/* ** MIPS IR assembler (SSA IR -> machine code). ** Copyright (C) 2005-2022 Mike Pall. See Copyright Notice in luajit.h */ /* -- Register allocator extensions --------------------------------------- */ /* Allocate a register with a hint. */ static Reg ra_hintalloc(ASMState *as, IRRef ref, Reg hint, RegSet allow) { Reg r = IR(ref)->r; if (ra_noreg(r)) { if (!ra_hashint(r) && !iscrossref(as, ref)) ra_sethint(IR(ref)->r, hint); /* Propagate register hint. */ r = ra_allocref(as, ref, allow); } ra_noweak(as, r); return r; } /* Allocate a register or RID_ZERO. */ static Reg ra_alloc1z(ASMState *as, IRRef ref, RegSet allow) { Reg r = IR(ref)->r; if (ra_noreg(r)) { if (!(allow & RSET_FPR) && irref_isk(ref) && IR(ref)->i == 0) return RID_ZERO; r = ra_allocref(as, ref, allow); } else { ra_noweak(as, r); } return r; } /* Allocate two source registers for three-operand instructions. */ static Reg ra_alloc2(ASMState *as, IRIns *ir, RegSet allow) { IRIns *irl = IR(ir->op1), *irr = IR(ir->op2); Reg left = irl->r, right = irr->r; if (ra_hasreg(left)) { ra_noweak(as, left); if (ra_noreg(right)) right = ra_alloc1z(as, ir->op2, rset_exclude(allow, left)); else ra_noweak(as, right); } else if (ra_hasreg(right)) { ra_noweak(as, right); left = ra_alloc1z(as, ir->op1, rset_exclude(allow, right)); } else if (ra_hashint(right)) { right = ra_alloc1z(as, ir->op2, allow); left = ra_alloc1z(as, ir->op1, rset_exclude(allow, right)); } else { left = ra_alloc1z(as, ir->op1, allow); right = ra_alloc1z(as, ir->op2, rset_exclude(allow, left)); } return left | (right << 8); } /* -- Guard handling ------------------------------------------------------ */ /* Need some spare long-range jump slots, for out-of-range branches. */ #define MIPS_SPAREJUMP 4 /* Setup spare long-range jump slots per mcarea. */ static void asm_sparejump_setup(ASMState *as) { MCode *mxp = as->mcbot; if (((uintptr_t)mxp & (LJ_PAGESIZE-1)) == sizeof(MCLink)) { lua_assert(MIPSI_NOP == 0); memset(mxp, 0, MIPS_SPAREJUMP*2*sizeof(MCode)); mxp += MIPS_SPAREJUMP*2; lua_assert(mxp < as->mctop); lj_mcode_sync(as->mcbot, mxp); lj_mcode_commitbot(as->J, mxp); as->mcbot = mxp; as->mclim = as->mcbot + MCLIM_REDZONE; } } /* Setup exit stub after the end of each trace. */ static void asm_exitstub_setup(ASMState *as) { MCode *mxp = as->mctop; /* sw TMP, 0(sp); j ->vm_exit_handler; li TMP, traceno */ *--mxp = MIPSI_LI|MIPSF_T(RID_TMP)|as->T->traceno; *--mxp = MIPSI_J|((((uintptr_t)(void *)lj_vm_exit_handler)>>2)&0x03ffffffu); lua_assert(((uintptr_t)mxp ^ (uintptr_t)(void *)lj_vm_exit_handler)>>28 == 0); *--mxp = MIPSI_SW|MIPSF_T(RID_TMP)|MIPSF_S(RID_SP)|0; as->mctop = mxp; } /* Keep this in-sync with exitstub_trace_addr(). */ #define asm_exitstub_addr(as) ((as)->mctop) /* Emit conditional branch to exit for guard. */ static void asm_guard(ASMState *as, MIPSIns mi, Reg rs, Reg rt) { MCode *target = asm_exitstub_addr(as); MCode *p = as->mcp; if (LJ_UNLIKELY(p == as->invmcp)) { as->invmcp = NULL; as->loopinv = 1; as->mcp = p+1; mi = mi ^ ((mi>>28) == 1 ? 0x04000000u : 0x00010000u); /* Invert cond. */ target = p; /* Patch target later in asm_loop_fixup. */ } emit_ti(as, MIPSI_LI, RID_TMP, as->snapno); emit_branch(as, mi, rs, rt, target); } /* -- Operand fusion ------------------------------------------------------ */ /* Limit linear search to this distance. Avoids O(n^2) behavior. */ #define CONFLICT_SEARCH_LIM 31 /* Check if there's no conflicting instruction between curins and ref. */ static int noconflict(ASMState *as, IRRef ref, IROp conflict) { IRIns *ir = as->ir; IRRef i = as->curins; if (i > ref + CONFLICT_SEARCH_LIM) return 0; /* Give up, ref is too far away. */ while (--i > ref) if (ir[i].o == conflict) return 0; /* Conflict found. */ return 1; /* Ok, no conflict. */ } /* Fuse the array base of colocated arrays. */ static int32_t asm_fuseabase(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (ir->o == IR_TNEW && ir->op1 <= LJ_MAX_COLOSIZE && !neverfuse(as) && noconflict(as, ref, IR_NEWREF)) return (int32_t)sizeof(GCtab); return 0; } /* Fuse array/hash/upvalue reference into register+offset operand. */ static Reg asm_fuseahuref(ASMState *as, IRRef ref, int32_t *ofsp, RegSet allow) { IRIns *ir = IR(ref); if (ra_noreg(ir->r)) { if (ir->o == IR_AREF) { if (mayfuse(as, ref)) { if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; ofs += 8*IR(ir->op2)->i; if (checki16(ofs)) { *ofsp = ofs; return ra_alloc1(as, refa, allow); } } } } else if (ir->o == IR_HREFK) { if (mayfuse(as, ref)) { int32_t ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node)); if (checki16(ofs)) { *ofsp = ofs; return ra_alloc1(as, ir->op1, allow); } } } else if (ir->o == IR_UREFC) { if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); int32_t ofs = i32ptr(&gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.tv); int32_t jgl = (intptr_t)J2G(as->J); if ((uint32_t)(ofs-jgl) < 65536) { *ofsp = ofs-jgl-32768; return RID_JGL; } else { *ofsp = (int16_t)ofs; return ra_allock(as, ofs-(int16_t)ofs, allow); } } } } *ofsp = 0; return ra_alloc1(as, ref, allow); } /* Fuse XLOAD/XSTORE reference into load/store operand. */ static void asm_fusexref(ASMState *as, MIPSIns mi, Reg rt, IRRef ref, RegSet allow, int32_t ofs) { IRIns *ir = IR(ref); Reg base; if (ra_noreg(ir->r) && canfuse(as, ir)) { if (ir->o == IR_ADD) { int32_t ofs2; if (irref_isk(ir->op2) && (ofs2 = ofs + IR(ir->op2)->i, checki16(ofs2))) { ref = ir->op1; ofs = ofs2; } } else if (ir->o == IR_STRREF) { int32_t ofs2 = 65536; lua_assert(ofs == 0); ofs = (int32_t)sizeof(GCstr); if (irref_isk(ir->op2)) { ofs2 = ofs + IR(ir->op2)->i; ref = ir->op1; } else if (irref_isk(ir->op1)) { ofs2 = ofs + IR(ir->op1)->i; ref = ir->op2; } if (!checki16(ofs2)) { /* NYI: Fuse ADD with constant. */ Reg right, left = ra_alloc2(as, ir, allow); right = (left >> 8); left &= 255; emit_hsi(as, mi, rt, RID_TMP, ofs); emit_dst(as, MIPSI_ADDU, RID_TMP, left, right); return; } ofs = ofs2; } } base = ra_alloc1(as, ref, allow); emit_hsi(as, mi, rt, base, ofs); } /* -- Calls --------------------------------------------------------------- */ /* Generate a call to a C function. */ static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args) { uint32_t n, nargs = CCI_NARGS(ci); int32_t ofs = 16; Reg gpr, fpr = REGARG_FIRSTFPR; if ((void *)ci->func) emit_call(as, (void *)ci->func); for (gpr = REGARG_FIRSTGPR; gpr <= REGARG_LASTGPR; gpr++) as->cost[gpr] = REGCOST(~0u, ASMREF_L); gpr = REGARG_FIRSTGPR; for (n = 0; n < nargs; n++) { /* Setup args. */ IRRef ref = args[n]; if (ref) { IRIns *ir = IR(ref); if (irt_isfp(ir->t) && fpr <= REGARG_LASTFPR && !(ci->flags & CCI_VARARG)) { lua_assert(rset_test(as->freeset, fpr)); /* Already evicted. */ ra_leftov(as, fpr, ref); fpr += 2; gpr += irt_isnum(ir->t) ? 2 : 1; } else { fpr = REGARG_LASTFPR+1; if (irt_isnum(ir->t)) gpr = (gpr+1) & ~1; if (gpr <= REGARG_LASTGPR) { lua_assert(rset_test(as->freeset, gpr)); /* Already evicted. */ if (irt_isfp(ir->t)) { RegSet of = as->freeset; Reg r; /* Workaround to protect argument GPRs from being used for remat. */ as->freeset &= ~RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1); r = ra_alloc1(as, ref, RSET_FPR); as->freeset |= (of & RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1)); if (irt_isnum(ir->t)) { emit_tg(as, MIPSI_MFC1, gpr+(LJ_BE?0:1), r+1); emit_tg(as, MIPSI_MFC1, gpr+(LJ_BE?1:0), r); lua_assert(rset_test(as->freeset, gpr+1)); /* Already evicted. */ gpr += 2; } else if (irt_isfloat(ir->t)) { emit_tg(as, MIPSI_MFC1, gpr, r); gpr++; } } else { ra_leftov(as, gpr, ref); gpr++; } } else { Reg r = ra_alloc1z(as, ref, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); if (irt_isnum(ir->t)) ofs = (ofs + 4) & ~4; emit_spstore(as, ir, r, ofs); ofs += irt_isnum(ir->t) ? 8 : 4; } } } else { fpr = REGARG_LASTFPR+1; if (gpr <= REGARG_LASTGPR) gpr++; else ofs += 4; } checkmclim(as); } } /* Setup result reg/sp for call. Evict scratch regs. */ static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci) { RegSet drop = RSET_SCRATCH; int hiop = ((ir+1)->o == IR_HIOP && !irt_isnil((ir+1)->t)); if ((ci->flags & CCI_NOFPRCLOBBER)) drop &= ~RSET_FPR; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ if (hiop && ra_hasreg((ir+1)->r)) rset_clear(drop, (ir+1)->r); /* Dest reg handled below. */ ra_evictset(as, drop); /* Evictions must be performed first. */ if (ra_used(ir)) { lua_assert(!irt_ispri(ir->t)); if (irt_isfp(ir->t)) { if ((ci->flags & CCI_CASTU64)) { int32_t ofs = sps_scale(ir->s); Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_tg(as, MIPSI_MTC1, RID_RETHI, dest+1); emit_tg(as, MIPSI_MTC1, RID_RETLO, dest); } if (ofs) { emit_tsi(as, MIPSI_SW, RID_RETLO, RID_SP, ofs+(LJ_BE?4:0)); emit_tsi(as, MIPSI_SW, RID_RETHI, RID_SP, ofs+(LJ_BE?0:4)); } } else { ra_destreg(as, ir, RID_FPRET); } } else if (hiop) { ra_destpair(as, ir); } else { ra_destreg(as, ir, RID_RET); } } } static void asm_call(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX]; const CCallInfo *ci = &lj_ir_callinfo[ir->op2]; asm_collectargs(as, ir, ci, args); asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } static void asm_callx(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX*2]; CCallInfo ci; IRRef func; IRIns *irf; ci.flags = asm_callx_flags(as, ir); asm_collectargs(as, ir, &ci, args); asm_setupresult(as, ir, &ci); func = ir->op2; irf = IR(func); if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); } if (irref_isk(func)) { /* Call to constant address. */ ci.func = (ASMFunction)(void *)(irf->i); } else { /* Need specific register for indirect calls. */ Reg r = ra_alloc1(as, func, RID2RSET(RID_CFUNCADDR)); MCode *p = as->mcp; if (r == RID_CFUNCADDR) *--p = MIPSI_NOP; else *--p = MIPSI_MOVE | MIPSF_D(RID_CFUNCADDR) | MIPSF_S(r); *--p = MIPSI_JALR | MIPSF_S(r); as->mcp = p; ci.func = (ASMFunction)(void *)0; } asm_gencall(as, &ci, args); } static void asm_callid(ASMState *as, IRIns *ir, IRCallID id) { const CCallInfo *ci = &lj_ir_callinfo[id]; IRRef args[2]; args[0] = ir->op1; args[1] = ir->op2; asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } static void asm_callround(ASMState *as, IRIns *ir, IRCallID id) { /* The modified regs must match with the *.dasc implementation. */ RegSet drop = RID2RSET(RID_R1)|RID2RSET(RID_R12)|RID2RSET(RID_FPRET)| RID2RSET(RID_F2)|RID2RSET(RID_F4)|RID2RSET(REGARG_FIRSTFPR); if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); ra_evictset(as, drop); ra_destreg(as, ir, RID_FPRET); emit_call(as, (void *)lj_ir_callinfo[id].func); ra_leftov(as, REGARG_FIRSTFPR, ir->op1); } /* -- Returns ------------------------------------------------------------- */ /* Return to lower frame. Guard that it goes to the right spot. */ static void asm_retf(ASMState *as, IRIns *ir) { Reg base = ra_alloc1(as, REF_BASE, RSET_GPR); void *pc = ir_kptr(IR(ir->op2)); int32_t delta = 1+bc_a(*((const BCIns *)pc - 1)); as->topslot -= (BCReg)delta; if ((int32_t)as->topslot < 0) as->topslot = 0; irt_setmark(IR(REF_BASE)->t); /* Children must not coalesce with BASE reg. */ emit_setgl(as, base, jit_base); emit_addptr(as, base, -8*delta); asm_guard(as, MIPSI_BNE, RID_TMP, ra_allock(as, i32ptr(pc), rset_exclude(RSET_GPR, base))); emit_tsi(as, MIPSI_LW, RID_TMP, base, -8); } /* -- Type conversions ---------------------------------------------------- */ static void asm_tointg(ASMState *as, IRIns *ir, Reg left) { Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); Reg dest = ra_dest(as, ir, RSET_GPR); asm_guard(as, MIPSI_BC1F, 0, 0); emit_fgh(as, MIPSI_C_EQ_D, 0, tmp, left); emit_fg(as, MIPSI_CVT_D_W, tmp, tmp); emit_tg(as, MIPSI_MFC1, dest, tmp); emit_fg(as, MIPSI_CVT_W_D, tmp, left); } static void asm_tobit(ASMState *as, IRIns *ir) { RegSet allow = RSET_FPR; Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, allow); Reg right = ra_alloc1(as, ir->op2, rset_clear(allow, left)); Reg tmp = ra_scratch(as, rset_clear(allow, right)); emit_tg(as, MIPSI_MFC1, dest, tmp); emit_fgh(as, MIPSI_ADD_D, tmp, left, right); } static void asm_conv(ASMState *as, IRIns *ir) { IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); int stfp = (st == IRT_NUM || st == IRT_FLOAT); IRRef lref = ir->op1; lua_assert(irt_type(ir->t) != st); lua_assert(!(irt_isint64(ir->t) || (st == IRT_I64 || st == IRT_U64))); /* Handled by SPLIT. */ if (irt_isfp(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); if (stfp) { /* FP to FP conversion. */ emit_fg(as, st == IRT_NUM ? MIPSI_CVT_S_D : MIPSI_CVT_D_S, dest, ra_alloc1(as, lref, RSET_FPR)); } else if (st == IRT_U32) { /* U32 to FP conversion. */ /* y = (x ^ 0x8000000) + 2147483648.0 */ Reg left = ra_alloc1(as, lref, RSET_GPR); Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, dest)); if (irt_isfloat(ir->t)) emit_fg(as, MIPSI_CVT_S_D, dest, dest); /* Must perform arithmetic with doubles to keep the precision. */ emit_fgh(as, MIPSI_ADD_D, dest, dest, tmp); emit_fg(as, MIPSI_CVT_D_W, dest, dest); emit_lsptr(as, MIPSI_LDC1, (tmp & 31), (void *)lj_ir_k64_find(as->J, U64x(41e00000,00000000)), RSET_GPR); emit_tg(as, MIPSI_MTC1, RID_TMP, dest); emit_dst(as, MIPSI_XOR, RID_TMP, RID_TMP, left); emit_ti(as, MIPSI_LUI, RID_TMP, 0x8000); } else { /* Integer to FP conversion. */ Reg left = ra_alloc1(as, lref, RSET_GPR); emit_fg(as, irt_isfloat(ir->t) ? MIPSI_CVT_S_W : MIPSI_CVT_D_W, dest, dest); emit_tg(as, MIPSI_MTC1, left, dest); } } else if (stfp) { /* FP to integer conversion. */ if (irt_isguard(ir->t)) { /* Checked conversions are only supported from number to int. */ lua_assert(irt_isint(ir->t) && st == IRT_NUM); asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR)); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, lref, RSET_FPR); Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); if (irt_isu32(ir->t)) { /* y = (int)floor(x - 2147483648.0) ^ 0x80000000 */ emit_dst(as, MIPSI_XOR, dest, dest, RID_TMP); emit_ti(as, MIPSI_LUI, RID_TMP, 0x8000); emit_tg(as, MIPSI_MFC1, dest, tmp); emit_fg(as, st == IRT_FLOAT ? MIPSI_FLOOR_W_S : MIPSI_FLOOR_W_D, tmp, tmp); emit_fgh(as, st == IRT_FLOAT ? MIPSI_SUB_S : MIPSI_SUB_D, tmp, left, tmp); if (st == IRT_FLOAT) emit_lsptr(as, MIPSI_LWC1, (tmp & 31), (void *)lj_ir_k64_find(as->J, U64x(4f000000,4f000000)), RSET_GPR); else emit_lsptr(as, MIPSI_LDC1, (tmp & 31), (void *)lj_ir_k64_find(as->J, U64x(41e00000,00000000)), RSET_GPR); } else { emit_tg(as, MIPSI_MFC1, dest, tmp); emit_fg(as, st == IRT_FLOAT ? MIPSI_TRUNC_W_S : MIPSI_TRUNC_W_D, tmp, left); } } } else { Reg dest = ra_dest(as, ir, RSET_GPR); if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */ Reg left = ra_alloc1(as, ir->op1, RSET_GPR); lua_assert(irt_isint(ir->t) || irt_isu32(ir->t)); if ((ir->op2 & IRCONV_SEXT)) { if ((as->flags & JIT_F_MIPS32R2)) { emit_dst(as, st == IRT_I8 ? MIPSI_SEB : MIPSI_SEH, dest, 0, left); } else { uint32_t shift = st == IRT_I8 ? 24 : 16; emit_dta(as, MIPSI_SRA, dest, dest, shift); emit_dta(as, MIPSI_SLL, dest, left, shift); } } else { emit_tsi(as, MIPSI_ANDI, dest, left, (int32_t)(st == IRT_U8 ? 0xff : 0xffff)); } } else { /* 32/64 bit integer conversions. */ /* Only need to handle 32/32 bit no-op (cast) on 32 bit archs. */ ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */ } } } #if LJ_HASFFI static void asm_conv64(ASMState *as, IRIns *ir) { IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK); IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH); IRCallID id; const CCallInfo *ci; IRRef args[2]; args[LJ_BE?0:1] = ir->op1; args[LJ_BE?1:0] = (ir-1)->op1; if (st == IRT_NUM || st == IRT_FLOAT) { id = IRCALL_fp64_d2l + ((st == IRT_FLOAT) ? 2 : 0) + (dt - IRT_I64); ir--; } else { id = IRCALL_fp64_l2d + ((dt == IRT_FLOAT) ? 2 : 0) + (st - IRT_I64); } ci = &lj_ir_callinfo[id]; asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } #endif static void asm_strto(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num]; IRRef args[2]; RegSet drop = RSET_SCRATCH; if (ra_hasreg(ir->r)) rset_set(drop, ir->r); /* Spill dest reg (if any). */ ra_evictset(as, drop); asm_guard(as, MIPSI_BEQ, RID_RET, RID_ZERO); /* Test return status. */ args[0] = ir->op1; /* GCstr *str */ args[1] = ASMREF_TMP1; /* TValue *n */ asm_gencall(as, ci, args); /* Store the result to the spill slot or temp slots. */ emit_tsi(as, MIPSI_ADDIU, ra_releasetmp(as, ASMREF_TMP1), RID_SP, sps_scale(ir->s)); } /* Get pointer to TValue. */ static void asm_tvptr(ASMState *as, Reg dest, IRRef ref) { IRIns *ir = IR(ref); if (irt_isnum(ir->t)) { if (irref_isk(ref)) /* Use the number constant itself as a TValue. */ ra_allockreg(as, i32ptr(ir_knum(ir)), dest); else /* Otherwise force a spill and use the spill slot. */ emit_tsi(as, MIPSI_ADDIU, dest, RID_SP, ra_spill(as, ir)); } else { /* Otherwise use g->tmptv to hold the TValue. */ RegSet allow = rset_exclude(RSET_GPR, dest); Reg type; emit_tsi(as, MIPSI_ADDIU, dest, RID_JGL, offsetof(global_State, tmptv)-32768); if (!irt_ispri(ir->t)) { Reg src = ra_alloc1(as, ref, allow); emit_setgl(as, src, tmptv.gcr); } type = ra_allock(as, irt_toitype(ir->t), allow); emit_setgl(as, type, tmptv.it); } } static void asm_tostr(ASMState *as, IRIns *ir) { IRRef args[2]; args[0] = ASMREF_L; as->gcsteps++; if (irt_isnum(IR(ir->op1)->t) || (ir+1)->o == IR_HIOP) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum]; args[1] = ASMREF_TMP1; /* const lua_Number * */ asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op1); } else { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint]; args[1] = ir->op1; /* int32_t k */ asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); } } /* -- Memory references --------------------------------------------------- */ static void asm_aref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg idx, base; if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; ofs += 8*IR(ir->op2)->i; if (checki16(ofs)) { base = ra_alloc1(as, refa, RSET_GPR); emit_tsi(as, MIPSI_ADDIU, dest, base, ofs); return; } } base = ra_alloc1(as, ir->op1, RSET_GPR); idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base)); emit_dst(as, MIPSI_ADDU, dest, RID_TMP, base); emit_dta(as, MIPSI_SLL, RID_TMP, idx, 3); } /* Inlined hash lookup. Specialized for key type and for const keys. ** The equivalent C code is: ** Node *n = hashkey(t, key); ** do { ** if (lj_obj_equal(&n->key, key)) return &n->val; ** } while ((n = nextnode(n))); ** return niltv(L); */ static void asm_href(ASMState *as, IRIns *ir) { RegSet allow = RSET_GPR; int destused = ra_used(ir); Reg dest = ra_dest(as, ir, allow); Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest)); Reg key = RID_NONE, type = RID_NONE, tmpnum = RID_NONE, tmp1 = RID_TMP, tmp2; IRRef refkey = ir->op2; IRIns *irkey = IR(refkey); IRType1 kt = irkey->t; uint32_t khash; MCLabel l_end, l_loop, l_next; rset_clear(allow, tab); if (irt_isnum(kt)) { key = ra_alloc1(as, refkey, RSET_FPR); tmpnum = ra_scratch(as, rset_exclude(RSET_FPR, key)); } else { if (!irt_ispri(kt)) { key = ra_alloc1(as, refkey, allow); rset_clear(allow, key); } type = ra_allock(as, irt_toitype(irkey->t), allow); rset_clear(allow, type); } tmp2 = ra_scratch(as, allow); rset_clear(allow, tmp2); /* Key not found in chain: load niltv. */ l_end = emit_label(as); if (destused) emit_loada(as, dest, niltvg(J2G(as->J))); else *--as->mcp = MIPSI_NOP; /* Follow hash chain until the end. */ emit_move(as, dest, tmp1); l_loop = --as->mcp; emit_tsi(as, MIPSI_LW, tmp1, dest, (int32_t)offsetof(Node, next)); l_next = emit_label(as); /* Type and value comparison. */ if (irt_isnum(kt)) { emit_branch(as, MIPSI_BC1T, 0, 0, l_end); emit_fgh(as, MIPSI_C_EQ_D, 0, tmpnum, key); emit_tg(as, MIPSI_MFC1, tmp1, key+1); emit_branch(as, MIPSI_BEQ, tmp1, RID_ZERO, l_next); emit_tsi(as, MIPSI_SLTIU, tmp1, tmp1, (int32_t)LJ_TISNUM); emit_hsi(as, MIPSI_LDC1, tmpnum, dest, (int32_t)offsetof(Node, key.n)); } else { if (irt_ispri(kt)) { emit_branch(as, MIPSI_BEQ, tmp1, type, l_end); } else { emit_branch(as, MIPSI_BEQ, tmp2, key, l_end); emit_tsi(as, MIPSI_LW, tmp2, dest, (int32_t)offsetof(Node, key.gcr)); emit_branch(as, MIPSI_BNE, tmp1, type, l_next); } } emit_tsi(as, MIPSI_LW, tmp1, dest, (int32_t)offsetof(Node, key.it)); *l_loop = MIPSI_BNE | MIPSF_S(tmp1) | ((as->mcp-l_loop-1) & 0xffffu); /* Load main position relative to tab->node into dest. */ khash = irref_isk(refkey) ? ir_khash(irkey) : 1; if (khash == 0) { emit_tsi(as, MIPSI_LW, dest, tab, (int32_t)offsetof(GCtab, node)); } else { Reg tmphash = tmp1; if (irref_isk(refkey)) tmphash = ra_allock(as, khash, allow); emit_dst(as, MIPSI_ADDU, dest, dest, tmp1); lua_assert(sizeof(Node) == 24); emit_dst(as, MIPSI_SUBU, tmp1, tmp2, tmp1); emit_dta(as, MIPSI_SLL, tmp1, tmp1, 3); emit_dta(as, MIPSI_SLL, tmp2, tmp1, 5); emit_dst(as, MIPSI_AND, tmp1, tmp2, tmphash); emit_tsi(as, MIPSI_LW, dest, tab, (int32_t)offsetof(GCtab, node)); emit_tsi(as, MIPSI_LW, tmp2, tab, (int32_t)offsetof(GCtab, hmask)); if (irref_isk(refkey)) { /* Nothing to do. */ } else if (irt_isstr(kt)) { emit_tsi(as, MIPSI_LW, tmp1, key, (int32_t)offsetof(GCstr, hash)); } else { /* Must match with hash*() in lj_tab.c. */ emit_dst(as, MIPSI_SUBU, tmp1, tmp1, tmp2); emit_rotr(as, tmp2, tmp2, dest, (-HASH_ROT3)&31); emit_dst(as, MIPSI_XOR, tmp1, tmp1, tmp2); emit_rotr(as, tmp1, tmp1, dest, (-HASH_ROT2-HASH_ROT1)&31); emit_dst(as, MIPSI_SUBU, tmp2, tmp2, dest); if (irt_isnum(kt)) { emit_dst(as, MIPSI_XOR, tmp2, tmp2, tmp1); if ((as->flags & JIT_F_MIPS32R2)) { emit_dta(as, MIPSI_ROTR, dest, tmp1, (-HASH_ROT1)&31); } else { emit_dst(as, MIPSI_OR, dest, dest, tmp1); emit_dta(as, MIPSI_SLL, tmp1, tmp1, HASH_ROT1); emit_dta(as, MIPSI_SRL, dest, tmp1, (-HASH_ROT1)&31); } emit_dst(as, MIPSI_ADDU, tmp1, tmp1, tmp1); emit_tg(as, MIPSI_MFC1, tmp2, key); emit_tg(as, MIPSI_MFC1, tmp1, key+1); } else { emit_dst(as, MIPSI_XOR, tmp2, key, tmp1); emit_rotr(as, dest, tmp1, tmp2, (-HASH_ROT1)&31); emit_dst(as, MIPSI_ADDU, tmp1, key, ra_allock(as, HASH_BIAS, allow)); } } } } static void asm_hrefk(ASMState *as, IRIns *ir) { IRIns *kslot = IR(ir->op2); IRIns *irkey = IR(kslot->op1); int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node)); int32_t kofs = ofs + (int32_t)offsetof(Node, key); Reg dest = (ra_used(ir)||ofs > 32736) ? ra_dest(as, ir, RSET_GPR) : RID_NONE; Reg node = ra_alloc1(as, ir->op1, RSET_GPR); Reg key = RID_NONE, type = RID_TMP, idx = node; RegSet allow = rset_exclude(RSET_GPR, node); int32_t lo, hi; lua_assert(ofs % sizeof(Node) == 0); if (ofs > 32736) { idx = dest; rset_clear(allow, dest); kofs = (int32_t)offsetof(Node, key); } else if (ra_hasreg(dest)) { emit_tsi(as, MIPSI_ADDIU, dest, node, ofs); } if (!irt_ispri(irkey->t)) { key = ra_scratch(as, allow); rset_clear(allow, key); } if (irt_isnum(irkey->t)) { lo = (int32_t)ir_knum(irkey)->u32.lo; hi = (int32_t)ir_knum(irkey)->u32.hi; } else { lo = irkey->i; hi = irt_toitype(irkey->t); if (!ra_hasreg(key)) goto nolo; } asm_guard(as, MIPSI_BNE, key, lo ? ra_allock(as, lo, allow) : RID_ZERO); nolo: asm_guard(as, MIPSI_BNE, type, hi ? ra_allock(as, hi, allow) : RID_ZERO); if (ra_hasreg(key)) emit_tsi(as, MIPSI_LW, key, idx, kofs+(LJ_BE?4:0)); emit_tsi(as, MIPSI_LW, type, idx, kofs+(LJ_BE?0:4)); if (ofs > 32736) emit_tsi(as, MIPSI_ADDU, dest, node, ra_allock(as, ofs, allow)); } static void asm_newref(ASMState *as, IRIns *ir) { if (ir->r != RID_SINK) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey]; IRRef args[3]; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* GCtab *t */ args[2] = ASMREF_TMP1; /* cTValue *key */ asm_setupresult(as, ir, ci); /* TValue * */ asm_gencall(as, ci, args); asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op2); } } static void asm_uref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v; emit_lsptr(as, MIPSI_LW, dest, v, RSET_GPR); } else { Reg uv = ra_scratch(as, RSET_GPR); Reg func = ra_alloc1(as, ir->op1, RSET_GPR); if (ir->o == IR_UREFC) { asm_guard(as, MIPSI_BEQ, RID_TMP, RID_ZERO); emit_tsi(as, MIPSI_ADDIU, dest, uv, (int32_t)offsetof(GCupval, tv)); emit_tsi(as, MIPSI_LBU, RID_TMP, uv, (int32_t)offsetof(GCupval, closed)); } else { emit_tsi(as, MIPSI_LW, dest, uv, (int32_t)offsetof(GCupval, v)); } emit_tsi(as, MIPSI_LW, uv, func, (int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8)); } } static void asm_fref(ASMState *as, IRIns *ir) { UNUSED(as); UNUSED(ir); lua_assert(!ra_used(ir)); } static void asm_strref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); IRRef ref = ir->op2, refk = ir->op1; int32_t ofs = (int32_t)sizeof(GCstr); Reg r; if (irref_isk(ref)) { IRRef tmp = refk; refk = ref; ref = tmp; } else if (!irref_isk(refk)) { Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR); IRIns *irr = IR(ir->op2); if (ra_hasreg(irr->r)) { ra_noweak(as, irr->r); right = irr->r; } else if (mayfuse(as, irr->op2) && irr->o == IR_ADD && irref_isk(irr->op2) && checki16(ofs + IR(irr->op2)->i)) { ofs += IR(irr->op2)->i; right = ra_alloc1(as, irr->op1, rset_exclude(RSET_GPR, left)); } else { right = ra_allocref(as, ir->op2, rset_exclude(RSET_GPR, left)); } emit_tsi(as, MIPSI_ADDIU, dest, dest, ofs); emit_dst(as, MIPSI_ADDU, dest, left, right); return; } r = ra_alloc1(as, ref, RSET_GPR); ofs += IR(refk)->i; if (checki16(ofs)) emit_tsi(as, MIPSI_ADDIU, dest, r, ofs); else emit_dst(as, MIPSI_ADDU, dest, r, ra_allock(as, ofs, rset_exclude(RSET_GPR, r))); } /* -- Loads and stores ---------------------------------------------------- */ static MIPSIns asm_fxloadins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: return MIPSI_LB; case IRT_U8: return MIPSI_LBU; case IRT_I16: return MIPSI_LH; case IRT_U16: return MIPSI_LHU; case IRT_NUM: return MIPSI_LDC1; case IRT_FLOAT: return MIPSI_LWC1; default: return MIPSI_LW; } } static MIPSIns asm_fxstoreins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: case IRT_U8: return MIPSI_SB; case IRT_I16: case IRT_U16: return MIPSI_SH; case IRT_NUM: return MIPSI_SDC1; case IRT_FLOAT: return MIPSI_SWC1; default: return MIPSI_SW; } } static void asm_fload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg idx = ra_alloc1(as, ir->op1, RSET_GPR); MIPSIns mi = asm_fxloadins(ir); int32_t ofs; if (ir->op2 == IRFL_TAB_ARRAY) { ofs = asm_fuseabase(as, ir->op1); if (ofs) { /* Turn the t->array load into an add for colocated arrays. */ emit_tsi(as, MIPSI_ADDIU, dest, idx, ofs); return; } } ofs = field_ofs[ir->op2]; lua_assert(!irt_isfp(ir->t)); emit_tsi(as, mi, dest, idx, ofs); } static void asm_fstore(ASMState *as, IRIns *ir) { if (ir->r != RID_SINK) { Reg src = ra_alloc1z(as, ir->op2, RSET_GPR); IRIns *irf = IR(ir->op1); Reg idx = ra_alloc1(as, irf->op1, rset_exclude(RSET_GPR, src)); int32_t ofs = field_ofs[irf->op2]; MIPSIns mi = asm_fxstoreins(ir); lua_assert(!irt_isfp(ir->t)); emit_tsi(as, mi, src, idx, ofs); } } static void asm_xload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); lua_assert(!(ir->op2 & IRXLOAD_UNALIGNED)); asm_fusexref(as, asm_fxloadins(ir), dest, ir->op1, RSET_GPR, 0); } static void asm_xstore(ASMState *as, IRIns *ir, int32_t ofs) { if (ir->r != RID_SINK) { Reg src = ra_alloc1z(as, ir->op2, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); asm_fusexref(as, asm_fxstoreins(ir), src, ir->op1, rset_exclude(RSET_GPR, src), ofs); } } static void asm_ahuvload(ASMState *as, IRIns *ir) { IRType1 t = ir->t; Reg dest = RID_NONE, type = RID_TMP, idx; RegSet allow = RSET_GPR; int32_t ofs = 0; if (ra_used(ir)) { lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t)); dest = ra_dest(as, ir, irt_isnum(t) ? RSET_FPR : RSET_GPR); rset_clear(allow, dest); } idx = asm_fuseahuref(as, ir->op1, &ofs, allow); rset_clear(allow, idx); if (irt_isnum(t)) { asm_guard(as, MIPSI_BEQ, type, RID_ZERO); emit_tsi(as, MIPSI_SLTIU, type, type, (int32_t)LJ_TISNUM); if (ra_hasreg(dest)) emit_hsi(as, MIPSI_LDC1, dest, idx, ofs); } else { asm_guard(as, MIPSI_BNE, type, ra_allock(as, irt_toitype(t), allow)); if (ra_hasreg(dest)) emit_tsi(as, MIPSI_LW, dest, idx, ofs+(LJ_BE?4:0)); } emit_tsi(as, MIPSI_LW, type, idx, ofs+(LJ_BE?0:4)); } static void asm_ahustore(ASMState *as, IRIns *ir) { RegSet allow = RSET_GPR; Reg idx, src = RID_NONE, type = RID_NONE; int32_t ofs = 0; if (ir->r == RID_SINK) return; if (irt_isnum(ir->t)) { src = ra_alloc1(as, ir->op2, RSET_FPR); } else { if (!irt_ispri(ir->t)) { src = ra_alloc1(as, ir->op2, allow); rset_clear(allow, src); } type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow); rset_clear(allow, type); } idx = asm_fuseahuref(as, ir->op1, &ofs, allow); if (irt_isnum(ir->t)) { emit_hsi(as, MIPSI_SDC1, src, idx, ofs); } else { if (ra_hasreg(src)) emit_tsi(as, MIPSI_SW, src, idx, ofs+(LJ_BE?4:0)); emit_tsi(as, MIPSI_SW, type, idx, ofs+(LJ_BE?0:4)); } } static void asm_sload(ASMState *as, IRIns *ir) { int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0); IRType1 t = ir->t; Reg dest = RID_NONE, type = RID_NONE, base; RegSet allow = RSET_GPR; lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */ lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK)); lua_assert(!irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME))); if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) { dest = ra_scratch(as, RSET_FPR); asm_tointg(as, ir, dest); t.irt = IRT_NUM; /* Continue with a regular number type check. */ } else if (ra_used(ir)) { lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t)); dest = ra_dest(as, ir, irt_isnum(t) ? RSET_FPR : RSET_GPR); rset_clear(allow, dest); base = ra_alloc1(as, REF_BASE, allow); rset_clear(allow, base); if ((ir->op2 & IRSLOAD_CONVERT)) { if (irt_isint(t)) { Reg tmp = ra_scratch(as, RSET_FPR); emit_tg(as, MIPSI_MFC1, dest, tmp); emit_fg(as, MIPSI_CVT_W_D, tmp, tmp); dest = tmp; t.irt = IRT_NUM; /* Check for original type. */ } else { Reg tmp = ra_scratch(as, RSET_GPR); emit_fg(as, MIPSI_CVT_D_W, dest, dest); emit_tg(as, MIPSI_MTC1, tmp, dest); dest = tmp; t.irt = IRT_INT; /* Check for original type. */ } } goto dotypecheck; } base = ra_alloc1(as, REF_BASE, allow); rset_clear(allow, base); dotypecheck: if (irt_isnum(t)) { if ((ir->op2 & IRSLOAD_TYPECHECK)) { asm_guard(as, MIPSI_BEQ, RID_TMP, RID_ZERO); emit_tsi(as, MIPSI_SLTIU, RID_TMP, RID_TMP, (int32_t)LJ_TISNUM); type = RID_TMP; } if (ra_hasreg(dest)) emit_hsi(as, MIPSI_LDC1, dest, base, ofs); } else { if ((ir->op2 & IRSLOAD_TYPECHECK)) { Reg ktype = ra_allock(as, irt_toitype(t), allow); asm_guard(as, MIPSI_BNE, RID_TMP, ktype); type = RID_TMP; } if (ra_hasreg(dest)) emit_tsi(as, MIPSI_LW, dest, base, ofs ^ (LJ_BE?4:0)); } if (ra_hasreg(type)) emit_tsi(as, MIPSI_LW, type, base, ofs ^ (LJ_BE?0:4)); } /* -- Allocations --------------------------------------------------------- */ #if LJ_HASFFI static void asm_cnew(ASMState *as, IRIns *ir) { CTState *cts = ctype_ctsG(J2G(as->J)); CTypeID ctypeid = (CTypeID)IR(ir->op1)->i; CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ? lj_ctype_size(cts, ctypeid) : (CTSize)IR(ir->op2)->i; const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco]; IRRef args[2]; RegSet allow = (RSET_GPR & ~RSET_SCRATCH); RegSet drop = RSET_SCRATCH; lua_assert(sz != CTSIZE_INVALID); args[0] = ASMREF_L; /* lua_State *L */ args[1] = ASMREF_TMP1; /* MSize size */ as->gcsteps++; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); if (ra_used(ir)) ra_destreg(as, ir, RID_RET); /* GCcdata * */ /* Initialize immutable cdata object. */ if (ir->o == IR_CNEWI) { int32_t ofs = sizeof(GCcdata); lua_assert(sz == 4 || sz == 8); if (sz == 8) { ofs += 4; lua_assert((ir+1)->o == IR_HIOP); if (LJ_LE) ir++; } for (;;) { Reg r = ra_alloc1z(as, ir->op2, allow); emit_tsi(as, MIPSI_SW, r, RID_RET, ofs); rset_clear(allow, r); if (ofs == sizeof(GCcdata)) break; ofs -= 4; if (LJ_BE) ir++; else ir--; } } /* Initialize gct and ctypeid. lj_mem_newgco() already sets marked. */ emit_tsi(as, MIPSI_SB, RID_RET+1, RID_RET, offsetof(GCcdata, gct)); emit_tsi(as, MIPSI_SH, RID_TMP, RID_RET, offsetof(GCcdata, ctypeid)); emit_ti(as, MIPSI_LI, RID_RET+1, ~LJ_TCDATA); emit_ti(as, MIPSI_LI, RID_TMP, ctypeid); /* Lower 16 bit used. Sign-ext ok. */ asm_gencall(as, ci, args); ra_allockreg(as, (int32_t)(sz+sizeof(GCcdata)), ra_releasetmp(as, ASMREF_TMP1)); } #else #define asm_cnew(as, ir) ((void)0) #endif /* -- Write barriers ------------------------------------------------------ */ static void asm_tbar(ASMState *as, IRIns *ir) { Reg tab = ra_alloc1(as, ir->op1, RSET_GPR); Reg mark = ra_scratch(as, rset_exclude(RSET_GPR, tab)); Reg link = RID_TMP; MCLabel l_end = emit_label(as); emit_tsi(as, MIPSI_SW, link, tab, (int32_t)offsetof(GCtab, gclist)); emit_tsi(as, MIPSI_SB, mark, tab, (int32_t)offsetof(GCtab, marked)); emit_setgl(as, tab, gc.grayagain); emit_getgl(as, link, gc.grayagain); emit_dst(as, MIPSI_XOR, mark, mark, RID_TMP); /* Clear black bit. */ emit_branch(as, MIPSI_BEQ, RID_TMP, RID_ZERO, l_end); emit_tsi(as, MIPSI_ANDI, RID_TMP, mark, LJ_GC_BLACK); emit_tsi(as, MIPSI_LBU, mark, tab, (int32_t)offsetof(GCtab, marked)); } static void asm_obar(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv]; IRRef args[2]; MCLabel l_end; Reg obj, val, tmp; /* No need for other object barriers (yet). */ lua_assert(IR(ir->op1)->o == IR_UREFC); ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ir->op1; /* TValue *tv */ asm_gencall(as, ci, args); emit_tsi(as, MIPSI_ADDIU, ra_releasetmp(as, ASMREF_TMP1), RID_JGL, -32768); obj = IR(ir->op1)->r; tmp = ra_scratch(as, rset_exclude(RSET_GPR, obj)); emit_branch(as, MIPSI_BEQ, RID_TMP, RID_ZERO, l_end); emit_tsi(as, MIPSI_ANDI, tmp, tmp, LJ_GC_BLACK); emit_branch(as, MIPSI_BEQ, RID_TMP, RID_ZERO, l_end); emit_tsi(as, MIPSI_ANDI, RID_TMP, RID_TMP, LJ_GC_WHITES); val = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, obj)); emit_tsi(as, MIPSI_LBU, tmp, obj, (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv)); emit_tsi(as, MIPSI_LBU, RID_TMP, val, (int32_t)offsetof(GChead, marked)); } /* -- Arithmetic and logic operations ------------------------------------- */ static void asm_fparith(ASMState *as, IRIns *ir, MIPSIns mi) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; emit_fgh(as, mi, dest, left, right); } static void asm_fpunary(ASMState *as, IRIns *ir, MIPSIns mi) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_FPR); emit_fg(as, mi, dest, left); } static int asm_fpjoin_pow(ASMState *as, IRIns *ir) { IRIns *irp = IR(ir->op1); if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) { IRIns *irpp = IR(irp->op1); if (irpp == ir-2 && irpp->o == IR_FPMATH && irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_pow]; IRRef args[2]; args[0] = irpp->op1; args[1] = irp->op2; asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); return 1; } } return 0; } static void asm_add(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { asm_fparith(as, ir, MIPSI_ADD_D); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (checki16(k)) { emit_tsi(as, MIPSI_ADDIU, dest, left, k); return; } } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_dst(as, MIPSI_ADDU, dest, left, right); } } static void asm_sub(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { asm_fparith(as, ir, MIPSI_SUB_D); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; emit_dst(as, MIPSI_SUBU, dest, left, right); } } static void asm_mul(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { asm_fparith(as, ir, MIPSI_MUL_D); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; emit_dst(as, MIPSI_MUL, dest, left, right); } } static void asm_neg(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { asm_fpunary(as, ir, MIPSI_NEG_D); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); emit_dst(as, MIPSI_SUBU, dest, RID_ZERO, left); } } static void asm_arithov(ASMState *as, IRIns *ir) { Reg right, left, tmp, dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op2)) { int k = IR(ir->op2)->i; if (ir->o == IR_SUBOV) k = (int)(~(unsigned int)k+1u); if (checki16(k)) { /* (dest < left) == (k >= 0 ? 1 : 0) */ left = ra_alloc1(as, ir->op1, RSET_GPR); asm_guard(as, k >= 0 ? MIPSI_BNE : MIPSI_BEQ, RID_TMP, RID_ZERO); emit_dst(as, MIPSI_SLT, RID_TMP, dest, dest == left ? RID_TMP : left); emit_tsi(as, MIPSI_ADDIU, dest, left, k); if (dest == left) emit_move(as, RID_TMP, left); return; } } left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; tmp = ra_scratch(as, rset_exclude(rset_exclude(rset_exclude(RSET_GPR, left), right), dest)); asm_guard(as, MIPSI_BLTZ, RID_TMP, 0); emit_dst(as, MIPSI_AND, RID_TMP, RID_TMP, tmp); if (ir->o == IR_ADDOV) { /* ((dest^left) & (dest^right)) < 0 */ emit_dst(as, MIPSI_XOR, RID_TMP, dest, dest == right ? RID_TMP : right); } else { /* ((dest^left) & (dest^~right)) < 0 */ emit_dst(as, MIPSI_XOR, RID_TMP, RID_TMP, dest); emit_dst(as, MIPSI_NOR, RID_TMP, dest == right ? RID_TMP : right, RID_ZERO); } emit_dst(as, MIPSI_XOR, tmp, dest, dest == left ? RID_TMP : left); emit_dst(as, ir->o == IR_ADDOV ? MIPSI_ADDU : MIPSI_SUBU, dest, left, right); if (dest == left || dest == right) emit_move(as, RID_TMP, dest == left ? left : right); } static void asm_mulov(ASMState *as, IRIns *ir) { #if LJ_DUALNUM #error "NYI: MULOV" #else UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused in single-number mode. */ #endif } #if LJ_HASFFI static void asm_add64(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (k == 0) { emit_dst(as, MIPSI_ADDU, dest, left, RID_TMP); goto loarith; } else if (checki16(k)) { emit_dst(as, MIPSI_ADDU, dest, dest, RID_TMP); emit_tsi(as, MIPSI_ADDIU, dest, left, k); goto loarith; } } emit_dst(as, MIPSI_ADDU, dest, dest, RID_TMP); right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_dst(as, MIPSI_ADDU, dest, left, right); loarith: ir--; dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc1(as, ir->op1, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (k == 0) { if (dest != left) emit_move(as, dest, left); return; } else if (checki16(k)) { if (dest == left) { Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, left)); emit_move(as, dest, tmp); dest = tmp; } emit_dst(as, MIPSI_SLTU, RID_TMP, dest, left); emit_tsi(as, MIPSI_ADDIU, dest, left, k); return; } } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); if (dest == left && dest == right) { Reg tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, left), right)); emit_move(as, dest, tmp); dest = tmp; } emit_dst(as, MIPSI_SLTU, RID_TMP, dest, dest == left ? right : left); emit_dst(as, MIPSI_ADDU, dest, left, right); } static void asm_sub64(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; emit_dst(as, MIPSI_SUBU, dest, dest, RID_TMP); emit_dst(as, MIPSI_SUBU, dest, left, right); ir--; dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; if (dest == left) { Reg tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, left), right)); emit_move(as, dest, tmp); dest = tmp; } emit_dst(as, MIPSI_SLTU, RID_TMP, left, dest); emit_dst(as, MIPSI_SUBU, dest, left, right); } static void asm_neg64(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); emit_dst(as, MIPSI_SUBU, dest, dest, RID_TMP); emit_dst(as, MIPSI_SUBU, dest, RID_ZERO, left); ir--; dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc1(as, ir->op1, RSET_GPR); emit_dst(as, MIPSI_SLTU, RID_TMP, RID_ZERO, dest); emit_dst(as, MIPSI_SUBU, dest, RID_ZERO, left); } #endif static void asm_bitnot(ASMState *as, IRIns *ir) { Reg left, right, dest = ra_dest(as, ir, RSET_GPR); IRIns *irl = IR(ir->op1); if (mayfuse(as, ir->op1) && irl->o == IR_BOR) { left = ra_alloc2(as, irl, RSET_GPR); right = (left >> 8); left &= 255; } else { left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); right = RID_ZERO; } emit_dst(as, MIPSI_NOR, dest, left, right); } static void asm_bitswap(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); if ((as->flags & JIT_F_MIPS32R2)) { emit_dta(as, MIPSI_ROTR, dest, RID_TMP, 16); emit_dst(as, MIPSI_WSBH, RID_TMP, 0, left); } else { Reg tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, left), dest)); emit_dst(as, MIPSI_OR, dest, dest, tmp); emit_dst(as, MIPSI_OR, dest, dest, RID_TMP); emit_tsi(as, MIPSI_ANDI, dest, dest, 0xff00); emit_dta(as, MIPSI_SLL, RID_TMP, RID_TMP, 8); emit_dta(as, MIPSI_SRL, dest, left, 8); emit_tsi(as, MIPSI_ANDI, RID_TMP, left, 0xff00); emit_dst(as, MIPSI_OR, tmp, tmp, RID_TMP); emit_dta(as, MIPSI_SRL, tmp, left, 24); emit_dta(as, MIPSI_SLL, RID_TMP, left, 24); } } static void asm_bitop(ASMState *as, IRIns *ir, MIPSIns mi, MIPSIns mik) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (checku16(k)) { emit_tsi(as, mik, dest, left, k); return; } } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_dst(as, mi, dest, left, right); } static void asm_bitshift(ASMState *as, IRIns *ir, MIPSIns mi, MIPSIns mik) { Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op2)) { /* Constant shifts. */ uint32_t shift = (uint32_t)(IR(ir->op2)->i & 31); emit_dta(as, mik, dest, ra_hintalloc(as, ir->op1, dest, RSET_GPR), shift); } else { Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; emit_dst(as, mi, dest, right, left); /* Shift amount is in rs. */ } } static void asm_bitror(ASMState *as, IRIns *ir) { if ((as->flags & JIT_F_MIPS32R2)) { asm_bitshift(as, ir, MIPSI_ROTRV, MIPSI_ROTR); } else { Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op2)) { /* Constant shifts. */ uint32_t shift = (uint32_t)(IR(ir->op2)->i & 31); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); emit_rotr(as, dest, left, RID_TMP, shift); } else { Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; emit_dst(as, MIPSI_OR, dest, dest, RID_TMP); emit_dst(as, MIPSI_SRLV, dest, right, left); emit_dst(as, MIPSI_SLLV, RID_TMP, RID_TMP, left); emit_dst(as, MIPSI_SUBU, RID_TMP, ra_allock(as, 32, RSET_GPR), right); } } } static void asm_min_max(ASMState *as, IRIns *ir, int ismax) { if (irt_isnum(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; if (dest == left) { emit_fg(as, MIPSI_MOVT_D, dest, right); } else { emit_fg(as, MIPSI_MOVF_D, dest, left); if (dest != right) emit_fg(as, MIPSI_MOV_D, dest, right); } emit_fgh(as, MIPSI_C_OLT_D, 0, ismax ? left : right, ismax ? right : left); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; if (dest == left) { emit_dst(as, MIPSI_MOVN, dest, right, RID_TMP); } else { emit_dst(as, MIPSI_MOVZ, dest, left, RID_TMP); if (dest != right) emit_move(as, dest, right); } emit_dst(as, MIPSI_SLT, RID_TMP, ismax ? left : right, ismax ? right : left); } } /* -- Comparisons --------------------------------------------------------- */ static void asm_comp(ASMState *as, IRIns *ir) { /* ORDER IR: LT GE LE GT ULT UGE ULE UGT. */ IROp op = ir->o; if (irt_isnum(ir->t)) { Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; asm_guard(as, (op&1) ? MIPSI_BC1T : MIPSI_BC1F, 0, 0); emit_fgh(as, MIPSI_C_OLT_D + ((op&3) ^ ((op>>2)&1)), 0, left, right); } else { Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR); if (op == IR_ABC) op = IR_UGT; if ((op&4) == 0 && irref_isk(ir->op2) && IR(ir->op2)->i == 0) { MIPSIns mi = (op&2) ? ((op&1) ? MIPSI_BLEZ : MIPSI_BGTZ) : ((op&1) ? MIPSI_BLTZ : MIPSI_BGEZ); asm_guard(as, mi, left, 0); } else { if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if ((op&2)) k++; if (checki16(k)) { asm_guard(as, (op&1) ? MIPSI_BNE : MIPSI_BEQ, RID_TMP, RID_ZERO); emit_tsi(as, (op&4) ? MIPSI_SLTIU : MIPSI_SLTI, RID_TMP, left, k); return; } } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); asm_guard(as, ((op^(op>>1))&1) ? MIPSI_BNE : MIPSI_BEQ, RID_TMP, RID_ZERO); emit_dst(as, (op&4) ? MIPSI_SLTU : MIPSI_SLT, RID_TMP, (op&2) ? right : left, (op&2) ? left : right); } } } static void asm_compeq(ASMState *as, IRIns *ir) { Reg right, left = ra_alloc2(as, ir, irt_isnum(ir->t) ? RSET_FPR : RSET_GPR); right = (left >> 8); left &= 255; if (irt_isnum(ir->t)) { asm_guard(as, (ir->o & 1) ? MIPSI_BC1T : MIPSI_BC1F, 0, 0); emit_fgh(as, MIPSI_C_EQ_D, 0, left, right); } else { asm_guard(as, (ir->o & 1) ? MIPSI_BEQ : MIPSI_BNE, left, right); } } #if LJ_HASFFI /* 64 bit integer comparisons. */ static void asm_comp64(ASMState *as, IRIns *ir) { /* ORDER IR: LT GE LE GT ULT UGE ULE UGT. */ IROp op = (ir-1)->o; MCLabel l_end; Reg rightlo, leftlo, righthi, lefthi = ra_alloc2(as, ir, RSET_GPR); righthi = (lefthi >> 8); lefthi &= 255; leftlo = ra_alloc2(as, ir-1, rset_exclude(rset_exclude(RSET_GPR, lefthi), righthi)); rightlo = (leftlo >> 8); leftlo &= 255; asm_guard(as, ((op^(op>>1))&1) ? MIPSI_BNE : MIPSI_BEQ, RID_TMP, RID_ZERO); l_end = emit_label(as); if (lefthi != righthi) emit_dst(as, (op&4) ? MIPSI_SLTU : MIPSI_SLT, RID_TMP, (op&2) ? righthi : lefthi, (op&2) ? lefthi : righthi); emit_dst(as, MIPSI_SLTU, RID_TMP, (op&2) ? rightlo : leftlo, (op&2) ? leftlo : rightlo); if (lefthi != righthi) emit_branch(as, MIPSI_BEQ, lefthi, righthi, l_end); } static void asm_comp64eq(ASMState *as, IRIns *ir) { Reg tmp, right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; asm_guard(as, ((ir-1)->o & 1) ? MIPSI_BEQ : MIPSI_BNE, RID_TMP, RID_ZERO); tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, left), right)); emit_dst(as, MIPSI_OR, RID_TMP, RID_TMP, tmp); emit_dst(as, MIPSI_XOR, tmp, left, right); left = ra_alloc2(as, ir-1, RSET_GPR); right = (left >> 8); left &= 255; emit_dst(as, MIPSI_XOR, RID_TMP, left, right); } #endif /* -- Support for 64 bit ops in 32 bit mode ------------------------------- */ /* Hiword op of a split 64 bit op. Previous op must be the loword op. */ static void asm_hiop(ASMState *as, IRIns *ir) { #if LJ_HASFFI /* HIOP is marked as a store because it needs its own DCE logic. */ int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */ if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1; if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */ as->curins--; /* Always skip the CONV. */ if (usehi || uselo) asm_conv64(as, ir); return; } else if ((ir-1)->o < IR_EQ) { /* 64 bit integer comparisons. ORDER IR. */ as->curins--; /* Always skip the loword comparison. */ asm_comp64(as, ir); return; } else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */ as->curins--; /* Always skip the loword comparison. */ asm_comp64eq(as, ir); return; } else if ((ir-1)->o == IR_XSTORE) { as->curins--; /* Handle both stores here. */ if ((ir-1)->r != RID_SINK) { asm_xstore(as, ir, LJ_LE ? 4 : 0); asm_xstore(as, ir-1, LJ_LE ? 0 : 4); } return; } if (!usehi) return; /* Skip unused hiword op for all remaining ops. */ switch ((ir-1)->o) { case IR_ADD: as->curins--; asm_add64(as, ir); break; case IR_SUB: as->curins--; asm_sub64(as, ir); break; case IR_NEG: as->curins--; asm_neg64(as, ir); break; case IR_CALLN: case IR_CALLXS: if (!uselo) ra_allocref(as, ir->op1, RID2RSET(RID_RETLO)); /* Mark lo op as used. */ break; case IR_CNEWI: /* Nothing to do here. Handled by lo op itself. */ break; default: lua_assert(0); break; } #else UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused without FFI. */ #endif } /* -- Stack handling ------------------------------------------------------ */ /* Check Lua stack size for overflow. Use exit handler as fallback. */ static void asm_stack_check(ASMState *as, BCReg topslot, IRIns *irp, RegSet allow, ExitNo exitno) { /* Try to get an unused temp. register, otherwise spill/restore RID_RET*. */ Reg tmp, pbase = irp ? (ra_hasreg(irp->r) ? irp->r : RID_TMP) : RID_BASE; ExitNo oldsnap = as->snapno; rset_clear(allow, pbase); tmp = allow ? rset_pickbot(allow) : (pbase == RID_RETHI ? RID_RETLO : RID_RETHI); as->snapno = exitno; asm_guard(as, MIPSI_BNE, RID_TMP, RID_ZERO); as->snapno = oldsnap; if (allow == RSET_EMPTY) /* Restore temp. register. */ emit_tsi(as, MIPSI_LW, tmp, RID_SP, 0); else ra_modified(as, tmp); emit_tsi(as, MIPSI_SLTIU, RID_TMP, RID_TMP, (int32_t)(8*topslot)); emit_dst(as, MIPSI_SUBU, RID_TMP, tmp, pbase); emit_tsi(as, MIPSI_LW, tmp, tmp, offsetof(lua_State, maxstack)); if (pbase == RID_TMP) emit_getgl(as, RID_TMP, jit_base); emit_getgl(as, tmp, jit_L); if (allow == RSET_EMPTY) /* Spill temp. register. */ emit_tsi(as, MIPSI_SW, tmp, RID_SP, 0); } /* Restore Lua stack from on-trace state. */ static void asm_stack_restore(ASMState *as, SnapShot *snap) { SnapEntry *map = &as->T->snapmap[snap->mapofs]; SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1]; MSize n, nent = snap->nent; /* Store the value of all modified slots to the Lua stack. */ for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; BCReg s = snap_slot(sn); int32_t ofs = 8*((int32_t)s-1); IRRef ref = snap_ref(sn); IRIns *ir = IR(ref); if ((sn & SNAP_NORESTORE)) continue; if (irt_isnum(ir->t)) { Reg src = ra_alloc1(as, ref, RSET_FPR); emit_hsi(as, MIPSI_SDC1, src, RID_BASE, ofs); } else { Reg type; RegSet allow = rset_exclude(RSET_GPR, RID_BASE); lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || irt_isinteger(ir->t)); if (!irt_ispri(ir->t)) { Reg src = ra_alloc1(as, ref, allow); rset_clear(allow, src); emit_tsi(as, MIPSI_SW, src, RID_BASE, ofs+(LJ_BE?4:0)); } if ((sn & (SNAP_CONT|SNAP_FRAME))) { if (s == 0) continue; /* Do not overwrite link to previous frame. */ type = ra_allock(as, (int32_t)(*flinks--), allow); } else { type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow); } emit_tsi(as, MIPSI_SW, type, RID_BASE, ofs+(LJ_BE?0:4)); } checkmclim(as); } lua_assert(map + nent == flinks); } /* -- GC handling --------------------------------------------------------- */ /* Marker to prevent patching the GC check exit. */ #define MIPS_NOPATCH_GC_CHECK MIPSI_OR /* Check GC threshold and do one or more GC steps. */ static void asm_gc_check(ASMState *as) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit]; IRRef args[2]; MCLabel l_end; Reg tmp; ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */ /* Assumes asm_snap_prep() already done. */ asm_guard(as, MIPSI_BNE, RID_RET, RID_ZERO); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ASMREF_TMP2; /* MSize steps */ asm_gencall(as, ci, args); l_end[-3] = MIPS_NOPATCH_GC_CHECK; /* Replace the nop after the call. */ emit_tsi(as, MIPSI_ADDIU, ra_releasetmp(as, ASMREF_TMP1), RID_JGL, -32768); tmp = ra_releasetmp(as, ASMREF_TMP2); emit_loadi(as, tmp, as->gcsteps); /* Jump around GC step if GC total < GC threshold. */ emit_branch(as, MIPSI_BNE, RID_TMP, RID_ZERO, l_end); emit_dst(as, MIPSI_SLTU, RID_TMP, RID_TMP, tmp); emit_getgl(as, tmp, gc.threshold); emit_getgl(as, RID_TMP, gc.total); as->gcsteps = 0; checkmclim(as); } /* -- Loop handling ------------------------------------------------------- */ /* Fixup the loop branch. */ static void asm_loop_fixup(ASMState *as) { MCode *p = as->mctop; MCode *target = as->mcp; p[-1] = MIPSI_NOP; if (as->loopinv) { /* Inverted loop branch? */ /* asm_guard already inverted the cond branch. Only patch the target. */ p[-3] |= ((target-p+2) & 0x0000ffffu); } else { p[-2] = MIPSI_J|(((uintptr_t)target>>2)&0x03ffffffu); } } /* -- Head of trace ------------------------------------------------------- */ /* Coalesce BASE register for a root trace. */ static void asm_head_root_base(ASMState *as) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (as->loopinv) as->mctop--; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r) || irt_ismarked(ir->t)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (r != RID_BASE) emit_move(as, r, RID_BASE); } } /* Coalesce BASE register for a side trace. */ static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (as->loopinv) as->mctop--; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r) || irt_ismarked(ir->t)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (irp->r == r) { rset_clear(allow, r); /* Mark same BASE register as coalesced. */ } else if (ra_hasreg(irp->r) && rset_test(as->freeset, irp->r)) { rset_clear(allow, irp->r); emit_move(as, r, irp->r); /* Move from coalesced parent reg. */ } else { emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */ } } return allow; } /* -- Tail of trace ------------------------------------------------------- */ /* Fixup the tail code. */ static void asm_tail_fixup(ASMState *as, TraceNo lnk) { MCode *target = lnk ? traceref(as->J,lnk)->mcode : (MCode *)lj_vm_exit_interp; int32_t spadj = as->T->spadjust; MCode *p = as->mctop-1; *p = spadj ? (MIPSI_ADDIU|MIPSF_T(RID_SP)|MIPSF_S(RID_SP)|spadj) : MIPSI_NOP; p[-1] = MIPSI_J|(((uintptr_t)target>>2)&0x03ffffffu); } /* Prepare tail of code. */ static void asm_tail_prep(ASMState *as) { as->mcp = as->mctop-2; /* Leave room for branch plus nop or stack adj. */ as->invmcp = as->loopref ? as->mcp : NULL; } /* -- Instruction dispatch ------------------------------------------------ */ /* Assemble a single instruction. */ static void asm_ir(ASMState *as, IRIns *ir) { switch ((IROp)ir->o) { /* Miscellaneous ops. */ case IR_LOOP: asm_loop(as); break; case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break; case IR_USE: ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break; case IR_PHI: asm_phi(as, ir); break; case IR_HIOP: asm_hiop(as, ir); break; case IR_GCSTEP: asm_gcstep(as, ir); break; /* Guarded assertions. */ case IR_EQ: case IR_NE: asm_compeq(as, ir); break; case IR_LT: case IR_GE: case IR_LE: case IR_GT: case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT: case IR_ABC: asm_comp(as, ir); break; case IR_RETF: asm_retf(as, ir); break; /* Bit ops. */ case IR_BNOT: asm_bitnot(as, ir); break; case IR_BSWAP: asm_bitswap(as, ir); break; case IR_BAND: asm_bitop(as, ir, MIPSI_AND, MIPSI_ANDI); break; case IR_BOR: asm_bitop(as, ir, MIPSI_OR, MIPSI_ORI); break; case IR_BXOR: asm_bitop(as, ir, MIPSI_XOR, MIPSI_XORI); break; case IR_BSHL: asm_bitshift(as, ir, MIPSI_SLLV, MIPSI_SLL); break; case IR_BSHR: asm_bitshift(as, ir, MIPSI_SRLV, MIPSI_SRL); break; case IR_BSAR: asm_bitshift(as, ir, MIPSI_SRAV, MIPSI_SRA); break; case IR_BROL: lua_assert(0); break; case IR_BROR: asm_bitror(as, ir); break; /* Arithmetic ops. */ case IR_ADD: asm_add(as, ir); break; case IR_SUB: asm_sub(as, ir); break; case IR_MUL: asm_mul(as, ir); break; case IR_DIV: asm_fparith(as, ir, MIPSI_DIV_D); break; case IR_MOD: asm_callid(as, ir, IRCALL_lj_vm_modi); break; case IR_POW: asm_callid(as, ir, IRCALL_lj_vm_powi); break; case IR_NEG: asm_neg(as, ir); break; case IR_ABS: asm_fpunary(as, ir, MIPSI_ABS_D); break; case IR_ATAN2: asm_callid(as, ir, IRCALL_atan2); break; case IR_LDEXP: asm_callid(as, ir, IRCALL_ldexp); break; case IR_MIN: asm_min_max(as, ir, 0); break; case IR_MAX: asm_min_max(as, ir, 1); break; case IR_FPMATH: if (ir->op2 == IRFPM_EXP2 && asm_fpjoin_pow(as, ir)) break; if (ir->op2 <= IRFPM_TRUNC) asm_callround(as, ir, IRCALL_lj_vm_floor + ir->op2); else if (ir->op2 == IRFPM_SQRT) asm_fpunary(as, ir, MIPSI_SQRT_D); else asm_callid(as, ir, IRCALL_lj_vm_floor + ir->op2); break; /* Overflow-checking arithmetic ops. */ case IR_ADDOV: asm_arithov(as, ir); break; case IR_SUBOV: asm_arithov(as, ir); break; case IR_MULOV: asm_mulov(as, ir); break; /* Memory references. */ case IR_AREF: asm_aref(as, ir); break; case IR_HREF: asm_href(as, ir); break; case IR_HREFK: asm_hrefk(as, ir); break; case IR_NEWREF: asm_newref(as, ir); break; case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break; case IR_FREF: asm_fref(as, ir); break; case IR_STRREF: asm_strref(as, ir); break; /* Loads and stores. */ case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: asm_ahuvload(as, ir); break; case IR_FLOAD: asm_fload(as, ir); break; case IR_XLOAD: asm_xload(as, ir); break; case IR_SLOAD: asm_sload(as, ir); break; case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break; case IR_FSTORE: asm_fstore(as, ir); break; case IR_XSTORE: asm_xstore(as, ir, 0); break; /* Allocations. */ case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break; case IR_TNEW: asm_tnew(as, ir); break; case IR_TDUP: asm_tdup(as, ir); break; case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break; /* Write barriers. */ case IR_TBAR: asm_tbar(as, ir); break; case IR_OBAR: asm_obar(as, ir); break; /* Type conversions. */ case IR_CONV: asm_conv(as, ir); break; case IR_TOBIT: asm_tobit(as, ir); break; case IR_TOSTR: asm_tostr(as, ir); break; case IR_STRTO: asm_strto(as, ir); break; /* Calls. */ case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break; case IR_CALLXS: asm_callx(as, ir); break; case IR_CARG: break; default: setintV(&as->J->errinfo, ir->o); lj_trace_err_info(as->J, LJ_TRERR_NYIIR); break; } } /* -- Trace setup --------------------------------------------------------- */ /* Ensure there are enough stack slots for call arguments. */ static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci) { IRRef args[CCI_NARGS_MAX*2]; uint32_t i, nargs = (int)CCI_NARGS(ci); int nslots = 4, ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR; asm_collectargs(as, ir, ci, args); for (i = 0; i < nargs; i++) { if (args[i] && irt_isfp(IR(args[i])->t) && nfpr > 0 && !(ci->flags & CCI_VARARG)) { nfpr--; ngpr -= irt_isnum(IR(args[i])->t) ? 2 : 1; } else if (args[i] && irt_isnum(IR(args[i])->t)) { nfpr = 0; ngpr = ngpr & ~1; if (ngpr > 0) ngpr -= 2; else nslots = (nslots+3) & ~1; } else { nfpr = 0; if (ngpr > 0) ngpr--; else nslots++; } } if (nslots > as->evenspill) /* Leave room for args in stack slots. */ as->evenspill = nslots; return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET); } static void asm_setup_target(ASMState *as) { asm_sparejump_setup(as); asm_exitstub_setup(as); } /* -- Trace patching ------------------------------------------------------ */ /* Patch exit jumps of existing machine code to a new target. */ void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target) { MCode *p = T->mcode; MCode *pe = (MCode *)((char *)p + T->szmcode); MCode *px = exitstub_trace_addr(T, exitno); MCode *cstart = NULL, *cstop = NULL; MCode *mcarea = lj_mcode_patch(J, p, 0); MCode exitload = MIPSI_LI | MIPSF_T(RID_TMP) | exitno; MCode tjump = MIPSI_J|(((uintptr_t)target>>2)&0x03ffffffu); for (p++; p < pe; p++) { if (*p == exitload) { /* Look for load of exit number. */ /* Look for exitstub branch. Yes, this covers all used branch variants. */ if (((p[-1] ^ (px-p)) & 0xffffu) == 0 && ((p[-1] & 0xf0000000u) == MIPSI_BEQ || (p[-1] & 0xfc1e0000u) == MIPSI_BLTZ || (p[-1] & 0xffe00000u) == MIPSI_BC1F) && p[-2] != MIPS_NOPATCH_GC_CHECK) { ptrdiff_t delta = target - p; if (((delta + 0x8000) >> 16) == 0) { /* Patch in-range branch. */ patchbranch: p[-1] = (p[-1] & 0xffff0000u) | (delta & 0xffffu); *p = MIPSI_NOP; /* Replace the load of the exit number. */ cstop = p; if (!cstart) cstart = p-1; } else { /* Branch out of range. Use spare jump slot in mcarea. */ int i; for (i = (int)(sizeof(MCLink)/sizeof(MCode)); i < (int)(sizeof(MCLink)/sizeof(MCode)+MIPS_SPAREJUMP*2); i += 2) { if (mcarea[i] == tjump) { delta = mcarea+i - p; goto patchbranch; } else if (mcarea[i] == MIPSI_NOP) { mcarea[i] = tjump; cstart = mcarea+i; delta = mcarea+i - p; goto patchbranch; } } /* Ignore jump slot overflow. Child trace is simply not attached. */ } } else if (p+1 == pe) { /* Patch NOP after code for inverted loop branch. Use of J is ok. */ lua_assert(p[1] == MIPSI_NOP); p[1] = tjump; *p = MIPSI_NOP; /* Replace the load of the exit number. */ cstop = p+2; if (!cstart) cstart = p+1; } } } if (cstart) lj_mcode_sync(cstart, cstop); lj_mcode_patch(J, mcarea, 1); }