.lua;/lasttry"
</PRE>
a <code>require "mod"</code> will try to load the files
<code>./mod.lua</code>,
<code>./mod.lc</code>,
<code>/usr/local/mod/mod.lua</code>,
and <code>/lasttry</code>, in that order.

<p>The function stops the search as soon as it can load a file,
and then it runs the file.
After that, it associates, in table <code>_LOADED</code>,
the package name with the value that the package returned,
and returns that value.
If the package returns <B>nil</B> (or no value),
<code>require</code> converts this value to <B>true</B>.
If the package returns <B>false</B>,
<code>require</code> also returns <B>false</B>.
However, as the mark in table <code>_LOADED</code> is <B>false</B>,
any new attempt to reload the file
will happen as if the package was not loaded
(that is, the package will be loaded again).

<p>If there is any error loading or running the file,
or if it cannot find any file in the path,
then <code>require</code> signals an error. 

<p>While running a file,
<code>require</code> defines the global variable <code>_REQUIREDNAME</code>
with the package name.
The package being loaded always runs within the global environment.

<p><a name="setfenv"><h3><code>setfenv (f, table)</code></h3></a>

<p>Sets the current environment to be used by the given function.
<code>f</code> can be a Lua function or a number,
which specifies the function at that stack level:
Level 1 is the function calling <code>setfenv</code>.

<p>As a special case, when <code>f</code> is 0 <code>setfenv</code> changes
the global environment of the running thread.

<p>If the original environment has a <code>"__fenv"</code> field,
<code>setfenv</code> raises an error.

<p><h3><code>setmetatable (table, metatable)</code></h3>

<p>Sets the metatable for the given table.
(You cannot change the metatable of a userdata from Lua.)
If <code>metatable</code> is <B>nil</B>, removes the metatable of the given table.
If the original metatable has a <code>"__metatable"</code> field,
raises an error.

<p><h3><code>tonumber (e [, base])</code></h3>
Tries to convert its argument to a number.
If the argument is already a number or a string convertible
to a number, then <code>tonumber</code> returns that number;
otherwise, it returns <B>nil</B>.

<p>An optional argument specifies the base to interpret the numeral.
The base may be any integer between 2 and 36, inclusive.
In bases above&nbsp;10, the letter `<code>A</code>&acute; (in either upper or lower case)
represents&nbsp;10, `<code>B</code>&acute; represents&nbsp;11, and so forth,
with `<code>Z</code>&acute; representing 35.
In base 10 (the default), the number may have a decimal part,
as well as an optional exponent part (see <a href="#coercion">2.2.1</a>).
In other bases, only unsigned integers are accepted.

<p><h3><code>tostring (e)</code></h3>
Receives an argument of any type and
converts it to a string in a reasonable format.
For complete control of how numbers are converted,
use <code>format</code> (see <a href="#format">5.3</a>).

<p>If the metatable of <code>e</code> has a <code>"__tostring"</code> field,
<code>tostring</code> calls the corresponding value
with <code>e</code> as argument,
and uses the result of the call as its result.

<p><a name="pdf-type"><h3><code>type (v)</code></h3></a>
Returns the type of its only argument, coded as a string.
The possible results of this function are
<code>"nil"</code> (a string, not the value <B>nil</B>),
<code>"number"</code>,
<code>"string"</code>,
<code>"boolean</code>,
<code>"table"</code>,
<code>"function"</code>,
<code>"thread"</code>,
and <code>"userdata"</code>.

<p><h3><code>unpack (list)</code></h3>
Returns all elements from the given list.
This function is equivalent to
<PRE>
  return list[1], list[2], ..., list[n]
</PRE>
except that the above code can be written only for a fixed <em>n</em>.
The number <em>n</em> is the size of the list,
as defined for the <code>table.getn</code> function.

<p><h3><code>_VERSION</code></h3>
A global variable (not a function) that
holds a string containing the current interpreter version.
The current content of this string is <code>"Lua 5.0"</code>.

<p><h3><code>xpcall (f, err)</code></h3>

<p>This function is similar to <code>pcall</code>,
except that you can set a new error handler.

<p><code>xpcall</code> calls function <code>f</code> in protected mode,
using <code>err</code> as the error handler.
Any error inside <code>f</code> is not propagated;
instead, <code>xpcall</code> catches the error,
calls the <code>err</code> function with the original error object,
and returns a status code.
Its first result is the status code (a boolean),
which is true if the call succeeds without errors.
In such case, <code>xpcall</code> also returns all results from the call,
after this first result.
In case of any error,
<code>xpcall</code> returns false plus the result from <code>err</code>.

<p><a name="5.2"><h2>5.2 - Coroutine Manipulation</h2></a>

<p>The operations related to coroutines comprise a sub-library of
the basic library and come inside the table <code>coroutine</code>.
See <a href="#coroutine">2.10</a> for a general description of coroutines.

<p><h3><code>coroutine.create (f)</code></h3>

<p>Creates a new coroutine, with body <code>f</code>.
<code>f</code> must be a Lua function.
Returns this new coroutine,
an object with type <code>"thread"</code>.

<p><h3><code>coroutine.resume (co, val1, ...)</code></h3>

<p>Starts or continues the execution of coroutine <code>co</code>.
The first time you resume a coroutine,
it starts running its body.
The arguments <code>val1</code>, ... go as the arguments to the body function.
If the coroutine has yielded,
<code>resume</code> restarts it;
the arguments <code>val1</code>, ... go as the results from the yield.

<p>If the coroutine runs without any errors,
<code>resume</code> returns <B>true</B> plus any values passed to <code>yield</code>
(if the coroutine yields) or any values returned by the body function
(if the coroutine terminates).
If there is any error,
<code>resume</code> returns <B>false</B> plus the error message.

<p><h3><code>coroutine.status (co)</code></h3>

<p>Returns the status of coroutine <code>co</code>, as a string:
<code>"running"</code>,
if the coroutine is running (that is, it called <code>status</code>);
<code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>,
or if it has not started running yet;
and <code>"dead"</code> if the coroutine has finished its body function,
or if it has stopped with an error.

<p><h3><code>coroutine.wrap (f)</code></h3>

<p>Creates a new coroutine, with body <code>f</code>.
<code>f</code> must be a Lua function.
Returns a function that resumes the coroutine each time it is called.
Any arguments passed to the function behave as the
extra arguments to <code>resume</code>.
Returns the same values returned by <code>resume</code>,
except the first boolean.
In case of error, propagates the error.

<p><h3><code>coroutine.yield (val1, ...)</code></h3>

<p>Suspends the execution of the calling coroutine.
The coroutine cannot be running neither a C function,
nor a metamethod, nor an iterator.
Any arguments to <code>yield</code> go as extra results to <code>resume</code>.

<p><a name="5.3"><h2>5.3 - String Manipulation</h2></a>
This library provides generic functions for string manipulation,
such as finding and extracting substrings, and pattern matching.
When indexing a string in Lua, the first character is at position&nbsp;1
(not at&nbsp;0, as in C).
Indices are allowed to be negative and are interpreted as indexing backwards,
from the end of the string.
Thus, the last character is at position <em>-1</em>, and so on.

<p>The string library provides all its functions inside the table
<code>string</code>.

<p><h3><code>string.byte (s [, i])</code></h3>
Returns the internal numerical code of the <code>i</code>-th character of <code>s</code>,
or <B>nil</B> if the index is out of range.
If <code>i</code> is absent, then it is assumed to be&nbsp;1.
<code>i</code> may be negative.

<p>Note that numerical codes are not necessarily portable across platforms.

<p><h3><code>string.char (i1, i2, ...)</code></h3>
Receives 0 or more integers.
Returns a string with length equal to the number of arguments,
in which each character has the internal numerical code equal
to its correspondent argument.

<p>Note that numerical codes are not necessarily portable across platforms.

<p><h3><code>string.dump (function)</code></h3>

<p>Returns a binary representation of the given function,
so that a later <code>loadstring</code> on that string returns
a copy of the function.
<code>function</code> must be a Lua function without upvalues.

<p><h3><code>string.find (s, pattern [, init [, plain]])</code></h3>
Looks for the first <em>match</em> of
<code>pattern</code> in the string <code>s</code>.
If it finds one, then <code>find</code> returns the indices of&nbsp;<code>s</code>
where this occurrence starts and ends;
otherwise, it returns <B>nil</B>.
If the pattern specifies captures (see <code>string.gsub</code> below),
the captured strings are returned as extra results.
A third, optional numerical argument <code>init</code> specifies
where to start the search;
its default value is&nbsp;1 and may be negative.
A value of <B>true</B> as a fourth, optional argument <code>plain</code>
turns off the pattern matching facilities,
so the function does a plain "find substring" operation,
with no characters in <code>pattern</code> being considered "magic".
Note that if <code>plain</code> is given, then <code>init</code> must be given too.

<p><h3><code>string.len (s)</code></h3>
Receives a string and returns its length.
The empty string <code>""</code> has length 0.
Embedded zeros are counted,
so <code>"a\000b\000c"</code> has length 5.

<p><h3><code>string.lower (s)</code></h3>
Receives a string and returns a copy of that string with all
uppercase letters changed to lowercase.
All other characters are left unchanged.
The definition of what is an uppercase letter depends on the current locale.

<p><h3><code>string.rep (s, n)</code></h3>
Returns a string that is the concatenation of <code>n</code> copies of
the string <code>s</code>.

<p><h3><code>string.sub (s, i [, j])</code></h3>
Returns the substring of <code>s</code> that
starts at <code>i</code>  and continues until <code>j</code>;
<code>i</code> and <code>j</code> may be negative.
If <code>j</code> is absent, then it is assumed to be equal to <em>-1</em>
(which is the same as the string length).
In particular,
the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code>
with length <code>j</code>,
and <code>string.sub(s, -i)</code> returns a suffix of <code>s</code>
with length <code>i</code>.

<p><h3><code>string.upper (s)</code></h3>
Receives a string and returns a copy of that string with all
lowercase letters changed to uppercase.
All other characters are left unchanged.
The definition of what is a lowercase letter depends on the current locale.

<p><a name="format"><h3><code>string.format (formatstring, e1, e2, ...)</code></h3></a>

Returns a formatted version of its variable number of arguments
following the description given in its first argument (which must be a string).
The format string follows the same rules as the <code>printf</code> family of
standard C&nbsp;functions.
The only differences are that the options/modifiers
<code>*</code>, <code>l</code>, <code>L</code>, <code>n</code>, <code>p</code>,
and <code>h</code> are not supported,
and there is an extra option, <code>q</code>.
The <code>q</code> option formats a string in a form suitable to be safely read
back by the Lua interpreter:
The string is written between double quotes,
and all double quotes, newlines, and backslashes in the string
are correctly escaped when written.
For instance, the call
<PRE>
       string.format('%q', 'a string with "quotes" and \n new line')
</PRE>
will produce the string:
<PRE>
"a string with \"quotes\" and \
 new line"
</PRE>

<p>The options <code>c</code>, <code>d</code>, <code>E</code>, <code>e</code>, <code>f</code>,
<code>g</code>, <code>G</code>, <code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code> all
expect a number as argument,
whereas <code>q</code> and <code>s</code> expect a string.
The <code>*</code> modifier can be simulated by building
the appropriate format string.
For example, <code>"%*g"</code> can be simulated with
<code>"%"..width.."g"</code>.

<p>String values to be formatted with
<code>%s</code> cannot contain embedded zeros.

<p><h3><code>string.gfind (s, pat)</code></h3>

<p>Returns an iterator function that,
each time it is called,
returns the next captures from pattern <code>pat</code> over string <code>s</code>.

<p>If <code>pat</code> specifies no captures,
then the whole match is produced in each call.

<p>As an example, the following loop
<PRE>
  s = "hello world from Lua"
  for w in string.gfind(s, "%a+") do
    print(w)
  end
</PRE>
will iterate over all the words from string <code>s</code>,
printing one per line.
The next example collects all pairs <code>key=value</code> from the
given string into a table:
<PRE>
  t = {}
  s = "from=world, to=Lua"
  for k, v in string.gfind(s, "(%w+)=(%w+)") do
    t[k] = v
  end
</PRE>

<p><h3><code>string.gsub (s, pat, repl [, n])</code></h3>

Returns a copy of <code>s</code>
in which all occurrences of the pattern <code>pat</code> have been
replaced by a replacement string specified by <code>repl</code>.
<code>gsub</code> also returns, as a second value,
the total number of substitutions made.

<p>If <code>repl</code> is a string, then its value is used for replacement.
Any sequence in <code>repl</code> of the form <code>%</code><em>n</em>,
with <em>n</em> between 1 and 9,
stands for the value of the <em>n</em>-th captured substring (see below).

<p>If <code>repl</code> is a function, then this function is called every time a
match occurs, with all captured substrings passed as arguments,
in order;
if the pattern specifies no captures,
then the whole match is passed as a sole argument.
If the value returned by this function is a string,
then it is used as the replacement string;
otherwise, the replacement string is the empty string.

<p>The optional last parameter <code>n</code> limits
the maximum number of substitutions to occur.
For instance, when <code>n</code> is 1 only the first occurrence of
<code>pat</code> is replaced.

<p>Here are some examples:
<PRE>
   x = string.gsub("hello world", "(%w+)", "%1 %1")
   --> x="hello hello world world"

   x = string.gsub("hello world", "(%w+)", "%1 %1", 1)
   --> x="hello hello world"

   x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
   --> x="world hello Lua from"

   x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
   --> x="home = /home/roberto, user = roberto"

   x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
         return loadstring(s)()
       end)
   --> x="4+5 = 9"

   local t = {name="lua", version="5.0"}
   x = string.gsub("$name_$version.tar.gz", "%$(%w+)", function (v)
         return t[v]
       end)
   --> x="lua_5.0.tar.gz"
</PRE>

<p><a name="pm"><h3>Patterns</h3></a>

<p><p>
A <em>character class</em> is used to represent a set of characters.
The following combinations are allowed in describing a character class:
<ul>
<li><b><em>x</em></b> (where <em>x</em> is not one of the magic characters
<code>^$()%.[]*+-?</code>)
--- represents the character <em>x</em> itself.
<li><b><code>.</code></b> --- (a dot) represents all characters.
<li><b><code>%a</code></b> --- represents all letters.
<li><b><code>%c</code></b> --- represents all control characters.
<li><b><code>%d</code></b> --- represents all digits.
<li><b><code>%l</code></b> --- represents all lowercase letters.
<li><b><code>%p</code></b> --- represents all punctuation characters.
<li><b><code>%s</code></b> --- represents all space characters.
<li><b><code>%u</code></b> --- represents all uppercase letters.
<li><b><code>%w</code></b> --- represents all alphanumeric characters.
<li><b><code>%x</code></b> --- represents all hexadecimal digits.
<li><b><code>%z</code></b> --- represents the character with representation 0.
<li><b><code>%<em>x</em></code></b> (where <em>x</em> is any non-alphanumeric character)  ---
represents the character <em>x</em>.
This is the standard way to escape the magic characters.
Any punctuation character (even the non magic)
can be preceded by a `<code>%</code>&acute;
when used to represent itself in a pattern.

<p><li><b><code>[<em>set</em>]</code></b> ---
represents the class which is the union of all
characters in <em>set</em>.
A range of characters may be specified by
separating the end characters of the range with a `<code>-</code>&acute;.
All classes <code>%</code><em>x</em> described above may also be used as
components in <em>set</em>.
All other characters in <em>set</em> represent themselves.
For example, <code>[%w_]</code> (or <code>[_%w]</code>)
represents all alphanumeric characters plus the underscore,
<code>[0-7]</code> represents the octal digits,
and <code>[0-7%l%-]</code> represents the octal digits plus
the lowercase letters plus the `<code>-</code>&acute; character.

<p>The interaction between ranges and classes is not defined.
Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code>
have no meaning.

<p><li><b><code>[^<em>set</em>]</code></b> ---
represents the complement of <em>set</em>,
where <em>set</em> is interpreted as above.
</ul>
For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.),
the corresponding uppercase letter represents the complement of the class.
For instance, <code>%S</code> represents all non-space characters.

<p>The definitions of letter, space, and other character groups
depend on the current locale.
In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>.
The second form should be preferred for portability.

<p><p>
A <em>pattern item</em> may be
<ul>
<li> 
a single character class,
which matches any single character in the class;
<li> 
a single character class followed by `<code>*</code>&acute;,
which matches 0 or more repetitions of characters in the class.
These repetition items will always match the longest possible sequence;
<li> 
a single character class followed by `<code>+</code>&acute;,
which matches 1 or more repetitions of characters in the class.
These repetition items will always match the longest possible sequence;
<li> 
a single character class followed by `<code>-</code>&acute;,
which also matches 0 or more repetitions of characters in the class.
Unlike `<code>*</code>&acute;,
these repetition items will always match the <em>shortest</em> possible sequence;
<li> 
a single character class followed by `<code>?</code>&acute;,
which matches 0 or 1 occurrence of a character in the class;
<li> 
<code>%<em>n</em></code>, for <em>n</em> between 1 and 9;
such item matches a substring equal to the <em>n</em>-th captured string
(see below);
<li> 
<code>%b<em>xy</em></code>, where <em>x</em> and <em>y</em> are two distinct characters;
such item matches strings that start with&nbsp;<em>x</em>, end with&nbsp;<em>y</em>,
and where the <em>x</em> and <em>y</em> are <em>balanced</em>.
This means that, if one reads the string from left to right,
counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>,
the ending <em>y</em> is the first <em>y</em> where the count reaches 0.
For instance, the item <code>%b()</code> matches expressions with
balanced parentheses.
</ul>

<p><p>
A <em>pattern</em> is a sequence of pattern items.
A `<code>^</code>&acute; at the beginning of a pattern anchors the match at the
beginning of the subject string.
A `<code>$</code>&acute; at the end of a pattern anchors the match at the
end of the subject string.
At other positions,
`<code>^</code>&acute; and `<code>$</code>&acute; have no special meaning and represent themselves.

<p><p>
A pattern may contain sub-patterns enclosed in parentheses;
they describe <em>captures</em>.
When a match succeeds, the substrings of the subject string
that match captures are stored (<em>captured</em>) for future use.
Captures are numbered according to their left parentheses.
For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>,
the part of the string matching <code>"a*(.)%w(%s*)"</code> is
stored as the first capture (and therefore has number&nbsp;1);
the character matching <code>.</code> is captured with number&nbsp;2,
and the part matching <code>%s*</code> has number&nbsp;3.

<p>As a special case, the empty capture <code>()</code> captures
the current string position (a number).
For instance, if we apply the pattern <code>"()aa()"</code> on the
string <code>"flaaap"</code>, there will be two captures: 3 and 5.

<p>A pattern cannot contain embedded zeros.  Use <code>%z</code> instead.

<p><a name="5.4"><h2>5.4 - Table Manipulation</h2></a>
This library provides generic functions for table manipulation.
It provides all its functions inside the table <code>table</code>.

<p>Most functions in the table library assume that the table
represents an array or a list.
For those functions, an important concept is the <em>size</em> of the array.
There are three ways to specify that size:
<ul>
<li> the field <code>"n"</code> ---
When the table has a field <code>"n"</code> with a numerical value,
that value is assumed as its size.
<li> <code>setn</code> ---
You can call the <code>table.setn</code> function to explicitly set
the size of a table.
<li> implicit size ---
Otherwise, the size of the object is one less the first integer index
with a <B>nil</B> value.
</ul>
For more details, see the descriptions of the <code>table.getn</code> and
<code>table.setn</code> functions.

<p><h3><code>table.concat (table [, sep [, i [, j]]])</code></h3>

Returns <code>table[i]..sep..table[i+1] ... sep..table[j]</code>.
The default value for <code>sep</code> is the empty string,
the default for <code>i</code> is 1,
and the default for <code>j</code> is the size of the table.
If <code>i</code> is greater than <code>j</code>, returns the empty string.

<p><h3><code>table.foreach (table, f)</code></h3>
Executes the given <code>f</code> over all elements of <code>table</code>.
For each element, <code>f</code> is called with the index and
respective value as arguments.
If <code>f</code> returns a non-<B>nil</B> value,
then the loop is broken, and this value is returned
as the final value of <code>foreach</code>.

<p>See the <code>next</code> function for extra information about table traversals.

<p><h3><code>table.foreachi (table, f)</code></h3>
Executes the given <code>f</code> over the
numerical indices of <code>table</code>.
For each index, <code>f</code> is called with the index and
respective value as arguments.
Indices are visited in sequential order,
from&nbsp;1 to <code>n</code>,
where <code>n</code> is the size of the table (see <a href="#getn">5.4</a>).
If <code>f</code> returns a non-<B>nil</B> value,
then the loop is broken and this value is returned
as the result of <code>foreachi</code>.

<p><a name="getn"><h3><code>table.getn (table)</code></h3></a>
Returns the size of a table, when seen as a list.
If the table has an <code>n</code> field with a numeric value,
this value is the size of the table.
Otherwise, if there was a previous call
to <code>table.setn</code> over this table,
the respective value is returned.
Otherwise, the size is one less the first integer index with
a <B>nil</B> value.

<p><h3><code>table.sort (table [, comp])</code></h3>
Sorts table elements in a given order, <em>in-place</em>,
from <code>table[1]</code> to <code>table[n]</code>,
where <code>n</code> is the size of the table (see <a href="#getn">5.4</a>).
If <code>comp</code> is given,
then it must be a function that receives two table elements,
and returns true
when the first is less than the second
(so that <code>not comp(a[i+1],a[i])</code> will be true after the sort).
If <code>comp</code> is not given,
then the standard Lua operator <code>&#060;</code> is used instead.

<p>The sort algorithm is <em>not</em> stable,
that is, elements considered equal by the given order
may have their relative positions changed by the sort.

<p><h3><code>table.insert (table, [pos,] value)</code></h3>

<p>Inserts element <code>value</code> at position <code>pos</code> in <code>table</code>,
shifting up other elements to open space, if necessary.
The default value for <code>pos</code> is <code>n+1</code>,
where <code>n</code> is the size of the table (see <a href="#getn">5.4</a>),
so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end
of table <code>t</code>.
This function also updates the size of the table by
calling <code>table.setn(table, n+1)</code>.

<p><h3><code>table.remove (table [, pos])</code></h3>

<p>Removes from <code>table</code> the element at position <code>pos</code>,
shifting down other elements to close the space, if necessary.
Returns the value of the removed element.
The default value for <code>pos</code> is <code>n</code>,
where <code>n</code> is the size of the table (see <a href="#getn">5.4</a>),
so that a call <code>table.remove(t)</code> removes the last element
of table <code>t</code>.
This function also updates the size of the table by
calling <code>table.setn(table, n-1)</code>.

<p><h3><code>table.setn (table, n)</code></h3>

<p>Updates the size of a table.
If the table has a field <code>"n"</code> with a numerical value,
that value is changed to the given <code>n</code>.
Otherwise, it updates an internal state
so that subsequent calls to <code>table.getn(table)</code> return <code>n</code>.

<p><a name="mathlib"><a name="5.5"><h2>5.5 - Mathematical Functions</h2></a></a>

<p>This library is an interface to most of the functions of the
standard C&nbsp;math library.
(Some have slightly different names.)
It provides all its functions inside the table <code>math</code>.
In addition,
it registers the global <code>__pow</code>
for the binary exponentiation operator <code>^</code>,
so that <code>x^y</code> returns <em>x<sup>y</sup></em>.
The library provides the following functions:









<PRE>
       math.abs     math.acos    math.asin    math.atan    math.atan2
       math.ceil    math.cos     math.deg     math.exp     math.floor
       math.log     math.log10   math.max     math.min     math.mod
       math.pow     math.rad     math.sin     math.sqrt    math.tan
       math.frexp   math.ldexp   math.random  math.randomseed
</PRE>
plus a variable <code>math.pi</code>.
Most of them
are only interfaces to the corresponding functions in the C&nbsp;library.
All trigonometric functions work in radians
(previous versions of Lua used degrees).
The functions <code>math.deg</code> and <code>math.rad</code> convert
between radians and degrees.

<p>The function <code>math.max</code> returns the maximum
value of its numeric arguments.
Similarly, <code>math.min</code> computes the minimum.
Both can be used with 1, 2, or more arguments.

<p>The functions <code>math.random</code> and <code>math.randomseed</code>
are interfaces to the simple random generator functions
<code>rand</code> and <code>srand</code> that are provided by ANSI&nbsp;C.
(No guarantees can be given for their statistical properties.)
When called without arguments,
<code>math.random</code> returns a pseudo-random real number
in the range <em>[0,1)</em>.  
When called with a number <em>n</em>,
<code>math.random</code> returns a pseudo-random integer in the range <em>[1,n]</em>.
When called with two arguments, <em>l</em> and <em>u</em>,
<code>math.random</code> returns a pseudo-random integer in the range <em>[l,u]</em>.
The <code>math.randomseed</code> function sets a "seed"
for the pseudo-random generator:
Equal seeds produce equal sequences of numbers.

<p><a name="libio"><a name="5.6"><h2>5.6 - Input and Output Facilities</h2></a></a>

<p>The I/O library provides two different styles for file manipulation.
The first one uses implicit file descriptors,
that is, there are operations to set a default input file and a
default output file,
and all input/output operations are over those default files.
The second style uses explicit file descriptors.

<p>When using implicit file descriptors,
all operations are supplied by table <code>io</code>.
When using explicit file descriptors,
the operation <code>io.open</code> returns a file descriptor
and then all operations are supplied as methods by the file descriptor.

<p>The table <code>io</code> also provides
three predefined file descriptors with their usual meanings from C:
<code>io.stdin</code>, <code>io.stdout</code>, and <code>io.stderr</code>.

<p>A file handle is a userdata containing the file stream (<code>FILE*</code>),
with a distinctive metatable created by the I/O library.

<p>Unless otherwise stated,
all I/O functions return <B>nil</B> on failure
(plus an error message as a second result)
and some value different from <B>nil</B> on success.

<p><h3><code>io.close ([file])</code></h3>

<p>Equivalent to <code>file:close()</code>.
Without a <code>file</code>, closes the default output file.

<p><h3><code>io.flush ()</code></h3>

<p>Equivalent to <code>file:flush</code> over the default output file.

<p><h3><code>io.input ([file])</code></h3>

<p>When called with a file name, it opens the named file (in text mode),
and sets its handle as the default input file.
When called with a file handle,
it simply sets that file handle as the default input file.
When called without parameters,
it returns the current default input file.

<p>In case of errors this function raises the error,
instead of returning an error code.

<p><h3><code>io.lines ([filename])</code></h3>

<p>Opens the given file name in read mode
and returns an iterator function that,
each time it is called,
returns a new line from the file.
Therefore, the construction
<PRE>
       for line in io.lines(filename) do ... end
</PRE>
will iterate over all lines of the file.
When the iterator function detects the end of file,
it returns <B>nil</B> (to finish the loop) and automatically closes the file.

<p>The call <code>io.lines()</code> (without a file name) is equivalent
to <code>io.input():lines()</code>, that is, it iterates over the
lines of the default input file.

<p><h3><code>io.open (filename [, mode])</code></h3>

<p>This function opens a file,
in the mode specified in the string <code>mode</code>.
It returns a new file handle,
or, in case of errors, <B>nil</B> plus an error message.

<p>The <code>mode</code> string can be any of the following:
<ul>
<li><b>"r"</b> read mode (the default);
<li><b>"w"</b> write mode;
<li><b>"a"</b> append mode;
<li><b>"r+"</b> update mode, all previous data is preserved;
<li><b>"w+"</b> update mode, all previous data is erased;
<li><b>"a+"</b> append update mode, previous data is preserved,
  writing is only allowed at the end of file.
</ul>
The <code>mode</code> string may also have a <code>b</code> at the end,
which is needed in some systems to open the file in binary mode.
This string is exactly what is used in the standard&nbsp;C function <code>fopen</code>.

<p><h3><code>io.output ([file])</code></h3>

<p>Similar to <code>io.input</code>, but operates over the default output file.

<p><h3><code>io.read (format1, ...)</code></h3>

<p>Equivalent to <code>io.input():read</code>.

<p><h3><code>io.tmpfile ()</code></h3>

<p>Returns a handle for a temporary file.
This file is open in update mode
and it is automatically removed when the program ends.

<p><h3><code>io.type (obj)</code></h3>

<p>Checks whether <code>obj</code> is a valid file handle.
Returns the string <code>"file"</code> if <code>obj</code> is an open file handle,
<code>"closed file"</code> if <code>obj</code> is a closed file handle,
and <B>nil</B> if <code>obj</code> is not a file handle.

<p><h3><code>io.write (value1, ...)</code></h3>

<p>Equivalent to <code>io.output():write</code>.

<p><h3><code>file:close ()</code></h3>

<p>Closes <code>file</code>.

<p><h3><code>file:flush ()</code></h3>

<p>Saves any written data to <code>file</code>.

<p><h3><code>file:lines ()</code></h3>

<p>Returns an iterator function that,
each time it is called,
returns a new line from the file.
Therefore, the construction
<PRE>
       for line in file:lines() do ... end
</PRE>
will iterate over all lines of the file.
(Unlike <code>io.lines</code>, this function does not close the file
when the loop ends.)

<p><h3><code>file:read (format1, ...)</code></h3>

<p>Reads the file <code>file</code>,
according to the given formats, which specify what to read.
For each format,
the function returns a string (or a number) with the characters read,
or <B>nil</B> if it cannot read data with the specified format.
When called without formats,
it uses a default format that reads the entire next line
(see below).

<p>The available formats are
<ul>
<li><b>"*n"</b> reads a number;
this is the only format that returns a number instead of a string.
<li><b>"*a"</b> reads the whole file, starting at the current position.
On end of file, it returns the empty string.
<li><b>"*l"</b> reads the next line (skipping the end of line),
returning <B>nil</B> on end of file.
This is the default format.
<li><b><em>number</em></b> reads a string with up to that number of characters,
returning <B>nil</B> on end of file.
If number is zero,
it reads nothing and returns an empty string,
or <B>nil</B> on end of file.
</ul>

<p><h3><code>file:seek ([whence] [, offset])</code></h3>

<p>Sets and gets the file position,
measured from the beginning of the file,
to the position given by <code>offset</code> plus a base
specified by the string <code>whence</code>, as follows:
<ul>
<li><b>"set"</b> base is position 0 (beginning of the file);
<li><b>"cur"</b> base is current position;
<li><b>"end"</b> base is end of file;
</ul>
In case of success, function <code>seek</code> returns the final file position,
measured in bytes from the beginning of the file.
If this function fails, it returns <B>nil</B>,
plus a string describing the error.

<p>The default value for <code>whence</code> is <code>"cur"</code>,
and for <code>offset</code> is 0.
Therefore, the call <code>file:seek()</code> returns the current
file position, without changing it;
the call <code>file:seek("set")</code> sets the position to the
beginning of the file (and returns 0);
and the call <code>file:seek("end")</code> sets the position to the
end of the file, and returns its size.

<p><h3><code>file:write (value1, ...)</code></h3>

<p>Writes the value of each of its arguments to
the filehandle <code>file</code>.
The arguments must be strings or numbers.
To write other values,
use <code>tostring</code> or <code>string.format</code> before <code>write</code>.

<p><a name="libiosys"><a name="5.7"><h2>5.7 - Operating System Facilities</h2></a></a>

<p>This library is implemented through table <code>os</code>.

<p><h3><code>os.clock ()</code></h3>

<p>Returns an approximation of the amount of CPU time
used by the program, in seconds.

<p><h3><code>os.date ([format [, time]])</code></h3>

<p>Returns a string or a table containing date and time,
formatted according to the given string <code>format</code>.

<p>If the <code>time</code> argument is present,
this is the time to be formatted
(see the <code>os.time</code> function for a description of this value).
Otherwise, <code>date</code> formats the current time.

<p>If <code>format</code> starts with `<code>!</code>&acute;,
then the date is formatted in Coordinated Universal Time.
After that optional character,
if <code>format</code> is <code>*t</code>,
then <code>date</code> returns a table with the following fields:
<code>year</code> (four digits), <code>month</code> (1--12), <code>day</code> (1--31),
<code>hour</code> (0--23), <code>min</code> (0--59), <code>sec</code> (0--61),
<code>wday</code> (weekday, Sunday is&nbsp;1),
<code>yday</code> (day of the year),
and <code>isdst</code> (daylight saving flag, a boolean).

<p>If <code>format</code> is not <code>*t</code>,
then <code>date</code> returns the date as a string,
formatted according with the same rules as the C&nbsp;function <code>strftime</code>.

<p>When called without arguments,
<code>date</code> returns a reasonable date and time representation that depends on
the host system and on the current locale
(that is, <code>os.date()</code> is equivalent to <code>os.date("%c")</code>).

<p><h3><code>os.difftime (t2, t1)</code></h3>

<p>Returns the number of seconds from time <code>t1</code> to time <code>t2</code>.
In Posix, Windows, and some other systems,
this value is exactly <code>t2</code><em>-</em><code>t1</code>.

<p><h3><code>os.execute (command)</code></h3>

<p>This function is equivalent to the C&nbsp;function <code>system</code>.
It passes <code>command</code> to be executed by an operating system shell.
It returns a status code, which is system-dependent.

<p><h3><code>os.exit ([code])</code></h3>

<p>Calls the C&nbsp;function <code>exit</code>,
with an optional <code>code</code>,
to terminate the host program.
The default value for <code>code</code> is the success code.

<p><h3><code>os.getenv (varname)</code></h3>

<p>Returns the value of the process environment variable <code>varname</code>,
or <B>nil</B> if the variable is not defined.

<p><h3><code>os.remove (filename)</code></h3>

<p>Deletes the file with the given name.
If this function fails, it returns <B>nil</B>,
plus a string describing the error.

<p><h3><code>os.rename (oldname, newname)</code></h3>

<p>Renames file named <code>oldname</code> to <code>newname</code>.
If this function fails, it returns <B>nil</B>,
plus a string describing the error.

<p><h3><code>os.setlocale (locale [, category])</code></h3>

<p>Sets the current locale of the program.
<code>locale</code> is a string specifying a locale;
<code>category</code> is an optional string describing which category to change:
<code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>,
<code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>;
the default category is <code>"all"</code>.
The function returns the name of the new locale,
or <B>nil</B> if the request cannot be honored.

<p><h3><code>os.time ([table])</code></h3>

<p>Returns the current time when called without arguments,
or a time representing the date and time specified by the given table.
This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>,
and may have fields <code>hour</code>, <code>min</code>, <code>sec</code>, and <code>isdst</code>
(for a description of these fields, see the <code>os.date</code> function).

<p>The returned value is a number, whose meaning depends on your system.
In Posix, Windows, and some other systems, this number counts the number
of seconds since some given start time (the "epoch").
In other systems, the meaning is not specified,
and the number returned by <code>time</code> can be used only as an argument to
<code>date</code> and <code>difftime</code>.

<p><h3><code>os.tmpname ()</code></h3>

<p>Returns a string with a file name that can
be used for a temporary file.
The file must be explicitly opened before its use
and removed when no longer needed.

<p>This function is equivalent to the <code>tmpnam</code> C&nbsp;function,
and many people (and even some compilers!) advise against its use,
because between the time you call this function
and the time you open the file,
it is possible for another process
to create a file with the same name.

<p><a name="5.8"><h2>5.8 - The Reflexive Debug Interface</h2></a>

<p>The <code>debug</code> library provides
the functionality of the debug interface to Lua programs.
You should exert care when using this library.
The functions provided here should be used exclusively for debugging
and similar tasks, such as profiling.
Please resist the temptation to use them as a
usual programming tool:
They can be very slow.
Moreover, <code>setlocal</code> and <code>getlocal</code>
violate the privacy of local variables
and therefore can compromise some otherwise secure code.

<p>All functions in this library are provided
inside a <code>debug</code> table.

<p><h3><code>debug.debug ()</code></h3>

<p>Enters an interactive mode with the user,
running each string that the user enters.
Using simple commands and other debug facilities,
the user can inspect global and local variables,
change their values, evaluate expressions, and so on.
A line containing only the word <code>cont</code> finishes this function,
so that the caller continues its execution.

<p>Note that commands for <code>debug.debug</code> are not lexically nested
with any function, so they have no direct access to local variables.

<p><h3><code>debug.gethook ()</code></h3>

<p>Returns the current hook settings, as three values:
the current hook function, the current hook mask,
and the current hook count (as set by the <code>debug.sethook</code> function).

<p><h3><code>debug.getinfo (function [, what])</code></h3>

<p>This function returns a table with information about a function.
You can give the function directly,
or you can give a number as the value of <code>function</code>,
which means the function running at level <code>function</code> of the call stack:
Level 0 is the current function (<code>getinfo</code> itself);
level 1 is the function that called <code>getinfo</code>;
and so on.
If <code>function</code> is a number larger than the number of active functions,
then <code>getinfo</code> returns <B>nil</B>.

<p>The returned table contains all the fields returned by <code>lua_getinfo</code>,
with the string <code>what</code> describing which fields to fill in.
The default for <code>what</code> is to get all information available.
If present,
the option `<code>f</code>&acute;
adds a field named <code>func</code> with the function itself.

<p>For instance, the expression <code>debug.getinfo(1,"n").name</code> returns
the name of the current function, if a reasonable name can be found,
and <code>debug.getinfo(print)</code> returns a table with all available information
about the <code>print</code> function.

<p><h3><code>debug.getlocal (level, local)</code></h3>

<p>This function returns the name and the value of the local variable
with index <code>local</code> of the function at level <code>level</code> of the stack.
(The first parameter or local variable has index&nbsp;1, and so on,
until the last active local variable.)
The function returns <B>nil</B> if there is no local
variable with the given index,
and raises an error when called with a <code>level</code> out of range.
(You can call <code>debug.getinfo</code> to check whether the level is valid.)

<p><h3><code>debug.getupvalue (func, up)</code></h3>

<p>This function returns the name and the value of the upvalue
with index <code>up</code> of the function <code>func</code>.
The function returns <B>nil</B> if there is no upvalue with the given index.

<p><h3><code>debug.setlocal (level, local, value)</code></h3>

<p>This function assigns the value <code>value</code> to the local variable
with index <code>local</code> of the function at level <code>level</code> of the stack.
The function returns <B>nil</B> if there is no local
variable with the given index,
and raises an error when called with a <code>level</code> out of range.
(You can call <code>getinfo</code> to check whether the level is valid.)

<p><h3><code>debug.setupvalue (func, up, value)</code></h3>

<p>This function assigns the value <code>value</code> to the upvalue
with index <code>up</code> of the function <code>func</code>.
The function returns <B>nil</B> if there is no upvalue
with the given index.

<p><h3><code>debug.sethook (hook, mask [, count])</code></h3>


<p>Sets the given function as a hook.
The string <code>mask</code> and the number <code>count</code> describe
when the hook will be called.
The string mask may have the following characters,
with the given meaning:
<ul>
<li><b><code>"c"</code></b> The hook is called every time Lua calls a function;
<li><b><code>"r"</code></b> The hook is called every time Lua returns from a function;
<li><b><code>"l"</code></b> The hook is called every time Lua enters a new line of code.
</ul>
With a <code>count</code> different from zero,
the hook is called after every <code>count</code> instructions.

<p>When called without arguments,
the <code>debug.sethook</code> function turns off the hook.

<p>When the hook is called, its first parameter is always a string
describing the event that triggered its call:
<code>"call"</code>, <code>"return"</code> (or <code>"tail return"</code>),
<code>"line"</code>, and <code>"count"</code>.
Moreover, for line events,
it also gets as its second parameter the new line number.
Inside a hook,
you can call <code>getinfo</code> with level 2 to get more information about
the running function
(level&nbsp;0 is the <code>getinfo</code> function,
and level&nbsp;1 is the hook function),
unless the event is <code>"tail return"</code>.
In this case, Lua is only simulating the return,
and a call to <code>getinfo</code> will return invalid data.

<p><h3><code>debug.traceback ([message])</code></h3>

<p>Returns a string with a traceback of the call stack.
An optional <code>message</code> string is appended
at the beginning of the traceback. 
This function is typically used with <code>xpcall</code> to produce
better error messages.

<p>
<a name="lua-sa"><a name="6"><h1>6 - Lua Stand-alone</h1></a></a>

<p>Although Lua has been designed as an extension language,
to be embedded in a host C&nbsp;program,
it is also frequently used as a stand-alone language.
An interpreter for Lua as a stand-alone language,
called simply <code>lua</code>,
is provided with the standard distribution.
The stand-alone interpreter includes
all standard libraries plus the reflexive debug interface.
Its usage is:
<PRE>
      lua [options] [script [args]]
</PRE>
The options are:
<ul>
<li><b><code>-</code> </b> executes <code>stdin</code> as a file;
<li><b><code>-e</code> <em>stat</em></b> executes string <em>stat</em>;
<li><b><code>-l</code> <em>file</em></b> "requires" <em>file</em>;
<li><b><code>-i</code></b> enters interactive mode after running <em>script</em>;
<li><b><code>-v</code></b> prints version information;
<li><b><code>--</code></b> stop handling options.
</ul>
After handling its options, <code>lua</code> runs the given <em>script</em>,
passing to it the given <em>args</em>.
When called without arguments,
<code>lua</code> behaves as <code>lua -v -i</code> when <code>stdin</code> is a terminal,
and as <code>lua -</code> otherwise.

<p>Before running any argument,
the interpreter checks for an environment variable <code>LUA_INIT</code>.
If its format is @<em>filename</em>,
then lua executes the file.
Otherwise, lua executes the string itself.

<p>All options are handled in order, except <code>-i</code>.
For instance, an invocation like
<PRE>
       $ lua -e'a=1' -e 'print(a)' script.lua
</PRE>
will first set <code>a</code> to 1, then print <code>a</code>,
and finally run the file <code>script.lua</code>.
(Here, <code>$</code> is the shell prompt. Your prompt may be different.)

<p>Before starting to run the script,
<code>lua</code> collects all arguments in the command line
in a global table called <code>arg</code>.
The script name is stored in index 0,
the first argument after the script name goes to index 1,
and so on.
The field <code>n</code> gets the number of arguments after the script name.
Any arguments before the script name
(that is, the interpreter name plus the options)
go to negative indices.
For instance, in the call
<PRE>
       $ lua -la.lua b.lua t1 t2
</PRE>
the interpreter first runs the file <code>a.lua</code>,
then creates a table
<PRE>
       arg = { [-2] = "lua", [-1] = "-la.lua", [0] = "b.lua",
               [1] = "t1", [2] = "t2"; n = 2 }
</PRE>
and finally runs the file <code>b.lua</code>.

<p>In interactive mode,
if you write an incomplete statement,
the interpreter waits for its completion.

<p>If the global variable <code>_PROMPT</code> is defined as a string,
then its value is used as the prompt.
Therefore, the prompt can be changed directly on the command line:
<PRE>
       $ lua -e"_PROMPT='myprompt> '" -i
</PRE>
(the outer pair of quotes is for the shell,
the inner is for Lua),
or in any Lua programs by assigning to <code>_PROMPT</code>.
Note the use of <code>-i</code> to enter interactive mode; otherwise,
the program would end just after the assignment to <code>_PROMPT</code>.

<p>In Unix systems, Lua scripts can be made into executable programs
by using <code>chmod +x</code> and the&nbsp;<code>#!</code> form,
as in
<PRE>
#!/usr/local/bin/lua
</PRE>
(Of course,
the location of the Lua interpreter may be different in your machine.
If <code>lua</code> is in your <code>PATH</code>,
then 
<PRE>
#!/usr/bin/env lua
</PRE>
is a more portable solution.) 

<p>
<h1>Acknowledgments</h1>

<p>The Lua team is grateful to <a href="http://www.tecgraf.puc-rio.br">Tecgraf</a> for its continued support to Lua.
We thank everyone at <a href="http://www.tecgraf.puc-rio.br">Tecgraf</a>,
specially the head of the group, Marcelo Gattass.
At the risk of omitting several names,
we also thank the following individuals for supporting,
contributing to, and spreading the word about Lua:
Alan Watson.
Andr&#233; Clinio,
Andr&#233; Costa,
Antonio Scuri,
Asko Kauppi,
Bret Mogilefsky,
Cameron Laird,
Carlos Cassino,
Carlos Henrique Levy,
Claudio Terra,
David Jeske,
Ed Ferguson,
Edgar Toernig,
Erik Hougaard,
Jim Mathies,
John Belmonte,
John Passaniti,
John Roll,
Jon Erickson,
Jon Kleiser,
Mark Ian Barlow,
Nick Trout,
Noemi Rodriguez,
Norman Ramsey,
Philippe Lhoste,
Renata Ratton,
Renato Borges,
Renato Cerqueira,
Reuben Thomas,
Stephan Herrmann,
Steve Dekorte,
Thatcher Ulrich,
Tom&#225;s Gorham,
Vincent Penquerc'h.
Thank you!

<p><hr>

<p><h1>Incompatibilities with Previous Versions</h1>


<p>Lua 5.0 is a major release.
There are several incompatibilities with its previous version, Lua 4.0.

<p><h2>Incompatibilities with version 4.0</h2>

<p><h3>Changes in the Language</h3>
<ul>

<p><li>
The whole tag-method scheme was replaced by metatables.

<p><li> 
Function calls written between parentheses result in exactly one value.

<p><li> 
A function call as the last expression in a list constructor
(like <code>{a,b,f()}</code>) has all its return values inserted in the list.

<p><li> 
The precedence of <b>or</b> is smaller than the precedence of <b>and</b>.

<p><li> 
<b>in</b>, <b>false</b>, and <b>true</b> are reserved words.

<p><li> 
The old construction <code>for k,v in t</code>, where <code>t</code> is a table,
is deprecated (although it is still supported).
Use <code>for k,v in pairs(t)</code> instead.

<p><li> 
When a literal string of the form <code>[[...]]</code> starts with a newline,
this newline is ignored.

<p>

<p><li> Upvalues in the form <code>%var</code> are obsolete;
use external local variables instead.

<p></ul>

<p><h3>Changes in the Libraries</h3>
<ul>

<p><li> 
Most library functions now are defined inside tables.
There is a compatibility script (<code>compat.lua</code>) that
redefine most of them as global names.

<p><li> 
In the math library, angles are expressed in radians.
With the compatibility script (<code>compat.lua</code>),
functions still work in degrees.

<p><li> 
The <code>call</code> function is deprecated.
Use <code>f(unpack(tab))</code> instead of <code>call(f, tab)</code>
for unprotected calls,
or the new <code>pcall</code> function for protected calls.

<p><li> 
<code>dofile</code> do not handle errors, but simply propagates them.

<p><li>
<code>dostring</code> is deprecated. Use <code>loadstring</code> instead.

<p><li> 
The <code>read</code> option <code>*w</code> is obsolete.

<p><li> 
The <code>format</code> option <code>%n$</code> is obsolete.

<p></ul>

<p><h3>Changes in the API</h3>
<ul>

<p><li>
<code>lua_open</code> does not have a stack size as its argument
(stacks are dynamic).

<p><li> 
<code>lua_pushuserdata</code> is deprecated.
Use <code>lua_newuserdata</code> or <code>lua_pushlightuserdata</code> instead.

<p></ul>

<p>

<a name="BNF"><h1>The Complete Syntax of Lua</h1></a>


<p>

<p><pre>

<p>	chunk ::= {stat [`<b>;</b>&acute;]}

<p>	block ::= chunk

<p>	stat ::=  varlist1 `<b>=</b>&acute; explist1 | functioncall | <b>do</b> block <b>end</b> | <b>while</b> exp <b>do</b> block <b>end</b> | <b>repeat</b> block <b>until</b> exp | <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> | <b>return</b> [explist1] | <b>break</b> | <b>for</b> Name `<b>=</b>&acute; exp `<b>,</b>&acute; exp [`<b>,</b>&acute; exp] <b>do</b> block <b>end</b> | <b>for</b> Name {`<b>,</b>&acute; Name} <b>in</b> explist1 <b>do</b> block <b>end</b> | <b>function</b> funcname funcbody | <b>local</b> <b>function</b> Name funcbody | <b>local</b> namelist [init] 

<p>	funcname ::= Name {`<b>.</b>&acute; Name} [`<b>:</b>&acute; Name]

<p>	varlist1 ::= var {`<b>,</b>&acute; var}

<p>	var ::=  Name | prefixexp `<b>[</b>&acute; exp `<b>]</b>&acute; | prefixexp `<b>.</b>&acute; Name 

<p>	namelist ::= Name {`<b>,</b>&acute; Name}

<p>	init ::= `<b>=</b>&acute; explist1

<p>	explist1 ::= {exp `<b>,</b>&acute;} exp

<p>	exp ::=  <b>nil</b> | <b>false</b> | <b>true</b> | Number | Literal | function | prefixexp | tableconstructor | exp binop exp | unop exp 

<p>	prefixexp ::= var | functioncall | `<b>(</b>&acute; exp `<b>)</b>&acute;

<p>	functioncall ::=  prefixexp args | prefixexp `<b>:</b>&acute; Name args 

<p>	args ::=  `<b>(</b>&acute; [explist1] `<b>)</b>&acute; | tableconstructor | Literal 

<p>	function ::= <b>function</b> funcbody

<p>	funcbody ::= `<b>(</b>&acute; [parlist1] `<b>)</b>&acute; block <b>end</b>

<p>	parlist1 ::=  Name {`<b>,</b>&acute; Name} [`<b>,</b>&acute; `<b>...</b>&acute;] | `<b>...</b>&acute; 

<p>	tableconstructor ::= `<b>{</b>&acute; [fieldlist] `<b>}</b>&acute;
	fieldlist ::= field {fieldsep field} [fieldsep]
	field ::= `<b>[</b>&acute; exp `<b>]</b>&acute; `<b>=</b>&acute; exp | name `<b>=</b>&acute; exp | exp
	fieldsep ::= `<b>,</b>&acute; | `<b>;</b>&acute;

<p>	binop ::= `<b>+</b>&acute; | `<b>-</b>&acute; | `<b>*</b>&acute; | `<b>/</b>&acute; | `<b>^</b>&acute; | `<b>..</b>&acute; | `<b>&#060;</b>&acute; | `<b>&#060;=</b>&acute; | `<b>></b>&acute; | `<b>>=</b>&acute; | `<b>==</b>&acute; | `<b>~=</b>&acute; | <b>and</b> | <b>or</b>

<p>	unop ::= `<b>-</b>&acute; | <b>not</b>

<p></pre>

<p>

<p>

<HR>
<SMALL>
Last update:
Tue Nov 25 16:08:37 BRST 2003
</SMALL>

</BODY>
</HTML>