/* ** LuaJIT VM builder. ** Copyright (C) 2005-2022 Mike Pall. See Copyright Notice in luajit.h ** ** This is a tool to build the hand-tuned assembler code required for ** LuaJIT's bytecode interpreter. It supports a variety of output formats ** to feed different toolchains (see usage() below). ** ** This tool is not particularly optimized because it's only used while ** _building_ LuaJIT. There's no point in distributing or installing it. ** Only the object code generated by this tool is linked into LuaJIT. ** ** Caveat: some memory is not free'd, error handling is lazy. ** It's a one-shot tool -- any effort fixing this would be wasted. */ #include "buildvm.h" #include "lj_obj.h" #include "lj_gc.h" #include "lj_bc.h" #include "lj_ir.h" #include "lj_ircall.h" #include "lj_frame.h" #include "lj_dispatch.h" #if LJ_HASFFI #include "lj_ctype.h" #include "lj_ccall.h" #endif #include "luajit.h" #if defined(_WIN32) #include #include #endif /* ------------------------------------------------------------------------ */ /* DynASM glue definitions. */ #define Dst ctx #define Dst_DECL BuildCtx *ctx #define Dst_REF (ctx->D) #define DASM_CHECKS 1 #include "../dynasm/dasm_proto.h" /* Glue macros for DynASM. */ static int collect_reloc(BuildCtx *ctx, uint8_t *addr, int idx, int type); #define DASM_EXTERN(ctx, addr, idx, type) \ collect_reloc(ctx, addr, idx, type) /* ------------------------------------------------------------------------ */ /* Avoid trouble if cross-compiling for an x86 target. Speed doesn't matter. */ #define DASM_ALIGNED_WRITES 1 /* Embed architecture-specific DynASM encoder. */ #if LJ_TARGET_X86ORX64 #include "../dynasm/dasm_x86.h" #elif LJ_TARGET_ARM #include "../dynasm/dasm_arm.h" #elif LJ_TARGET_PPC #include "../dynasm/dasm_ppc.h" #elif LJ_TARGET_PPCSPE #include "../dynasm/dasm_ppc.h" #elif LJ_TARGET_MIPS #include "../dynasm/dasm_mips.h" #else #error "No support for this architecture (yet)" #endif /* Embed generated architecture-specific backend. */ #include "buildvm_arch.h" /* ------------------------------------------------------------------------ */ void owrite(BuildCtx *ctx, const void *ptr, size_t sz) { if (fwrite(ptr, 1, sz, ctx->fp) != sz) { fprintf(stderr, "Error: cannot write to output file: %s\n", strerror(errno)); exit(1); } } /* ------------------------------------------------------------------------ */ /* Emit code as raw bytes. Only used for DynASM debugging. */ static void emit_raw(BuildCtx *ctx) { owrite(ctx, ctx->code, ctx->codesz); } /* -- Build machine code -------------------------------------------------- */ static const char *sym_decorate(BuildCtx *ctx, const char *prefix, const char *suffix) { char name[256]; char *p; #if LJ_64 const char *symprefix = ctx->mode == BUILD_machasm ? "_" : ""; #elif LJ_TARGET_XBOX360 const char *symprefix = ""; #else const char *symprefix = ctx->mode != BUILD_elfasm ? "_" : ""; #endif sprintf(name, "%s%s%s", symprefix, prefix, suffix); p = strchr(name, '@'); if (p) { #if LJ_TARGET_X86ORX64 if (!LJ_64 && (ctx->mode == BUILD_coffasm || ctx->mode == BUILD_peobj)) name[0] = '@'; else *p = '\0'; #elif (LJ_TARGET_PPC || LJ_TARGET_PPCSPE) && !LJ_TARGET_CONSOLE /* Keep @plt. */ #else *p = '\0'; #endif } p = (char *)malloc(strlen(name)+1); /* MSVC doesn't like strdup. */ strcpy(p, name); return p; } #define NRELOCSYM (sizeof(extnames)/sizeof(extnames[0])-1) static int relocmap[NRELOCSYM]; /* Collect external relocations. */ static int collect_reloc(BuildCtx *ctx, uint8_t *addr, int idx, int type) { if (ctx->nreloc >= BUILD_MAX_RELOC) { fprintf(stderr, "Error: too many relocations, increase BUILD_MAX_RELOC.\n"); exit(1); } if (relocmap[idx] < 0) { relocmap[idx] = ctx->nrelocsym; ctx->relocsym[ctx->nrelocsym] = sym_decorate(ctx, "", extnames[idx]); ctx->nrelocsym++; } ctx->reloc[ctx->nreloc].ofs = (int32_t)(addr - ctx->code); ctx->reloc[ctx->nreloc].sym = relocmap[idx]; ctx->reloc[ctx->nreloc].type = type; ctx->nreloc++; #if LJ_TARGET_XBOX360 return (int)(ctx->code - addr) + 4; /* Encode symbol offset of .text. */ #else return 0; /* Encode symbol offset of 0. */ #endif } /* Naive insertion sort. Performance doesn't matter here. */ static void sym_insert(BuildCtx *ctx, int32_t ofs, const char *prefix, const char *suffix) { ptrdiff_t i = ctx->nsym++; while (i > 0) { if (ctx->sym[i-1].ofs <= ofs) break; ctx->sym[i] = ctx->sym[i-1]; i--; } ctx->sym[i].ofs = ofs; ctx->sym[i].name = sym_decorate(ctx, prefix, suffix); } /* Build the machine code. */ static int build_code(BuildCtx *ctx) { int status; int i; /* Initialize DynASM structures. */ ctx->nglob = GLOB__MAX; ctx->glob = (void **)malloc(ctx->nglob*sizeof(void *)); memset(ctx->glob, 0, ctx->nglob*sizeof(void *)); ctx->nreloc = 0; ctx->globnames = globnames; ctx->relocsym = (const char **)malloc(NRELOCSYM*sizeof(const char *)); ctx->nrelocsym = 0; for (i = 0; i < (int)NRELOCSYM; i++) relocmap[i] = -1; ctx->dasm_ident = DASM_IDENT; ctx->dasm_arch = DASM_ARCH; dasm_init(Dst, DASM_MAXSECTION); dasm_setupglobal(Dst, ctx->glob, ctx->nglob); dasm_setup(Dst, build_actionlist); /* Call arch-specific backend to emit the code. */ ctx->npc = build_backend(ctx); /* Finalize the code. */ (void)dasm_checkstep(Dst, -1); if ((status = dasm_link(Dst, &ctx->codesz))) return status; ctx->code = (uint8_t *)malloc(ctx->codesz); if ((status = dasm_encode(Dst, (void *)ctx->code))) return status; /* Allocate symbol table and bytecode offsets. */ ctx->beginsym = sym_decorate(ctx, "", LABEL_PREFIX "vm_asm_begin"); ctx->sym = (BuildSym *)malloc((ctx->npc+ctx->nglob+1)*sizeof(BuildSym)); ctx->nsym = 0; ctx->bc_ofs = (int32_t *)malloc(ctx->npc*sizeof(int32_t)); /* Collect the opcodes (PC labels). */ for (i = 0; i < ctx->npc; i++) { int32_t ofs = dasm_getpclabel(Dst, i); if (ofs < 0) return 0x22000000|i; ctx->bc_ofs[i] = ofs; if ((LJ_HASJIT || !(i == BC_JFORI || i == BC_JFORL || i == BC_JITERL || i == BC_JLOOP || i == BC_IFORL || i == BC_IITERL || i == BC_ILOOP)) && (LJ_HASFFI || i != BC_KCDATA)) sym_insert(ctx, ofs, LABEL_PREFIX_BC, bc_names[i]); } /* Collect the globals (named labels). */ for (i = 0; i < ctx->nglob; i++) { const char *gl = globnames[i]; int len = (int)strlen(gl); if (!ctx->glob[i]) { fprintf(stderr, "Error: undefined global %s\n", gl); exit(2); } /* Skip the _Z symbols. */ if (!(len >= 2 && gl[len-2] == '_' && gl[len-1] == 'Z')) sym_insert(ctx, (int32_t)((uint8_t *)(ctx->glob[i]) - ctx->code), LABEL_PREFIX, globnames[i]); } /* Close the address range. */ sym_insert(ctx, (int32_t)ctx->codesz, "", ""); ctx->nsym--; dasm_free(Dst); return 0; } /* -- Generate VM enums --------------------------------------------------- */ const char *const bc_names[] = { #define BCNAME(name, ma, mb, mc, mt) #name, BCDEF(BCNAME) #undef BCNAME NULL }; const char *const ir_names[] = { #define IRNAME(name, m, m1, m2) #name, IRDEF(IRNAME) #undef IRNAME NULL }; const char *const irt_names[] = { #define IRTNAME(name, size) #name, IRTDEF(IRTNAME) #undef IRTNAME NULL }; const char *const irfpm_names[] = { #define FPMNAME(name) #name, IRFPMDEF(FPMNAME) #undef FPMNAME NULL }; const char *const irfield_names[] = { #define FLNAME(name, ofs) #name, IRFLDEF(FLNAME) #undef FLNAME NULL }; const char *const ircall_names[] = { #define IRCALLNAME(cond, name, nargs, kind, type, flags) #name, IRCALLDEF(IRCALLNAME) #undef IRCALLNAME NULL }; static const char *const trace_errors[] = { #define TREDEF(name, msg) msg, #include "lj_traceerr.h" NULL }; static const char *lower(char *buf, const char *s) { char *p = buf; while (*s) { *p++ = (*s >= 'A' && *s <= 'Z') ? *s+0x20 : *s; s++; } *p = '\0'; return buf; } /* Emit C source code for bytecode-related definitions. */ static void emit_bcdef(BuildCtx *ctx) { int i; fprintf(ctx->fp, "/* This is a generated file. DO NOT EDIT! */\n\n"); fprintf(ctx->fp, "LJ_DATADEF const uint16_t lj_bc_ofs[] = {\n"); for (i = 0; i < ctx->npc; i++) { if (i != 0) fprintf(ctx->fp, ",\n"); fprintf(ctx->fp, "%d", ctx->bc_ofs[i]); } } /* Emit VM definitions as Lua code for debug modules. */ static void emit_vmdef(BuildCtx *ctx) { char buf[80]; int i; fprintf(ctx->fp, "-- This is a generated file. DO NOT EDIT!\n\n"); fprintf(ctx->fp, "module(...)\n\n"); fprintf(ctx->fp, "bcnames = \""); for (i = 0; bc_names[i]; i++) fprintf(ctx->fp, "%-6s", bc_names[i]); fprintf(ctx->fp, "\"\n\n"); fprintf(ctx->fp, "irnames = \""); for (i = 0; ir_names[i]; i++) fprintf(ctx->fp, "%-6s", ir_names[i]); fprintf(ctx->fp, "\"\n\n"); fprintf(ctx->fp, "irfpm = { [0]="); for (i = 0; irfpm_names[i]; i++) fprintf(ctx->fp, "\"%s\", ", lower(buf, irfpm_names[i])); fprintf(ctx->fp, "}\n\n"); fprintf(ctx->fp, "irfield = { [0]="); for (i = 0; irfield_names[i]; i++) { char *p; lower(buf, irfield_names[i]); p = strchr(buf, '_'); if (p) *p = '.'; fprintf(ctx->fp, "\"%s\", ", buf); } fprintf(ctx->fp, "}\n\n"); fprintf(ctx->fp, "ircall = {\n[0]="); for (i = 0; ircall_names[i]; i++) fprintf(ctx->fp, "\"%s\",\n", ircall_names[i]); fprintf(ctx->fp, "}\n\n"); fprintf(ctx->fp, "traceerr = {\n[0]="); for (i = 0; trace_errors[i]; i++) fprintf(ctx->fp, "\"%s\",\n", trace_errors[i]); fprintf(ctx->fp, "}\n\n"); } /* -- Argument parsing ---------------------------------------------------- */ /* Build mode names. */ static const char *const modenames[] = { #define BUILDNAME(name) #name, BUILDDEF(BUILDNAME) #undef BUILDNAME NULL }; /* Print usage information and exit. */ static void usage(void) { int i; fprintf(stderr, LUAJIT_VERSION " VM builder.\n"); fprintf(stderr, LUAJIT_COPYRIGHT ", " LUAJIT_URL "\n"); fprintf(stderr, "Target architecture: " LJ_ARCH_NAME "\n\n"); fprintf(stderr, "Usage: buildvm -m mode [-o outfile] [infiles...]\n\n"); fprintf(stderr, "Available modes:\n"); for (i = 0; i < BUILD__MAX; i++) fprintf(stderr, " %s\n", modenames[i]); exit(1); } /* Parse the output mode name. */ static BuildMode parsemode(const char *mode) { int i; for (i = 0; modenames[i]; i++) if (!strcmp(mode, modenames[i])) return (BuildMode)i; usage(); return (BuildMode)-1; } /* Parse arguments. */ static void parseargs(BuildCtx *ctx, char **argv) { const char *a; int i; ctx->mode = (BuildMode)-1; ctx->outname = "-"; for (i = 1; (a = argv[i]) != NULL; i++) { if (a[0] != '-') break; switch (a[1]) { case '-': if (a[2]) goto err; i++; goto ok; case '\0': goto ok; case 'm': i++; if (a[2] || argv[i] == NULL) goto err; ctx->mode = parsemode(argv[i]); break; case 'o': i++; if (a[2] || argv[i] == NULL) goto err; ctx->outname = argv[i]; break; default: err: usage(); break; } } ok: ctx->args = argv+i; if (ctx->mode == (BuildMode)-1) goto err; } int main(int argc, char **argv) { BuildCtx ctx_; BuildCtx *ctx = &ctx_; int status, binmode; if (sizeof(void *) != 4*LJ_32+8*LJ_64) { fprintf(stderr,"Error: pointer size mismatch in cross-build.\n"); fprintf(stderr,"Try: make HOST_CC=\"gcc -m32\" CROSS=...\n\n"); return 1; } UNUSED(argc); parseargs(ctx, argv); if ((status = build_code(ctx))) { fprintf(stderr,"Error: DASM error %08x\n", status); return 1; } switch (ctx->mode) { case BUILD_peobj: case BUILD_raw: binmode = 1; break; default: binmode = 0; break; } if (ctx->outname[0] == '-' && ctx->outname[1] == '\0') { ctx->fp = stdout; #if defined(_WIN32) if (binmode) _setmode(_fileno(stdout), _O_BINARY); /* Yuck. */ #endif } else if (!(ctx->fp = fopen(ctx->outname, binmode ? "wb" : "w"))) { fprintf(stderr, "Error: cannot open output file '%s': %s\n", ctx->outname, strerror(errno)); exit(1); } switch (ctx->mode) { case BUILD_elfasm: case BUILD_coffasm: case BUILD_machasm: emit_asm(ctx); emit_asm_debug(ctx); break; case BUILD_peobj: emit_peobj(ctx); break; case BUILD_raw: emit_raw(ctx); break; case BUILD_bcdef: emit_bcdef(ctx); emit_lib(ctx); break; case BUILD_vmdef: emit_vmdef(ctx); emit_lib(ctx); break; case BUILD_ffdef: case BUILD_libdef: case BUILD_recdef: emit_lib(ctx); break; case BUILD_folddef: emit_fold(ctx); break; default: break; } fflush(ctx->fp); if (ferror(ctx->fp)) { fprintf(stderr, "Error: cannot write to output file: %s\n", strerror(errno)); exit(1); } fclose(ctx->fp); return 0; }