summaryrefslogtreecommitdiff
path: root/lopcodes.h
blob: 4567425793a2597baa7676bb529ecf7749a65201 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*
** $Id: lopcodes.h,v 1.74 2001/06/08 19:00:57 roberto Exp roberto $
** Opcodes for Lua virtual machine
** See Copyright Notice in lua.h
*/

#ifndef lopcodes_h
#define lopcodes_h

#include "llimits.h"


/*===========================================================================
  We assume that instructions are unsigned numbers.
  All instructions have an opcode in the first 6 bits.
  Instructions can have the following fields:
	`A' : 8 bits (25-32)
	`B' : 8 bits (17-24)
	`C' : 10 bits (7-16)
	`Bc' : 18 bits (`B' and `C' together)
	`sBc' : signed Bc

  A signed argument is represented in excess K; that is, the number
  value is the unsigned value minus K. K is exactly the maximum value
  for that argument (so that -max is represented by 0, and +max is
  represented by 2*max), which is half the maximum for the corresponding
  unsigned argument.
===========================================================================*/


/*
** size and position of opcode arguments.
*/
#define SIZE_C		10
#define SIZE_B		8
#define SIZE_Bc		(SIZE_C + SIZE_B)
#define SIZE_A		8

#define SIZE_OP		6

#define POS_C		SIZE_OP
#define POS_B		(POS_C + SIZE_C)
#define POS_Bc		POS_C
#define POS_A		(POS_B + SIZE_B)


/*
** limits for opcode arguments.
** we use (signed) int to manipulate most arguments,
** so they must fit in BITS_INT-1 bits (-1 for sign)
*/
#if SIZE_Bc < BITS_INT-1
#define MAXARG_Bc        ((1<<SIZE_Bc)-1)
#define MAXARG_sBc        (MAXARG_Bc>>1)         /* `sBc' is signed */
#else
#define MAXARG_Bc        MAX_INT
#define MAXARG_sBc        MAX_INT
#endif


#define MAXARG_A        ((1<<SIZE_A)-1)
#define MAXARG_B        ((1<<SIZE_B)-1)
#define MAXARG_C        ((1<<SIZE_C)-1)


/* creates a mask with `n' 1 bits at position `p' */
#define MASK1(n,p)	((~((~(Instruction)0)<<n))<<p)

/* creates a mask with `n' 0 bits at position `p' */
#define MASK0(n,p)	(~MASK1(n,p))

/*
** the following macros help to manipulate instructions
*/

#define GET_OPCODE(i)	((OpCode)((i)&MASK1(SIZE_OP,0)))
#define SET_OPCODE(i,o)	(((i)&MASK0(SIZE_OP,0)) | (Instruction)(o))

#define GETARG_A(i)	((int)((i)>>POS_A))
#define SETARG_A(i,u)	((i) = (((i)&MASK0(SIZE_A,POS_A)) | \
                               ((Instruction)(u)<<POS_A)))

#define GETARG_B(i)	((int)(((i)>>POS_B) & MASK1(SIZE_B,0)))
#define SETARG_B(i,b)	((i) = (((i)&MASK0(SIZE_B,POS_B)) | \
                               ((Instruction)(b)<<POS_B)))

#define GETARG_C(i)	((int)(((i)>>POS_C) & MASK1(SIZE_C,0)))
#define SETARG_C(i,b)	((i) = (((i)&MASK0(SIZE_C,POS_C)) | \
                               ((Instruction)(b)<<POS_C)))

#define GETARG_Bc(i)	((int)(((i)>>POS_Bc) & MASK1(SIZE_Bc,0)))
#define SETARG_Bc(i,b)	((i) = (((i)&MASK0(SIZE_Bc,POS_Bc)) | \
                               ((Instruction)(b)<<POS_Bc)))

#define GETARG_sBc(i)	(GETARG_Bc(i)-MAXARG_sBc)
#define SETARG_sBc(i,b)	SETARG_Bc((i),(b)+MAXARG_sBc)


#define CREATE_ABC(o,a,b,c)	((Instruction)(o) \
			| ((Instruction)(a)<<POS_A) \
			| ((Instruction)(b)<<POS_B) \
			| ((Instruction)(c)<<POS_C))

#define CREATE_ABc(o,a,bc)	((Instruction)(o) \
			| ((Instruction)(a)<<POS_A) \
			| ((Instruction)(bc)<<POS_Bc))




/*
** an invalid register that fits in 8 bits
*/
#define NO_REG		MAXARG_A


/*
** R(x) - register
** Kst(x) - constant (in constant table)
** R/K(x) == if x < MAXSTACK then R(x) else Kst(x-MAXSTACK)
*/

typedef enum {
/*----------------------------------------------------------------------
name		args	description
------------------------------------------------------------------------*/
OP_MOVE,/*	A B	R(A) := R(B)					*/
OP_LOADK,/*	A Bc	R(A) := Kst(Bc)					*/
OP_LOADINT,/*	A sBc	R(A) := (Number)sBc				*/
OP_LOADNIL,/*	A B	R(A) := ... := R(B) := nil			*/
OP_LOADUPVAL,/*	A Bc	R(A) := UpValue[Bc]				*/

OP_GETGLOBAL,/*	A Bc	R(A) := Gbl[Kst(Bc)]				*/
OP_GETTABLE,/*	A B C	R(A) := R(B)[R/K(C)]				*/

OP_SETGLOBAL,/*	A Bc	Gbl[Kst(Bc)] := R(A)				*/
OP_SETTABLE,/*	A B C	R(B)[R/K(C)] := R(A)				*/

OP_NEWTABLE,/*	A Bc	R(A) := {} (size = Bc)				*/

OP_SELF,/*	A B C	R(A+1) := R(B); R(A) := R(B)[R/K(C)]		*/

OP_ADD,/*	A B C	R(A) := R(B) + R/K(C)				*/
OP_SUB,/*	A B C	R(A) := R(B) - R/K(C)				*/
OP_MUL,/*	A B C	R(A) := R(B) * R/K(C)				*/
OP_DIV,/*	A B C	R(A) := R(B) / R/K(C)				*/
OP_POW,/*	A B C	R(A) := R(B) ^ R/K(C)				*/
OP_UNM,/*	A B	R(A) := -R(B)					*/
OP_NOT,/*	A B	R(A) := not R(B)				*/

OP_CONCAT,/*	A B C	R(A) := R(B).. ... ..R(C)			*/

OP_JMP,/*	sBc	PC += sBc					*/
OP_CJMP,/*	sBc	if test then PC += sBc		(see (1))	*/

OP_TESTEQ,/*	A C	test := (R(A) == R/K(C))			*/
OP_TESTNE,/*	A C	test := (R(A) ~= R/K(C))			*/
OP_TESTLT,/*	A C	test := (R(A) < R/K(C))				*/
OP_TESTLE,/*	A C	test := (R(A) <= R/K(C))			*/
OP_TESTGT,/*	A C	test := (R(A) > R/K(C))				*/
OP_TESTGE,/*	A C	test := (R(A) >= R/K(C))			*/

OP_TESTT,/*	A B	test := R(B); if (test) R(A) := R(B)		*/
OP_TESTF,/*	A B	test := not R(B); if (test) R(A) := nil		*/

OP_NILJMP,/*	A	R(A) := nil; PC++;				*/

OP_CALL,/*	A B C	R(A), ... ,R(A+C-1) := R(A)(R(A+1), ... ,R(A+B))*/
OP_RETURN,/*	A B	return R(A), ... ,R(A+B-1)	(see (3))	*/

OP_FORPREP,/*	A sBc							*/
OP_FORLOOP,/*	A sBc							*/

OP_TFORPREP,/*	A sBc							*/
OP_TFORLOOP,/*	A sBc							*/

OP_SETLIST,/*	A Bc	R(A)[Bc-Bc%FPF+i] := R(A+i), 1 <= i <= Bc%FPF+1	*/
OP_SETLISTO,/*	A Bc							*/

OP_CLOSURE /*	A Bc	R(A) := closure(KPROTO[Bc], R(A), ... ,R(A+n))	*/
} OpCode;


#define NUM_OPCODES	((int)OP_CLOSURE+1)



/*===========================================================================
  Notes:
  (1) In the current implementation there is no `test' variable;
      instructions OP_TEST* and OP_CJMP must always occur together.

  (2) In OP_CALL, if (B == NO_REG) then B = top. C is the number of returns,
      and can be NO_REG. OP_CALL can set `top' to last_result+1, so
      next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.

  (3) In OP_RETURN, if (B == NO_REG) then return up to `top'
===========================================================================*/


#endif