/* ** PPC IR assembler (SSA IR -> machine code). ** Copyright (C) 2005-2022 Mike Pall. See Copyright Notice in luajit.h */ /* -- Register allocator extensions --------------------------------------- */ /* Allocate a register with a hint. */ static Reg ra_hintalloc(ASMState *as, IRRef ref, Reg hint, RegSet allow) { Reg r = IR(ref)->r; if (ra_noreg(r)) { if (!ra_hashint(r) && !iscrossref(as, ref)) ra_sethint(IR(ref)->r, hint); /* Propagate register hint. */ r = ra_allocref(as, ref, allow); } ra_noweak(as, r); return r; } /* Allocate two source registers for three-operand instructions. */ static Reg ra_alloc2(ASMState *as, IRIns *ir, RegSet allow) { IRIns *irl = IR(ir->op1), *irr = IR(ir->op2); Reg left = irl->r, right = irr->r; if (ra_hasreg(left)) { ra_noweak(as, left); if (ra_noreg(right)) right = ra_allocref(as, ir->op2, rset_exclude(allow, left)); else ra_noweak(as, right); } else if (ra_hasreg(right)) { ra_noweak(as, right); left = ra_allocref(as, ir->op1, rset_exclude(allow, right)); } else if (ra_hashint(right)) { right = ra_allocref(as, ir->op2, allow); left = ra_alloc1(as, ir->op1, rset_exclude(allow, right)); } else { left = ra_allocref(as, ir->op1, allow); right = ra_alloc1(as, ir->op2, rset_exclude(allow, left)); } return left | (right << 8); } /* -- Guard handling ------------------------------------------------------ */ /* Setup exit stubs after the end of each trace. */ static void asm_exitstub_setup(ASMState *as, ExitNo nexits) { ExitNo i; MCode *mxp = as->mctop; if (mxp - (nexits + 3 + MCLIM_REDZONE) < as->mclim) asm_mclimit(as); /* 1: mflr r0; bl ->vm_exit_handler; li r0, traceno; bl <1; bl <1; ... */ for (i = nexits-1; (int32_t)i >= 0; i--) *--mxp = PPCI_BL|(((-3-i)&0x00ffffffu)<<2); *--mxp = PPCI_LI|PPCF_T(RID_TMP)|as->T->traceno; /* Read by exit handler. */ mxp--; *mxp = PPCI_BL|((((MCode *)(void *)lj_vm_exit_handler-mxp)&0x00ffffffu)<<2); *--mxp = PPCI_MFLR|PPCF_T(RID_TMP); as->mctop = mxp; } static MCode *asm_exitstub_addr(ASMState *as, ExitNo exitno) { /* Keep this in-sync with exitstub_trace_addr(). */ return as->mctop + exitno + 3; } /* Emit conditional branch to exit for guard. */ static void asm_guardcc(ASMState *as, PPCCC cc) { MCode *target = asm_exitstub_addr(as, as->snapno); MCode *p = as->mcp; if (LJ_UNLIKELY(p == as->invmcp)) { as->loopinv = 1; *p = PPCI_B | (((target-p) & 0x00ffffffu) << 2); emit_condbranch(as, PPCI_BC, cc^4, p); return; } emit_condbranch(as, PPCI_BC, cc, target); } /* -- Operand fusion ------------------------------------------------------ */ /* Limit linear search to this distance. Avoids O(n^2) behavior. */ #define CONFLICT_SEARCH_LIM 31 /* Check if there's no conflicting instruction between curins and ref. */ static int noconflict(ASMState *as, IRRef ref, IROp conflict) { IRIns *ir = as->ir; IRRef i = as->curins; if (i > ref + CONFLICT_SEARCH_LIM) return 0; /* Give up, ref is too far away. */ while (--i > ref) if (ir[i].o == conflict) return 0; /* Conflict found. */ return 1; /* Ok, no conflict. */ } /* Fuse the array base of colocated arrays. */ static int32_t asm_fuseabase(ASMState *as, IRRef ref) { IRIns *ir = IR(ref); if (ir->o == IR_TNEW && ir->op1 <= LJ_MAX_COLOSIZE && !neverfuse(as) && noconflict(as, ref, IR_NEWREF)) return (int32_t)sizeof(GCtab); return 0; } /* Indicates load/store indexed is ok. */ #define AHUREF_LSX ((int32_t)0x80000000) /* Fuse array/hash/upvalue reference into register+offset operand. */ static Reg asm_fuseahuref(ASMState *as, IRRef ref, int32_t *ofsp, RegSet allow) { IRIns *ir = IR(ref); if (ra_noreg(ir->r)) { if (ir->o == IR_AREF) { if (mayfuse(as, ref)) { if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; ofs += 8*IR(ir->op2)->i; if (checki16(ofs)) { *ofsp = ofs; return ra_alloc1(as, refa, allow); } } if (*ofsp == AHUREF_LSX) { Reg base = ra_alloc1(as, ir->op1, allow); Reg idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base)); return base | (idx << 8); } } } else if (ir->o == IR_HREFK) { if (mayfuse(as, ref)) { int32_t ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node)); if (checki16(ofs)) { *ofsp = ofs; return ra_alloc1(as, ir->op1, allow); } } } else if (ir->o == IR_UREFC) { if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); int32_t ofs = i32ptr(&gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.tv); int32_t jgl = (intptr_t)J2G(as->J); if ((uint32_t)(ofs-jgl) < 65536) { *ofsp = ofs-jgl-32768; return RID_JGL; } else { *ofsp = (int16_t)ofs; return ra_allock(as, ofs-(int16_t)ofs, allow); } } } } *ofsp = 0; return ra_alloc1(as, ref, allow); } /* Fuse XLOAD/XSTORE reference into load/store operand. */ static void asm_fusexref(ASMState *as, PPCIns pi, Reg rt, IRRef ref, RegSet allow, int32_t ofs) { IRIns *ir = IR(ref); Reg base; if (ra_noreg(ir->r) && canfuse(as, ir)) { if (ir->o == IR_ADD) { int32_t ofs2; if (irref_isk(ir->op2) && (ofs2 = ofs + IR(ir->op2)->i, checki16(ofs2))) { ofs = ofs2; ref = ir->op1; } else if (ofs == 0) { Reg right, left = ra_alloc2(as, ir, allow); right = (left >> 8); left &= 255; emit_fab(as, PPCI_LWZX | ((pi >> 20) & 0x780), rt, left, right); return; } } else if (ir->o == IR_STRREF) { lua_assert(ofs == 0); ofs = (int32_t)sizeof(GCstr); if (irref_isk(ir->op2)) { ofs += IR(ir->op2)->i; ref = ir->op1; } else if (irref_isk(ir->op1)) { ofs += IR(ir->op1)->i; ref = ir->op2; } else { /* NYI: Fuse ADD with constant. */ Reg tmp, right, left = ra_alloc2(as, ir, allow); right = (left >> 8); left &= 255; tmp = ra_scratch(as, rset_exclude(rset_exclude(allow, left), right)); emit_fai(as, pi, rt, tmp, ofs); emit_tab(as, PPCI_ADD, tmp, left, right); return; } if (!checki16(ofs)) { Reg left = ra_alloc1(as, ref, allow); Reg right = ra_allock(as, ofs, rset_exclude(allow, left)); emit_fab(as, PPCI_LWZX | ((pi >> 20) & 0x780), rt, left, right); return; } } } base = ra_alloc1(as, ref, allow); emit_fai(as, pi, rt, base, ofs); } /* Fuse XLOAD/XSTORE reference into indexed-only load/store operand. */ static void asm_fusexrefx(ASMState *as, PPCIns pi, Reg rt, IRRef ref, RegSet allow) { IRIns *ira = IR(ref); Reg right, left; if (canfuse(as, ira) && ira->o == IR_ADD && ra_noreg(ira->r)) { left = ra_alloc2(as, ira, allow); right = (left >> 8); left &= 255; } else { right = ra_alloc1(as, ref, allow); left = RID_R0; } emit_tab(as, pi, rt, left, right); } /* Fuse to multiply-add/sub instruction. */ static int asm_fusemadd(ASMState *as, IRIns *ir, PPCIns pi, PPCIns pir) { IRRef lref = ir->op1, rref = ir->op2; IRIns *irm; if (lref != rref && ((mayfuse(as, lref) && (irm = IR(lref), irm->o == IR_MUL) && ra_noreg(irm->r)) || (mayfuse(as, rref) && (irm = IR(rref), irm->o == IR_MUL) && (rref = lref, pi = pir, ra_noreg(irm->r))))) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg add = ra_alloc1(as, rref, RSET_FPR); Reg right, left = ra_alloc2(as, irm, rset_exclude(RSET_FPR, add)); right = (left >> 8); left &= 255; emit_facb(as, pi, dest, left, right, add); return 1; } return 0; } /* -- Calls --------------------------------------------------------------- */ /* Generate a call to a C function. */ static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args) { uint32_t n, nargs = CCI_NARGS(ci); int32_t ofs = 8; Reg gpr = REGARG_FIRSTGPR, fpr = REGARG_FIRSTFPR; if ((void *)ci->func) emit_call(as, (void *)ci->func); for (n = 0; n < nargs; n++) { /* Setup args. */ IRRef ref = args[n]; if (ref) { IRIns *ir = IR(ref); if (irt_isfp(ir->t)) { if (fpr <= REGARG_LASTFPR) { lua_assert(rset_test(as->freeset, fpr)); /* Already evicted. */ ra_leftov(as, fpr, ref); fpr++; } else { Reg r = ra_alloc1(as, ref, RSET_FPR); if (irt_isnum(ir->t)) ofs = (ofs + 4) & ~4; emit_spstore(as, ir, r, ofs); ofs += irt_isnum(ir->t) ? 8 : 4; } } else { if (gpr <= REGARG_LASTGPR) { lua_assert(rset_test(as->freeset, gpr)); /* Already evicted. */ ra_leftov(as, gpr, ref); gpr++; } else { Reg r = ra_alloc1(as, ref, RSET_GPR); emit_spstore(as, ir, r, ofs); ofs += 4; } } } else { if (gpr <= REGARG_LASTGPR) gpr++; else ofs += 4; } checkmclim(as); } if ((ci->flags & CCI_VARARG)) /* Vararg calls need to know about FPR use. */ emit_tab(as, fpr == REGARG_FIRSTFPR ? PPCI_CRXOR : PPCI_CREQV, 6, 6, 6); } /* Setup result reg/sp for call. Evict scratch regs. */ static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci) { RegSet drop = RSET_SCRATCH; int hiop = ((ir+1)->o == IR_HIOP && !irt_isnil((ir+1)->t)); if ((ci->flags & CCI_NOFPRCLOBBER)) drop &= ~RSET_FPR; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ if (hiop && ra_hasreg((ir+1)->r)) rset_clear(drop, (ir+1)->r); /* Dest reg handled below. */ ra_evictset(as, drop); /* Evictions must be performed first. */ if (ra_used(ir)) { lua_assert(!irt_ispri(ir->t)); if (irt_isfp(ir->t)) { if ((ci->flags & CCI_CASTU64)) { /* Use spill slot or temp slots. */ int32_t ofs = ir->s ? sps_scale(ir->s) : SPOFS_TMP; Reg dest = ir->r; if (ra_hasreg(dest)) { ra_free(as, dest); ra_modified(as, dest); emit_fai(as, PPCI_LFD, dest, RID_SP, ofs); } emit_tai(as, PPCI_STW, RID_RETHI, RID_SP, ofs); emit_tai(as, PPCI_STW, RID_RETLO, RID_SP, ofs+4); } else { ra_destreg(as, ir, RID_FPRET); } } else if (hiop) { ra_destpair(as, ir); } else { ra_destreg(as, ir, RID_RET); } } } static void asm_call(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX]; const CCallInfo *ci = &lj_ir_callinfo[ir->op2]; asm_collectargs(as, ir, ci, args); asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } static void asm_callx(ASMState *as, IRIns *ir) { IRRef args[CCI_NARGS_MAX*2]; CCallInfo ci; IRRef func; IRIns *irf; ci.flags = asm_callx_flags(as, ir); asm_collectargs(as, ir, &ci, args); asm_setupresult(as, ir, &ci); func = ir->op2; irf = IR(func); if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); } if (irref_isk(func)) { /* Call to constant address. */ ci.func = (ASMFunction)(void *)(irf->i); } else { /* Need a non-argument register for indirect calls. */ RegSet allow = RSET_GPR & ~RSET_RANGE(RID_R0, REGARG_LASTGPR+1); Reg freg = ra_alloc1(as, func, allow); *--as->mcp = PPCI_BCTRL; *--as->mcp = PPCI_MTCTR | PPCF_T(freg); ci.func = (ASMFunction)(void *)0; } asm_gencall(as, &ci, args); } static void asm_callid(ASMState *as, IRIns *ir, IRCallID id) { const CCallInfo *ci = &lj_ir_callinfo[id]; IRRef args[2]; args[0] = ir->op1; args[1] = ir->op2; asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } /* -- Returns ------------------------------------------------------------- */ /* Return to lower frame. Guard that it goes to the right spot. */ static void asm_retf(ASMState *as, IRIns *ir) { Reg base = ra_alloc1(as, REF_BASE, RSET_GPR); void *pc = ir_kptr(IR(ir->op2)); int32_t delta = 1+bc_a(*((const BCIns *)pc - 1)); as->topslot -= (BCReg)delta; if ((int32_t)as->topslot < 0) as->topslot = 0; irt_setmark(IR(REF_BASE)->t); /* Children must not coalesce with BASE reg. */ emit_setgl(as, base, jit_base); emit_addptr(as, base, -8*delta); asm_guardcc(as, CC_NE); emit_ab(as, PPCI_CMPW, RID_TMP, ra_allock(as, i32ptr(pc), rset_exclude(RSET_GPR, base))); emit_tai(as, PPCI_LWZ, RID_TMP, base, -8); } /* -- Type conversions ---------------------------------------------------- */ static void asm_tointg(ASMState *as, IRIns *ir, Reg left) { RegSet allow = RSET_FPR; Reg tmp = ra_scratch(as, rset_clear(allow, left)); Reg fbias = ra_scratch(as, rset_clear(allow, tmp)); Reg dest = ra_dest(as, ir, RSET_GPR); Reg hibias = ra_allock(as, 0x43300000, rset_exclude(RSET_GPR, dest)); asm_guardcc(as, CC_NE); emit_fab(as, PPCI_FCMPU, 0, tmp, left); emit_fab(as, PPCI_FSUB, tmp, tmp, fbias); emit_fai(as, PPCI_LFD, tmp, RID_SP, SPOFS_TMP); emit_tai(as, PPCI_STW, RID_TMP, RID_SP, SPOFS_TMPLO); emit_tai(as, PPCI_STW, hibias, RID_SP, SPOFS_TMPHI); emit_asi(as, PPCI_XORIS, RID_TMP, dest, 0x8000); emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO); emit_lsptr(as, PPCI_LFS, (fbias & 31), (void *)lj_ir_k64_find(as->J, U64x(59800004,59800000)), RSET_GPR); emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP); emit_fb(as, PPCI_FCTIWZ, tmp, left); } static void asm_tobit(ASMState *as, IRIns *ir) { RegSet allow = RSET_FPR; Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, allow); Reg right = ra_alloc1(as, ir->op2, rset_clear(allow, left)); Reg tmp = ra_scratch(as, rset_clear(allow, right)); emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO); emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP); emit_fab(as, PPCI_FADD, tmp, left, right); } static void asm_conv(ASMState *as, IRIns *ir) { IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); int stfp = (st == IRT_NUM || st == IRT_FLOAT); IRRef lref = ir->op1; lua_assert(irt_type(ir->t) != st); lua_assert(!(irt_isint64(ir->t) || (st == IRT_I64 || st == IRT_U64))); /* Handled by SPLIT. */ if (irt_isfp(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); if (stfp) { /* FP to FP conversion. */ if (st == IRT_NUM) /* double -> float conversion. */ emit_fb(as, PPCI_FRSP, dest, ra_alloc1(as, lref, RSET_FPR)); else /* float -> double conversion is a no-op on PPC. */ ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */ } else { /* Integer to FP conversion. */ /* IRT_INT: Flip hibit, bias with 2^52, subtract 2^52+2^31. */ /* IRT_U32: Bias with 2^52, subtract 2^52. */ RegSet allow = RSET_GPR; Reg left = ra_alloc1(as, lref, allow); Reg hibias = ra_allock(as, 0x43300000, rset_clear(allow, left)); Reg fbias = ra_scratch(as, rset_exclude(RSET_FPR, dest)); const float *kbias; if (irt_isfloat(ir->t)) emit_fb(as, PPCI_FRSP, dest, dest); emit_fab(as, PPCI_FSUB, dest, dest, fbias); emit_fai(as, PPCI_LFD, dest, RID_SP, SPOFS_TMP); kbias = (const float *)lj_ir_k64_find(as->J, U64x(59800004,59800000)); if (st == IRT_U32) kbias++; emit_lsptr(as, PPCI_LFS, (fbias & 31), (void *)kbias, rset_clear(allow, hibias)); emit_tai(as, PPCI_STW, st == IRT_U32 ? left : RID_TMP, RID_SP, SPOFS_TMPLO); emit_tai(as, PPCI_STW, hibias, RID_SP, SPOFS_TMPHI); if (st != IRT_U32) emit_asi(as, PPCI_XORIS, RID_TMP, left, 0x8000); } } else if (stfp) { /* FP to integer conversion. */ if (irt_isguard(ir->t)) { /* Checked conversions are only supported from number to int. */ lua_assert(irt_isint(ir->t) && st == IRT_NUM); asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR)); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, lref, RSET_FPR); Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left)); if (irt_isu32(ir->t)) { /* Convert both x and x-2^31 to int and merge results. */ Reg tmpi = ra_scratch(as, rset_exclude(RSET_GPR, dest)); emit_asb(as, PPCI_OR, dest, dest, tmpi); /* Select with mask idiom. */ emit_asb(as, PPCI_AND, tmpi, tmpi, RID_TMP); emit_asb(as, PPCI_ANDC, dest, dest, RID_TMP); emit_tai(as, PPCI_LWZ, tmpi, RID_SP, SPOFS_TMPLO); /* tmp = (int)(x) */ emit_tai(as, PPCI_ADDIS, dest, dest, 0x8000); /* dest += 2^31 */ emit_asb(as, PPCI_SRAWI, RID_TMP, dest, 31); /* mask = -(dest < 0) */ emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP); emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO); /* dest = (int)(x-2^31) */ emit_fb(as, PPCI_FCTIWZ, tmp, left); emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP); emit_fb(as, PPCI_FCTIWZ, tmp, tmp); emit_fab(as, PPCI_FSUB, tmp, left, tmp); emit_lsptr(as, PPCI_LFS, (tmp & 31), (void *)lj_ir_k64_find(as->J, U64x(4f000000,00000000)), RSET_GPR); } else { emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO); emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP); emit_fb(as, PPCI_FCTIWZ, tmp, left); } } } else { Reg dest = ra_dest(as, ir, RSET_GPR); if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */ Reg left = ra_alloc1(as, ir->op1, RSET_GPR); lua_assert(irt_isint(ir->t) || irt_isu32(ir->t)); if ((ir->op2 & IRCONV_SEXT)) emit_as(as, st == IRT_I8 ? PPCI_EXTSB : PPCI_EXTSH, dest, left); else emit_rot(as, PPCI_RLWINM, dest, left, 0, st == IRT_U8 ? 24 : 16, 31); } else { /* 32/64 bit integer conversions. */ /* Only need to handle 32/32 bit no-op (cast) on 32 bit archs. */ ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */ } } } #if LJ_HASFFI static void asm_conv64(ASMState *as, IRIns *ir) { IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK); IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH); IRCallID id; const CCallInfo *ci; IRRef args[2]; args[0] = ir->op1; args[1] = (ir-1)->op1; if (st == IRT_NUM || st == IRT_FLOAT) { id = IRCALL_fp64_d2l + ((st == IRT_FLOAT) ? 2 : 0) + (dt - IRT_I64); ir--; } else { id = IRCALL_fp64_l2d + ((dt == IRT_FLOAT) ? 2 : 0) + (st - IRT_I64); } ci = &lj_ir_callinfo[id]; asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); } #endif static void asm_strto(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num]; IRRef args[2]; int32_t ofs; RegSet drop = RSET_SCRATCH; if (ra_hasreg(ir->r)) rset_set(drop, ir->r); /* Spill dest reg (if any). */ ra_evictset(as, drop); asm_guardcc(as, CC_EQ); emit_ai(as, PPCI_CMPWI, RID_RET, 0); /* Test return status. */ args[0] = ir->op1; /* GCstr *str */ args[1] = ASMREF_TMP1; /* TValue *n */ asm_gencall(as, ci, args); /* Store the result to the spill slot or temp slots. */ ofs = ir->s ? sps_scale(ir->s) : SPOFS_TMP; emit_tai(as, PPCI_ADDI, ra_releasetmp(as, ASMREF_TMP1), RID_SP, ofs); } /* Get pointer to TValue. */ static void asm_tvptr(ASMState *as, Reg dest, IRRef ref) { IRIns *ir = IR(ref); if (irt_isnum(ir->t)) { if (irref_isk(ref)) /* Use the number constant itself as a TValue. */ ra_allockreg(as, i32ptr(ir_knum(ir)), dest); else /* Otherwise force a spill and use the spill slot. */ emit_tai(as, PPCI_ADDI, dest, RID_SP, ra_spill(as, ir)); } else { /* Otherwise use g->tmptv to hold the TValue. */ RegSet allow = rset_exclude(RSET_GPR, dest); Reg type; emit_tai(as, PPCI_ADDI, dest, RID_JGL, offsetof(global_State, tmptv)-32768); if (!irt_ispri(ir->t)) { Reg src = ra_alloc1(as, ref, allow); emit_setgl(as, src, tmptv.gcr); } type = ra_allock(as, irt_toitype(ir->t), allow); emit_setgl(as, type, tmptv.it); } } static void asm_tostr(ASMState *as, IRIns *ir) { IRRef args[2]; args[0] = ASMREF_L; as->gcsteps++; if (irt_isnum(IR(ir->op1)->t) || (ir+1)->o == IR_HIOP) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum]; args[1] = ASMREF_TMP1; /* const lua_Number * */ asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op1); } else { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint]; args[1] = ir->op1; /* int32_t k */ asm_setupresult(as, ir, ci); /* GCstr * */ asm_gencall(as, ci, args); } } /* -- Memory references --------------------------------------------------- */ static void asm_aref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg idx, base; if (irref_isk(ir->op2)) { IRRef tab = IR(ir->op1)->op1; int32_t ofs = asm_fuseabase(as, tab); IRRef refa = ofs ? tab : ir->op1; ofs += 8*IR(ir->op2)->i; if (checki16(ofs)) { base = ra_alloc1(as, refa, RSET_GPR); emit_tai(as, PPCI_ADDI, dest, base, ofs); return; } } base = ra_alloc1(as, ir->op1, RSET_GPR); idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base)); emit_tab(as, PPCI_ADD, dest, RID_TMP, base); emit_slwi(as, RID_TMP, idx, 3); } /* Inlined hash lookup. Specialized for key type and for const keys. ** The equivalent C code is: ** Node *n = hashkey(t, key); ** do { ** if (lj_obj_equal(&n->key, key)) return &n->val; ** } while ((n = nextnode(n))); ** return niltv(L); */ static void asm_href(ASMState *as, IRIns *ir, IROp merge) { RegSet allow = RSET_GPR; int destused = ra_used(ir); Reg dest = ra_dest(as, ir, allow); Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest)); Reg key = RID_NONE, tmp1 = RID_TMP, tmp2; Reg tisnum = RID_NONE, tmpnum = RID_NONE; IRRef refkey = ir->op2; IRIns *irkey = IR(refkey); IRType1 kt = irkey->t; uint32_t khash; MCLabel l_end, l_loop, l_next; rset_clear(allow, tab); if (irt_isnum(kt)) { key = ra_alloc1(as, refkey, RSET_FPR); tmpnum = ra_scratch(as, rset_exclude(RSET_FPR, key)); tisnum = ra_allock(as, (int32_t)LJ_TISNUM, allow); rset_clear(allow, tisnum); } else if (!irt_ispri(kt)) { key = ra_alloc1(as, refkey, allow); rset_clear(allow, key); } tmp2 = ra_scratch(as, allow); rset_clear(allow, tmp2); /* Key not found in chain: jump to exit (if merged) or load niltv. */ l_end = emit_label(as); as->invmcp = NULL; if (merge == IR_NE) asm_guardcc(as, CC_EQ); else if (destused) emit_loada(as, dest, niltvg(J2G(as->J))); /* Follow hash chain until the end. */ l_loop = --as->mcp; emit_ai(as, PPCI_CMPWI, dest, 0); emit_tai(as, PPCI_LWZ, dest, dest, (int32_t)offsetof(Node, next)); l_next = emit_label(as); /* Type and value comparison. */ if (merge == IR_EQ) asm_guardcc(as, CC_EQ); else emit_condbranch(as, PPCI_BC|PPCF_Y, CC_EQ, l_end); if (irt_isnum(kt)) { emit_fab(as, PPCI_FCMPU, 0, tmpnum, key); emit_condbranch(as, PPCI_BC, CC_GE, l_next); emit_ab(as, PPCI_CMPLW, tmp1, tisnum); emit_fai(as, PPCI_LFD, tmpnum, dest, (int32_t)offsetof(Node, key.n)); } else { if (!irt_ispri(kt)) { emit_ab(as, PPCI_CMPW, tmp2, key); emit_condbranch(as, PPCI_BC, CC_NE, l_next); } emit_ai(as, PPCI_CMPWI, tmp1, irt_toitype(irkey->t)); if (!irt_ispri(kt)) emit_tai(as, PPCI_LWZ, tmp2, dest, (int32_t)offsetof(Node, key.gcr)); } emit_tai(as, PPCI_LWZ, tmp1, dest, (int32_t)offsetof(Node, key.it)); *l_loop = PPCI_BC | PPCF_Y | PPCF_CC(CC_NE) | (((char *)as->mcp-(char *)l_loop) & 0xffffu); /* Load main position relative to tab->node into dest. */ khash = irref_isk(refkey) ? ir_khash(irkey) : 1; if (khash == 0) { emit_tai(as, PPCI_LWZ, dest, tab, (int32_t)offsetof(GCtab, node)); } else { Reg tmphash = tmp1; if (irref_isk(refkey)) tmphash = ra_allock(as, khash, allow); emit_tab(as, PPCI_ADD, dest, dest, tmp1); emit_tai(as, PPCI_MULLI, tmp1, tmp1, sizeof(Node)); emit_asb(as, PPCI_AND, tmp1, tmp2, tmphash); emit_tai(as, PPCI_LWZ, dest, tab, (int32_t)offsetof(GCtab, node)); emit_tai(as, PPCI_LWZ, tmp2, tab, (int32_t)offsetof(GCtab, hmask)); if (irref_isk(refkey)) { /* Nothing to do. */ } else if (irt_isstr(kt)) { emit_tai(as, PPCI_LWZ, tmp1, key, (int32_t)offsetof(GCstr, hash)); } else { /* Must match with hash*() in lj_tab.c. */ emit_tab(as, PPCI_SUBF, tmp1, tmp2, tmp1); emit_rotlwi(as, tmp2, tmp2, HASH_ROT3); emit_asb(as, PPCI_XOR, tmp1, tmp1, tmp2); emit_rotlwi(as, tmp1, tmp1, (HASH_ROT2+HASH_ROT1)&31); emit_tab(as, PPCI_SUBF, tmp2, dest, tmp2); if (irt_isnum(kt)) { int32_t ofs = ra_spill(as, irkey); emit_asb(as, PPCI_XOR, tmp2, tmp2, tmp1); emit_rotlwi(as, dest, tmp1, HASH_ROT1); emit_tab(as, PPCI_ADD, tmp1, tmp1, tmp1); emit_tai(as, PPCI_LWZ, tmp2, RID_SP, ofs+4); emit_tai(as, PPCI_LWZ, tmp1, RID_SP, ofs); } else { emit_asb(as, PPCI_XOR, tmp2, key, tmp1); emit_rotlwi(as, dest, tmp1, HASH_ROT1); emit_tai(as, PPCI_ADDI, tmp1, tmp2, HASH_BIAS); emit_tai(as, PPCI_ADDIS, tmp2, key, (HASH_BIAS + 32768)>>16); } } } } static void asm_hrefk(ASMState *as, IRIns *ir) { IRIns *kslot = IR(ir->op2); IRIns *irkey = IR(kslot->op1); int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node)); int32_t kofs = ofs + (int32_t)offsetof(Node, key); Reg dest = (ra_used(ir)||ofs > 32736) ? ra_dest(as, ir, RSET_GPR) : RID_NONE; Reg node = ra_alloc1(as, ir->op1, RSET_GPR); Reg key = RID_NONE, type = RID_TMP, idx = node; RegSet allow = rset_exclude(RSET_GPR, node); lua_assert(ofs % sizeof(Node) == 0); if (ofs > 32736) { idx = dest; rset_clear(allow, dest); kofs = (int32_t)offsetof(Node, key); } else if (ra_hasreg(dest)) { emit_tai(as, PPCI_ADDI, dest, node, ofs); } asm_guardcc(as, CC_NE); if (!irt_ispri(irkey->t)) { key = ra_scratch(as, allow); rset_clear(allow, key); } rset_clear(allow, type); if (irt_isnum(irkey->t)) { emit_cmpi(as, key, (int32_t)ir_knum(irkey)->u32.lo); asm_guardcc(as, CC_NE); emit_cmpi(as, type, (int32_t)ir_knum(irkey)->u32.hi); } else { if (ra_hasreg(key)) { emit_cmpi(as, key, irkey->i); /* May use RID_TMP, i.e. type. */ asm_guardcc(as, CC_NE); } emit_ai(as, PPCI_CMPWI, type, irt_toitype(irkey->t)); } if (ra_hasreg(key)) emit_tai(as, PPCI_LWZ, key, idx, kofs+4); emit_tai(as, PPCI_LWZ, type, idx, kofs); if (ofs > 32736) { emit_tai(as, PPCI_ADDIS, dest, dest, (ofs + 32768) >> 16); emit_tai(as, PPCI_ADDI, dest, node, ofs); } } static void asm_newref(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey]; IRRef args[3]; if (ir->r == RID_SINK) return; args[0] = ASMREF_L; /* lua_State *L */ args[1] = ir->op1; /* GCtab *t */ args[2] = ASMREF_TMP1; /* cTValue *key */ asm_setupresult(as, ir, ci); /* TValue * */ asm_gencall(as, ci, args); asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op2); } static void asm_uref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op1)) { GCfunc *fn = ir_kfunc(IR(ir->op1)); MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v; emit_lsptr(as, PPCI_LWZ, dest, v, RSET_GPR); } else { Reg uv = ra_scratch(as, RSET_GPR); Reg func = ra_alloc1(as, ir->op1, RSET_GPR); if (ir->o == IR_UREFC) { asm_guardcc(as, CC_NE); emit_ai(as, PPCI_CMPWI, RID_TMP, 1); emit_tai(as, PPCI_ADDI, dest, uv, (int32_t)offsetof(GCupval, tv)); emit_tai(as, PPCI_LBZ, RID_TMP, uv, (int32_t)offsetof(GCupval, closed)); } else { emit_tai(as, PPCI_LWZ, dest, uv, (int32_t)offsetof(GCupval, v)); } emit_tai(as, PPCI_LWZ, uv, func, (int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8)); } } static void asm_fref(ASMState *as, IRIns *ir) { UNUSED(as); UNUSED(ir); lua_assert(!ra_used(ir)); } static void asm_strref(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); IRRef ref = ir->op2, refk = ir->op1; int32_t ofs = (int32_t)sizeof(GCstr); Reg r; if (irref_isk(ref)) { IRRef tmp = refk; refk = ref; ref = tmp; } else if (!irref_isk(refk)) { Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR); IRIns *irr = IR(ir->op2); if (ra_hasreg(irr->r)) { ra_noweak(as, irr->r); right = irr->r; } else if (mayfuse(as, irr->op2) && irr->o == IR_ADD && irref_isk(irr->op2) && checki16(ofs + IR(irr->op2)->i)) { ofs += IR(irr->op2)->i; right = ra_alloc1(as, irr->op1, rset_exclude(RSET_GPR, left)); } else { right = ra_allocref(as, ir->op2, rset_exclude(RSET_GPR, left)); } emit_tai(as, PPCI_ADDI, dest, dest, ofs); emit_tab(as, PPCI_ADD, dest, left, right); return; } r = ra_alloc1(as, ref, RSET_GPR); ofs += IR(refk)->i; if (checki16(ofs)) emit_tai(as, PPCI_ADDI, dest, r, ofs); else emit_tab(as, PPCI_ADD, dest, r, ra_allock(as, ofs, rset_exclude(RSET_GPR, r))); } /* -- Loads and stores ---------------------------------------------------- */ static PPCIns asm_fxloadins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: return PPCI_LBZ; /* Needs sign-extension. */ case IRT_U8: return PPCI_LBZ; case IRT_I16: return PPCI_LHA; case IRT_U16: return PPCI_LHZ; case IRT_NUM: return PPCI_LFD; case IRT_FLOAT: return PPCI_LFS; default: return PPCI_LWZ; } } static PPCIns asm_fxstoreins(IRIns *ir) { switch (irt_type(ir->t)) { case IRT_I8: case IRT_U8: return PPCI_STB; case IRT_I16: case IRT_U16: return PPCI_STH; case IRT_NUM: return PPCI_STFD; case IRT_FLOAT: return PPCI_STFS; default: return PPCI_STW; } } static void asm_fload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg idx = ra_alloc1(as, ir->op1, RSET_GPR); PPCIns pi = asm_fxloadins(ir); int32_t ofs; if (ir->op2 == IRFL_TAB_ARRAY) { ofs = asm_fuseabase(as, ir->op1); if (ofs) { /* Turn the t->array load into an add for colocated arrays. */ emit_tai(as, PPCI_ADDI, dest, idx, ofs); return; } } ofs = field_ofs[ir->op2]; lua_assert(!irt_isi8(ir->t)); emit_tai(as, pi, dest, idx, ofs); } static void asm_fstore(ASMState *as, IRIns *ir) { if (ir->r != RID_SINK) { Reg src = ra_alloc1(as, ir->op2, RSET_GPR); IRIns *irf = IR(ir->op1); Reg idx = ra_alloc1(as, irf->op1, rset_exclude(RSET_GPR, src)); int32_t ofs = field_ofs[irf->op2]; PPCIns pi = asm_fxstoreins(ir); emit_tai(as, pi, src, idx, ofs); } } static void asm_xload(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); lua_assert(!(ir->op2 & IRXLOAD_UNALIGNED)); if (irt_isi8(ir->t)) emit_as(as, PPCI_EXTSB, dest, dest); asm_fusexref(as, asm_fxloadins(ir), dest, ir->op1, RSET_GPR, 0); } static void asm_xstore(ASMState *as, IRIns *ir, int32_t ofs) { IRIns *irb; if (ir->r == RID_SINK) return; if (ofs == 0 && mayfuse(as, ir->op2) && (irb = IR(ir->op2))->o == IR_BSWAP && ra_noreg(irb->r) && (irt_isint(ir->t) || irt_isu32(ir->t))) { /* Fuse BSWAP with XSTORE to stwbrx. */ Reg src = ra_alloc1(as, irb->op1, RSET_GPR); asm_fusexrefx(as, PPCI_STWBRX, src, ir->op1, rset_exclude(RSET_GPR, src)); } else { Reg src = ra_alloc1(as, ir->op2, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); asm_fusexref(as, asm_fxstoreins(ir), src, ir->op1, rset_exclude(RSET_GPR, src), ofs); } } static void asm_ahuvload(ASMState *as, IRIns *ir) { IRType1 t = ir->t; Reg dest = RID_NONE, type = RID_TMP, tmp = RID_TMP, idx; RegSet allow = RSET_GPR; int32_t ofs = AHUREF_LSX; if (ra_used(ir)) { lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t)); if (!irt_isnum(t)) ofs = 0; dest = ra_dest(as, ir, irt_isnum(t) ? RSET_FPR : RSET_GPR); rset_clear(allow, dest); } idx = asm_fuseahuref(as, ir->op1, &ofs, allow); if (irt_isnum(t)) { Reg tisnum = ra_allock(as, (int32_t)LJ_TISNUM, rset_exclude(allow, idx)); asm_guardcc(as, CC_GE); emit_ab(as, PPCI_CMPLW, type, tisnum); if (ra_hasreg(dest)) { if (ofs == AHUREF_LSX) { tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, (idx&255)), (idx>>8))); emit_fab(as, PPCI_LFDX, dest, (idx&255), tmp); } else { emit_fai(as, PPCI_LFD, dest, idx, ofs); } } } else { asm_guardcc(as, CC_NE); emit_ai(as, PPCI_CMPWI, type, irt_toitype(t)); if (ra_hasreg(dest)) emit_tai(as, PPCI_LWZ, dest, idx, ofs+4); } if (ofs == AHUREF_LSX) { emit_tab(as, PPCI_LWZX, type, (idx&255), tmp); emit_slwi(as, tmp, (idx>>8), 3); } else { emit_tai(as, PPCI_LWZ, type, idx, ofs); } } static void asm_ahustore(ASMState *as, IRIns *ir) { RegSet allow = RSET_GPR; Reg idx, src = RID_NONE, type = RID_NONE; int32_t ofs = AHUREF_LSX; if (ir->r == RID_SINK) return; if (irt_isnum(ir->t)) { src = ra_alloc1(as, ir->op2, RSET_FPR); } else { if (!irt_ispri(ir->t)) { src = ra_alloc1(as, ir->op2, allow); rset_clear(allow, src); ofs = 0; } type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow); rset_clear(allow, type); } idx = asm_fuseahuref(as, ir->op1, &ofs, allow); if (irt_isnum(ir->t)) { if (ofs == AHUREF_LSX) { emit_fab(as, PPCI_STFDX, src, (idx&255), RID_TMP); emit_slwi(as, RID_TMP, (idx>>8), 3); } else { emit_fai(as, PPCI_STFD, src, idx, ofs); } } else { if (ra_hasreg(src)) emit_tai(as, PPCI_STW, src, idx, ofs+4); if (ofs == AHUREF_LSX) { emit_tab(as, PPCI_STWX, type, (idx&255), RID_TMP); emit_slwi(as, RID_TMP, (idx>>8), 3); } else { emit_tai(as, PPCI_STW, type, idx, ofs); } } } static void asm_sload(ASMState *as, IRIns *ir) { int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 0 : 4); IRType1 t = ir->t; Reg dest = RID_NONE, type = RID_NONE, base; RegSet allow = RSET_GPR; lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */ lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK)); lua_assert(LJ_DUALNUM || !irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME))); if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) { dest = ra_scratch(as, RSET_FPR); asm_tointg(as, ir, dest); t.irt = IRT_NUM; /* Continue with a regular number type check. */ } else if (ra_used(ir)) { lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t)); dest = ra_dest(as, ir, irt_isnum(t) ? RSET_FPR : RSET_GPR); rset_clear(allow, dest); base = ra_alloc1(as, REF_BASE, allow); rset_clear(allow, base); if ((ir->op2 & IRSLOAD_CONVERT)) { if (irt_isint(t)) { emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO); dest = ra_scratch(as, RSET_FPR); emit_fai(as, PPCI_STFD, dest, RID_SP, SPOFS_TMP); emit_fb(as, PPCI_FCTIWZ, dest, dest); t.irt = IRT_NUM; /* Check for original type. */ } else { Reg tmp = ra_scratch(as, allow); Reg hibias = ra_allock(as, 0x43300000, rset_clear(allow, tmp)); Reg fbias = ra_scratch(as, rset_exclude(RSET_FPR, dest)); emit_fab(as, PPCI_FSUB, dest, dest, fbias); emit_fai(as, PPCI_LFD, dest, RID_SP, SPOFS_TMP); emit_lsptr(as, PPCI_LFS, (fbias & 31), (void *)lj_ir_k64_find(as->J, U64x(59800004,59800000)), rset_clear(allow, hibias)); emit_tai(as, PPCI_STW, tmp, RID_SP, SPOFS_TMPLO); emit_tai(as, PPCI_STW, hibias, RID_SP, SPOFS_TMPHI); emit_asi(as, PPCI_XORIS, tmp, tmp, 0x8000); dest = tmp; t.irt = IRT_INT; /* Check for original type. */ } } goto dotypecheck; } base = ra_alloc1(as, REF_BASE, allow); rset_clear(allow, base); dotypecheck: if (irt_isnum(t)) { if ((ir->op2 & IRSLOAD_TYPECHECK)) { Reg tisnum = ra_allock(as, (int32_t)LJ_TISNUM, allow); asm_guardcc(as, CC_GE); emit_ab(as, PPCI_CMPLW, RID_TMP, tisnum); type = RID_TMP; } if (ra_hasreg(dest)) emit_fai(as, PPCI_LFD, dest, base, ofs-4); } else { if ((ir->op2 & IRSLOAD_TYPECHECK)) { asm_guardcc(as, CC_NE); emit_ai(as, PPCI_CMPWI, RID_TMP, irt_toitype(t)); type = RID_TMP; } if (ra_hasreg(dest)) emit_tai(as, PPCI_LWZ, dest, base, ofs); } if (ra_hasreg(type)) emit_tai(as, PPCI_LWZ, type, base, ofs-4); } /* -- Allocations --------------------------------------------------------- */ #if LJ_HASFFI static void asm_cnew(ASMState *as, IRIns *ir) { CTState *cts = ctype_ctsG(J2G(as->J)); CTypeID ctypeid = (CTypeID)IR(ir->op1)->i; CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ? lj_ctype_size(cts, ctypeid) : (CTSize)IR(ir->op2)->i; const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco]; IRRef args[2]; RegSet allow = (RSET_GPR & ~RSET_SCRATCH); RegSet drop = RSET_SCRATCH; lua_assert(sz != CTSIZE_INVALID); args[0] = ASMREF_L; /* lua_State *L */ args[1] = ASMREF_TMP1; /* MSize size */ as->gcsteps++; if (ra_hasreg(ir->r)) rset_clear(drop, ir->r); /* Dest reg handled below. */ ra_evictset(as, drop); if (ra_used(ir)) ra_destreg(as, ir, RID_RET); /* GCcdata * */ /* Initialize immutable cdata object. */ if (ir->o == IR_CNEWI) { int32_t ofs = sizeof(GCcdata); lua_assert(sz == 4 || sz == 8); if (sz == 8) { ofs += 4; lua_assert((ir+1)->o == IR_HIOP); } for (;;) { Reg r = ra_alloc1(as, ir->op2, allow); emit_tai(as, PPCI_STW, r, RID_RET, ofs); rset_clear(allow, r); if (ofs == sizeof(GCcdata)) break; ofs -= 4; ir++; } } /* Initialize gct and ctypeid. lj_mem_newgco() already sets marked. */ emit_tai(as, PPCI_STB, RID_RET+1, RID_RET, offsetof(GCcdata, gct)); emit_tai(as, PPCI_STH, RID_TMP, RID_RET, offsetof(GCcdata, ctypeid)); emit_ti(as, PPCI_LI, RID_RET+1, ~LJ_TCDATA); emit_ti(as, PPCI_LI, RID_TMP, ctypeid); /* Lower 16 bit used. Sign-ext ok. */ asm_gencall(as, ci, args); ra_allockreg(as, (int32_t)(sz+sizeof(GCcdata)), ra_releasetmp(as, ASMREF_TMP1)); } #else #define asm_cnew(as, ir) ((void)0) #endif /* -- Write barriers ------------------------------------------------------ */ static void asm_tbar(ASMState *as, IRIns *ir) { Reg tab = ra_alloc1(as, ir->op1, RSET_GPR); Reg mark = ra_scratch(as, rset_exclude(RSET_GPR, tab)); Reg link = RID_TMP; MCLabel l_end = emit_label(as); emit_tai(as, PPCI_STW, link, tab, (int32_t)offsetof(GCtab, gclist)); emit_tai(as, PPCI_STB, mark, tab, (int32_t)offsetof(GCtab, marked)); emit_setgl(as, tab, gc.grayagain); lua_assert(LJ_GC_BLACK == 0x04); emit_rot(as, PPCI_RLWINM, mark, mark, 0, 30, 28); /* Clear black bit. */ emit_getgl(as, link, gc.grayagain); emit_condbranch(as, PPCI_BC|PPCF_Y, CC_EQ, l_end); emit_asi(as, PPCI_ANDIDOT, RID_TMP, mark, LJ_GC_BLACK); emit_tai(as, PPCI_LBZ, mark, tab, (int32_t)offsetof(GCtab, marked)); } static void asm_obar(ASMState *as, IRIns *ir) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv]; IRRef args[2]; MCLabel l_end; Reg obj, val, tmp; /* No need for other object barriers (yet). */ lua_assert(IR(ir->op1)->o == IR_UREFC); ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ir->op1; /* TValue *tv */ asm_gencall(as, ci, args); emit_tai(as, PPCI_ADDI, ra_releasetmp(as, ASMREF_TMP1), RID_JGL, -32768); obj = IR(ir->op1)->r; tmp = ra_scratch(as, rset_exclude(RSET_GPR, obj)); emit_condbranch(as, PPCI_BC|PPCF_Y, CC_EQ, l_end); emit_asi(as, PPCI_ANDIDOT, tmp, tmp, LJ_GC_BLACK); emit_condbranch(as, PPCI_BC, CC_EQ, l_end); emit_asi(as, PPCI_ANDIDOT, RID_TMP, RID_TMP, LJ_GC_WHITES); val = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, obj)); emit_tai(as, PPCI_LBZ, tmp, obj, (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv)); emit_tai(as, PPCI_LBZ, RID_TMP, val, (int32_t)offsetof(GChead, marked)); } /* -- Arithmetic and logic operations ------------------------------------- */ static void asm_fparith(ASMState *as, IRIns *ir, PPCIns pi) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; if (pi == PPCI_FMUL) emit_fac(as, pi, dest, left, right); else emit_fab(as, pi, dest, left, right); } static void asm_fpunary(ASMState *as, IRIns *ir, PPCIns pi) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg left = ra_hintalloc(as, ir->op1, dest, RSET_FPR); emit_fb(as, pi, dest, left); } static int asm_fpjoin_pow(ASMState *as, IRIns *ir) { IRIns *irp = IR(ir->op1); if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) { IRIns *irpp = IR(irp->op1); if (irpp == ir-2 && irpp->o == IR_FPMATH && irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_pow]; IRRef args[2]; args[0] = irpp->op1; args[1] = irp->op2; asm_setupresult(as, ir, ci); asm_gencall(as, ci, args); return 1; } } return 0; } static void asm_add(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { if (!asm_fusemadd(as, ir, PPCI_FMADD, PPCI_FMADD)) asm_fparith(as, ir, PPCI_FADD); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); PPCIns pi; if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (checki16(k)) { pi = PPCI_ADDI; /* May fail due to spills/restores above, but simplifies the logic. */ if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi = PPCI_ADDICDOT; } emit_tai(as, pi, dest, left, k); return; } else if ((k & 0xffff) == 0) { emit_tai(as, PPCI_ADDIS, dest, left, (k >> 16)); return; } else if (!as->sectref) { emit_tai(as, PPCI_ADDIS, dest, dest, (k + 32768) >> 16); emit_tai(as, PPCI_ADDI, dest, left, k); return; } } pi = PPCI_ADD; /* May fail due to spills/restores above, but simplifies the logic. */ if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi |= PPCF_DOT; } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_tab(as, pi, dest, left, right); } } static void asm_sub(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { if (!asm_fusemadd(as, ir, PPCI_FMSUB, PPCI_FNMSUB)) asm_fparith(as, ir, PPCI_FSUB); } else { PPCIns pi = PPCI_SUBF; Reg dest = ra_dest(as, ir, RSET_GPR); Reg left, right; if (irref_isk(ir->op1)) { int32_t k = IR(ir->op1)->i; if (checki16(k)) { right = ra_alloc1(as, ir->op2, RSET_GPR); emit_tai(as, PPCI_SUBFIC, dest, right, k); return; } } /* May fail due to spills/restores above, but simplifies the logic. */ if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi |= PPCF_DOT; } left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_tab(as, pi, dest, right, left); /* Subtract right _from_ left. */ } } static void asm_mul(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { asm_fparith(as, ir, PPCI_FMUL); } else { PPCIns pi = PPCI_MULLW; Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (checki16(k)) { emit_tai(as, PPCI_MULLI, dest, left, k); return; } } /* May fail due to spills/restores above, but simplifies the logic. */ if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi |= PPCF_DOT; } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_tab(as, pi, dest, left, right); } } static void asm_neg(ASMState *as, IRIns *ir) { if (irt_isnum(ir->t)) { asm_fpunary(as, ir, PPCI_FNEG); } else { Reg dest, left; PPCIns pi = PPCI_NEG; if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi |= PPCF_DOT; } dest = ra_dest(as, ir, RSET_GPR); left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); emit_tab(as, pi, dest, left, 0); } } static void asm_arithov(ASMState *as, IRIns *ir, PPCIns pi) { Reg dest, left, right; if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; } asm_guardcc(as, CC_SO); dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; if (pi == PPCI_SUBFO) { Reg tmp = left; left = right; right = tmp; } emit_tab(as, pi|PPCF_DOT, dest, left, right); } #if LJ_HASFFI static void asm_add64(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR); PPCIns pi = PPCI_ADDE; if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (k == 0) pi = PPCI_ADDZE; else if (k == -1) pi = PPCI_ADDME; else goto needright; right = 0; } else { needright: right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); } emit_tab(as, pi, dest, left, right); ir--; dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc1(as, ir->op1, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (checki16(k)) { emit_tai(as, PPCI_ADDIC, dest, left, k); return; } } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_tab(as, PPCI_ADDC, dest, left, right); } static void asm_sub64(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left, right = ra_alloc1(as, ir->op2, RSET_GPR); PPCIns pi = PPCI_SUBFE; if (irref_isk(ir->op1)) { int32_t k = IR(ir->op1)->i; if (k == 0) pi = PPCI_SUBFZE; else if (k == -1) pi = PPCI_SUBFME; else goto needleft; left = 0; } else { needleft: left = ra_alloc1(as, ir->op1, rset_exclude(RSET_GPR, right)); } emit_tab(as, pi, dest, right, left); /* Subtract right _from_ left. */ ir--; dest = ra_dest(as, ir, RSET_GPR); right = ra_alloc1(as, ir->op2, RSET_GPR); if (irref_isk(ir->op1)) { int32_t k = IR(ir->op1)->i; if (checki16(k)) { emit_tai(as, PPCI_SUBFIC, dest, right, k); return; } } left = ra_alloc1(as, ir->op1, rset_exclude(RSET_GPR, right)); emit_tab(as, PPCI_SUBFC, dest, right, left); } static void asm_neg64(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg left = ra_alloc1(as, ir->op1, RSET_GPR); emit_tab(as, PPCI_SUBFZE, dest, left, 0); ir--; dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc1(as, ir->op1, RSET_GPR); emit_tai(as, PPCI_SUBFIC, dest, left, 0); } #endif static void asm_bitnot(ASMState *as, IRIns *ir) { Reg dest, left, right; PPCIns pi = PPCI_NOR; if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi |= PPCF_DOT; } dest = ra_dest(as, ir, RSET_GPR); if (mayfuse(as, ir->op1)) { IRIns *irl = IR(ir->op1); if (irl->o == IR_BAND) pi ^= (PPCI_NOR ^ PPCI_NAND); else if (irl->o == IR_BXOR) pi ^= (PPCI_NOR ^ PPCI_EQV); else if (irl->o != IR_BOR) goto nofuse; left = ra_hintalloc(as, irl->op1, dest, RSET_GPR); right = ra_alloc1(as, irl->op2, rset_exclude(RSET_GPR, left)); } else { nofuse: left = right = ra_hintalloc(as, ir->op1, dest, RSET_GPR); } emit_asb(as, pi, dest, left, right); } static void asm_bitswap(ASMState *as, IRIns *ir) { Reg dest = ra_dest(as, ir, RSET_GPR); IRIns *irx; if (mayfuse(as, ir->op1) && (irx = IR(ir->op1))->o == IR_XLOAD && ra_noreg(irx->r) && (irt_isint(irx->t) || irt_isu32(irx->t))) { /* Fuse BSWAP with XLOAD to lwbrx. */ asm_fusexrefx(as, PPCI_LWBRX, dest, irx->op1, RSET_GPR); } else { Reg left = ra_alloc1(as, ir->op1, RSET_GPR); Reg tmp = dest; if (tmp == left) { tmp = RID_TMP; emit_mr(as, dest, RID_TMP); } emit_rot(as, PPCI_RLWIMI, tmp, left, 24, 16, 23); emit_rot(as, PPCI_RLWIMI, tmp, left, 24, 0, 7); emit_rotlwi(as, tmp, left, 8); } } static void asm_bitop(ASMState *as, IRIns *ir, PPCIns pi, PPCIns pik) { Reg dest = ra_dest(as, ir, RSET_GPR); Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; Reg tmp = left; if ((checku16(k) || (k & 0xffff) == 0) || (tmp = dest, !as->sectref)) { if (!checku16(k)) { emit_asi(as, pik ^ (PPCI_ORI ^ PPCI_ORIS), dest, tmp, (k >> 16)); if ((k & 0xffff) == 0) return; } emit_asi(as, pik, dest, left, k); return; } } /* May fail due to spills/restores above, but simplifies the logic. */ if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; pi |= PPCF_DOT; } right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_asb(as, pi, dest, left, right); } /* Fuse BAND with contiguous bitmask and a shift to rlwinm. */ static void asm_fuseandsh(ASMState *as, PPCIns pi, int32_t mask, IRRef ref) { IRIns *ir; Reg left; if (mayfuse(as, ref) && (ir = IR(ref), ra_noreg(ir->r)) && irref_isk(ir->op2) && ir->o >= IR_BSHL && ir->o <= IR_BROR) { int32_t sh = (IR(ir->op2)->i & 31); switch (ir->o) { case IR_BSHL: if ((mask & ((1u<>sh))) goto nofuse; sh = ((32-sh)&31); break; case IR_BROL: break; default: goto nofuse; } left = ra_alloc1(as, ir->op1, RSET_GPR); *--as->mcp = pi | PPCF_T(left) | PPCF_B(sh); return; } nofuse: left = ra_alloc1(as, ref, RSET_GPR); *--as->mcp = pi | PPCF_T(left); } static void asm_bitand(ASMState *as, IRIns *ir) { Reg dest, left, right; IRRef lref = ir->op1; PPCIns dot = 0; IRRef op2; if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; dot = PPCF_DOT; } dest = ra_dest(as, ir, RSET_GPR); if (irref_isk(ir->op2)) { int32_t k = IR(ir->op2)->i; if (k) { /* First check for a contiguous bitmask as used by rlwinm. */ uint32_t s1 = lj_ffs((uint32_t)k); uint32_t k1 = ((uint32_t)k >> s1); if ((k1 & (k1+1)) == 0) { asm_fuseandsh(as, PPCI_RLWINM|dot | PPCF_A(dest) | PPCF_MB(31-lj_fls((uint32_t)k)) | PPCF_ME(31-s1), k, lref); return; } if (~(uint32_t)k) { uint32_t s2 = lj_ffs(~(uint32_t)k); uint32_t k2 = (~(uint32_t)k >> s2); if ((k2 & (k2+1)) == 0) { asm_fuseandsh(as, PPCI_RLWINM|dot | PPCF_A(dest) | PPCF_MB(32-s2) | PPCF_ME(30-lj_fls(~(uint32_t)k)), k, lref); return; } } } if (checku16(k)) { left = ra_alloc1(as, lref, RSET_GPR); emit_asi(as, PPCI_ANDIDOT, dest, left, k); return; } else if ((k & 0xffff) == 0) { left = ra_alloc1(as, lref, RSET_GPR); emit_asi(as, PPCI_ANDISDOT, dest, left, (k >> 16)); return; } } op2 = ir->op2; if (mayfuse(as, op2) && IR(op2)->o == IR_BNOT && ra_noreg(IR(op2)->r)) { dot ^= (PPCI_AND ^ PPCI_ANDC); op2 = IR(op2)->op1; } left = ra_hintalloc(as, lref, dest, RSET_GPR); right = ra_alloc1(as, op2, rset_exclude(RSET_GPR, left)); emit_asb(as, PPCI_AND ^ dot, dest, left, right); } static void asm_bitshift(ASMState *as, IRIns *ir, PPCIns pi, PPCIns pik) { Reg dest, left; Reg dot = 0; if (as->flagmcp == as->mcp) { as->flagmcp = NULL; as->mcp++; dot = PPCF_DOT; } dest = ra_dest(as, ir, RSET_GPR); left = ra_alloc1(as, ir->op1, RSET_GPR); if (irref_isk(ir->op2)) { /* Constant shifts. */ int32_t shift = (IR(ir->op2)->i & 31); if (pik == 0) /* SLWI */ emit_rot(as, PPCI_RLWINM|dot, dest, left, shift, 0, 31-shift); else if (pik == 1) /* SRWI */ emit_rot(as, PPCI_RLWINM|dot, dest, left, (32-shift)&31, shift, 31); else emit_asb(as, pik|dot, dest, left, shift); } else { Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left)); emit_asb(as, pi|dot, dest, left, right); } } static void asm_min_max(ASMState *as, IRIns *ir, int ismax) { if (irt_isnum(ir->t)) { Reg dest = ra_dest(as, ir, RSET_FPR); Reg tmp = dest; Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; if (tmp == left || tmp == right) tmp = ra_scratch(as, rset_exclude(rset_exclude(rset_exclude(RSET_FPR, dest), left), right)); emit_facb(as, PPCI_FSEL, dest, tmp, ismax ? left : right, ismax ? right : left); emit_fab(as, PPCI_FSUB, tmp, left, right); } else { Reg dest = ra_dest(as, ir, RSET_GPR); Reg tmp1 = RID_TMP, tmp2 = dest; Reg right, left = ra_alloc2(as, ir, RSET_GPR); right = (left >> 8); left &= 255; if (tmp2 == left || tmp2 == right) tmp2 = ra_scratch(as, rset_exclude(rset_exclude(rset_exclude(RSET_GPR, dest), left), right)); emit_tab(as, PPCI_ADD, dest, tmp2, right); emit_asb(as, ismax ? PPCI_ANDC : PPCI_AND, tmp2, tmp2, tmp1); emit_tab(as, PPCI_SUBFE, tmp1, tmp1, tmp1); emit_tab(as, PPCI_SUBFC, tmp2, tmp2, tmp1); emit_asi(as, PPCI_XORIS, tmp2, right, 0x8000); emit_asi(as, PPCI_XORIS, tmp1, left, 0x8000); } } /* -- Comparisons --------------------------------------------------------- */ #define CC_UNSIGNED 0x08 /* Unsigned integer comparison. */ #define CC_TWO 0x80 /* Check two flags for FP comparison. */ /* Map of comparisons to flags. ORDER IR. */ static const uint8_t asm_compmap[IR_ABC+1] = { /* op int cc FP cc */ /* LT */ CC_GE + (CC_GE<<4), /* GE */ CC_LT + (CC_LE<<4) + CC_TWO, /* LE */ CC_GT + (CC_GE<<4) + CC_TWO, /* GT */ CC_LE + (CC_LE<<4), /* ULT */ CC_GE + CC_UNSIGNED + (CC_GT<<4) + CC_TWO, /* UGE */ CC_LT + CC_UNSIGNED + (CC_LT<<4), /* ULE */ CC_GT + CC_UNSIGNED + (CC_GT<<4), /* UGT */ CC_LE + CC_UNSIGNED + (CC_LT<<4) + CC_TWO, /* EQ */ CC_NE + (CC_NE<<4), /* NE */ CC_EQ + (CC_EQ<<4), /* ABC */ CC_LE + CC_UNSIGNED + (CC_LT<<4) + CC_TWO /* Same as UGT. */ }; static void asm_intcomp_(ASMState *as, IRRef lref, IRRef rref, Reg cr, PPCCC cc) { Reg right, left = ra_alloc1(as, lref, RSET_GPR); if (irref_isk(rref)) { int32_t k = IR(rref)->i; if ((cc & CC_UNSIGNED) == 0) { /* Signed comparison with constant. */ if (checki16(k)) { emit_tai(as, PPCI_CMPWI, cr, left, k); /* Signed comparison with zero and referencing previous ins? */ if (k == 0 && lref == as->curins-1) as->flagmcp = as->mcp; /* Allow elimination of the compare. */ return; } else if ((cc & 3) == (CC_EQ & 3)) { /* Use CMPLWI for EQ or NE. */ if (checku16(k)) { emit_tai(as, PPCI_CMPLWI, cr, left, k); return; } else if (!as->sectref && ra_noreg(IR(rref)->r)) { emit_tai(as, PPCI_CMPLWI, cr, RID_TMP, k); emit_asi(as, PPCI_XORIS, RID_TMP, left, (k >> 16)); return; } } } else { /* Unsigned comparison with constant. */ if (checku16(k)) { emit_tai(as, PPCI_CMPLWI, cr, left, k); return; } } } right = ra_alloc1(as, rref, rset_exclude(RSET_GPR, left)); emit_tab(as, (cc & CC_UNSIGNED) ? PPCI_CMPLW : PPCI_CMPW, cr, left, right); } static void asm_comp(ASMState *as, IRIns *ir) { PPCCC cc = asm_compmap[ir->o]; if (irt_isnum(ir->t)) { Reg right, left = ra_alloc2(as, ir, RSET_FPR); right = (left >> 8); left &= 255; asm_guardcc(as, (cc >> 4)); if ((cc & CC_TWO)) emit_tab(as, PPCI_CROR, ((cc>>4)&3), ((cc>>4)&3), (CC_EQ&3)); emit_fab(as, PPCI_FCMPU, 0, left, right); } else { IRRef lref = ir->op1, rref = ir->op2; if (irref_isk(lref) && !irref_isk(rref)) { /* Swap constants to the right (only for ABC). */ IRRef tmp = lref; lref = rref; rref = tmp; if ((cc & 2) == 0) cc ^= 1; /* LT <-> GT, LE <-> GE */ } asm_guardcc(as, cc); asm_intcomp_(as, lref, rref, 0, cc); } } #if LJ_HASFFI /* 64 bit integer comparisons. */ static void asm_comp64(ASMState *as, IRIns *ir) { PPCCC cc = asm_compmap[(ir-1)->o]; if ((cc&3) == (CC_EQ&3)) { asm_guardcc(as, cc); emit_tab(as, (cc&4) ? PPCI_CRAND : PPCI_CROR, (CC_EQ&3), (CC_EQ&3), 4+(CC_EQ&3)); } else { asm_guardcc(as, CC_EQ); emit_tab(as, PPCI_CROR, (CC_EQ&3), (CC_EQ&3), ((cc^~(cc>>2))&1)); emit_tab(as, (cc&4) ? PPCI_CRAND : PPCI_CRANDC, (CC_EQ&3), (CC_EQ&3), 4+(cc&3)); } /* Loword comparison sets cr1 and is unsigned, except for equality. */ asm_intcomp_(as, (ir-1)->op1, (ir-1)->op2, 4, cc | ((cc&3) == (CC_EQ&3) ? 0 : CC_UNSIGNED)); /* Hiword comparison sets cr0. */ asm_intcomp_(as, ir->op1, ir->op2, 0, cc); as->flagmcp = NULL; /* Doesn't work here. */ } #endif /* -- Support for 64 bit ops in 32 bit mode ------------------------------- */ /* Hiword op of a split 64 bit op. Previous op must be the loword op. */ static void asm_hiop(ASMState *as, IRIns *ir) { #if LJ_HASFFI /* HIOP is marked as a store because it needs its own DCE logic. */ int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */ if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1; if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */ as->curins--; /* Always skip the CONV. */ if (usehi || uselo) asm_conv64(as, ir); return; } else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */ as->curins--; /* Always skip the loword comparison. */ asm_comp64(as, ir); return; } else if ((ir-1)->o == IR_XSTORE) { as->curins--; /* Handle both stores here. */ if ((ir-1)->r != RID_SINK) { asm_xstore(as, ir, 0); asm_xstore(as, ir-1, 4); } return; } if (!usehi) return; /* Skip unused hiword op for all remaining ops. */ switch ((ir-1)->o) { case IR_ADD: as->curins--; asm_add64(as, ir); break; case IR_SUB: as->curins--; asm_sub64(as, ir); break; case IR_NEG: as->curins--; asm_neg64(as, ir); break; case IR_CALLN: case IR_CALLXS: if (!uselo) ra_allocref(as, ir->op1, RID2RSET(RID_RETLO)); /* Mark lo op as used. */ break; case IR_CNEWI: /* Nothing to do here. Handled by lo op itself. */ break; default: lua_assert(0); break; } #else UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused without FFI. */ #endif } /* -- Stack handling ------------------------------------------------------ */ /* Check Lua stack size for overflow. Use exit handler as fallback. */ static void asm_stack_check(ASMState *as, BCReg topslot, IRIns *irp, RegSet allow, ExitNo exitno) { /* Try to get an unused temp. register, otherwise spill/restore RID_RET*. */ Reg tmp, pbase = irp ? (ra_hasreg(irp->r) ? irp->r : RID_TMP) : RID_BASE; rset_clear(allow, pbase); tmp = allow ? rset_pickbot(allow) : (pbase == RID_RETHI ? RID_RETLO : RID_RETHI); emit_condbranch(as, PPCI_BC, CC_LT, asm_exitstub_addr(as, exitno)); if (allow == RSET_EMPTY) /* Restore temp. register. */ emit_tai(as, PPCI_LWZ, tmp, RID_SP, SPOFS_TMPW); else ra_modified(as, tmp); emit_ai(as, PPCI_CMPLWI, RID_TMP, (int32_t)(8*topslot)); emit_tab(as, PPCI_SUBF, RID_TMP, pbase, tmp); emit_tai(as, PPCI_LWZ, tmp, tmp, offsetof(lua_State, maxstack)); if (pbase == RID_TMP) emit_getgl(as, RID_TMP, jit_base); emit_getgl(as, tmp, jit_L); if (allow == RSET_EMPTY) /* Spill temp. register. */ emit_tai(as, PPCI_STW, tmp, RID_SP, SPOFS_TMPW); } /* Restore Lua stack from on-trace state. */ static void asm_stack_restore(ASMState *as, SnapShot *snap) { SnapEntry *map = &as->T->snapmap[snap->mapofs]; SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1]; MSize n, nent = snap->nent; /* Store the value of all modified slots to the Lua stack. */ for (n = 0; n < nent; n++) { SnapEntry sn = map[n]; BCReg s = snap_slot(sn); int32_t ofs = 8*((int32_t)s-1); IRRef ref = snap_ref(sn); IRIns *ir = IR(ref); if ((sn & SNAP_NORESTORE)) continue; if (irt_isnum(ir->t)) { Reg src = ra_alloc1(as, ref, RSET_FPR); emit_fai(as, PPCI_STFD, src, RID_BASE, ofs); } else { Reg type; RegSet allow = rset_exclude(RSET_GPR, RID_BASE); lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || irt_isinteger(ir->t)); if (!irt_ispri(ir->t)) { Reg src = ra_alloc1(as, ref, allow); rset_clear(allow, src); emit_tai(as, PPCI_STW, src, RID_BASE, ofs+4); } if ((sn & (SNAP_CONT|SNAP_FRAME))) { if (s == 0) continue; /* Do not overwrite link to previous frame. */ type = ra_allock(as, (int32_t)(*flinks--), allow); } else { type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow); } emit_tai(as, PPCI_STW, type, RID_BASE, ofs); } checkmclim(as); } lua_assert(map + nent == flinks); } /* -- GC handling --------------------------------------------------------- */ /* Marker to prevent patching the GC check exit. */ #define PPC_NOPATCH_GC_CHECK PPCI_ORIS /* Check GC threshold and do one or more GC steps. */ static void asm_gc_check(ASMState *as) { const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit]; IRRef args[2]; MCLabel l_end; Reg tmp; ra_evictset(as, RSET_SCRATCH); l_end = emit_label(as); /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */ asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */ *--as->mcp = PPC_NOPATCH_GC_CHECK; emit_ai(as, PPCI_CMPWI, RID_RET, 0); args[0] = ASMREF_TMP1; /* global_State *g */ args[1] = ASMREF_TMP2; /* MSize steps */ asm_gencall(as, ci, args); emit_tai(as, PPCI_ADDI, ra_releasetmp(as, ASMREF_TMP1), RID_JGL, -32768); tmp = ra_releasetmp(as, ASMREF_TMP2); emit_loadi(as, tmp, as->gcsteps); /* Jump around GC step if GC total < GC threshold. */ emit_condbranch(as, PPCI_BC|PPCF_Y, CC_LT, l_end); emit_ab(as, PPCI_CMPLW, RID_TMP, tmp); emit_getgl(as, tmp, gc.threshold); emit_getgl(as, RID_TMP, gc.total); as->gcsteps = 0; checkmclim(as); } /* -- Loop handling ------------------------------------------------------- */ /* Fixup the loop branch. */ static void asm_loop_fixup(ASMState *as) { MCode *p = as->mctop; MCode *target = as->mcp; if (as->loopinv) { /* Inverted loop branch? */ /* asm_guardcc already inverted the cond branch and patched the final b. */ p[-2] = (p[-2] & (0xffff0000u & ~PPCF_Y)) | (((target-p+2) & 0x3fffu) << 2); } else { p[-1] = PPCI_B|(((target-p+1)&0x00ffffffu)<<2); } } /* -- Head of trace ------------------------------------------------------- */ /* Coalesce BASE register for a root trace. */ static void asm_head_root_base(ASMState *as) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r) || irt_ismarked(ir->t)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (r != RID_BASE) emit_mr(as, r, RID_BASE); } } /* Coalesce BASE register for a side trace. */ static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow) { IRIns *ir = IR(REF_BASE); Reg r = ir->r; if (ra_hasreg(r)) { ra_free(as, r); if (rset_test(as->modset, r) || irt_ismarked(ir->t)) ir->r = RID_INIT; /* No inheritance for modified BASE register. */ if (irp->r == r) { rset_clear(allow, r); /* Mark same BASE register as coalesced. */ } else if (ra_hasreg(irp->r) && rset_test(as->freeset, irp->r)) { rset_clear(allow, irp->r); emit_mr(as, r, irp->r); /* Move from coalesced parent reg. */ } else { emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */ } } return allow; } /* -- Tail of trace ------------------------------------------------------- */ /* Fixup the tail code. */ static void asm_tail_fixup(ASMState *as, TraceNo lnk) { MCode *p = as->mctop; MCode *target; int32_t spadj = as->T->spadjust; if (spadj == 0) { *--p = PPCI_NOP; *--p = PPCI_NOP; as->mctop = p; } else { /* Patch stack adjustment. */ lua_assert(checki16(CFRAME_SIZE+spadj)); p[-3] = PPCI_ADDI | PPCF_T(RID_TMP) | PPCF_A(RID_SP) | (CFRAME_SIZE+spadj); p[-2] = PPCI_STWU | PPCF_T(RID_TMP) | PPCF_A(RID_SP) | spadj; } /* Patch exit branch. */ target = lnk ? traceref(as->J, lnk)->mcode : (MCode *)lj_vm_exit_interp; p[-1] = PPCI_B|(((target-p+1)&0x00ffffffu)<<2); } /* Prepare tail of code. */ static void asm_tail_prep(ASMState *as) { MCode *p = as->mctop - 1; /* Leave room for exit branch. */ if (as->loopref) { as->invmcp = as->mcp = p; } else { as->mcp = p-2; /* Leave room for stack pointer adjustment. */ as->invmcp = NULL; } } /* -- Instruction dispatch ------------------------------------------------ */ /* Assemble a single instruction. */ static void asm_ir(ASMState *as, IRIns *ir) { switch ((IROp)ir->o) { /* Miscellaneous ops. */ case IR_LOOP: asm_loop(as); break; case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break; case IR_USE: ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break; case IR_PHI: asm_phi(as, ir); break; case IR_HIOP: asm_hiop(as, ir); break; case IR_GCSTEP: asm_gcstep(as, ir); break; /* Guarded assertions. */ case IR_EQ: case IR_NE: if ((ir-1)->o == IR_HREF && ir->op1 == as->curins-1) { as->curins--; asm_href(as, ir-1, (IROp)ir->o); break; } /* fallthrough */ case IR_LT: case IR_GE: case IR_LE: case IR_GT: case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT: case IR_ABC: asm_comp(as, ir); break; case IR_RETF: asm_retf(as, ir); break; /* Bit ops. */ case IR_BNOT: asm_bitnot(as, ir); break; case IR_BSWAP: asm_bitswap(as, ir); break; case IR_BAND: asm_bitand(as, ir); break; case IR_BOR: asm_bitop(as, ir, PPCI_OR, PPCI_ORI); break; case IR_BXOR: asm_bitop(as, ir, PPCI_XOR, PPCI_XORI); break; case IR_BSHL: asm_bitshift(as, ir, PPCI_SLW, 0); break; case IR_BSHR: asm_bitshift(as, ir, PPCI_SRW, 1); break; case IR_BSAR: asm_bitshift(as, ir, PPCI_SRAW, PPCI_SRAWI); break; case IR_BROL: asm_bitshift(as, ir, PPCI_RLWNM|PPCF_MB(0)|PPCF_ME(31), PPCI_RLWINM|PPCF_MB(0)|PPCF_ME(31)); break; case IR_BROR: lua_assert(0); break; /* Arithmetic ops. */ case IR_ADD: asm_add(as, ir); break; case IR_SUB: asm_sub(as, ir); break; case IR_MUL: asm_mul(as, ir); break; case IR_DIV: asm_fparith(as, ir, PPCI_FDIV); break; case IR_MOD: asm_callid(as, ir, IRCALL_lj_vm_modi); break; case IR_POW: asm_callid(as, ir, IRCALL_lj_vm_powi); break; case IR_NEG: asm_neg(as, ir); break; case IR_ABS: asm_fpunary(as, ir, PPCI_FABS); break; case IR_ATAN2: asm_callid(as, ir, IRCALL_atan2); break; case IR_LDEXP: asm_callid(as, ir, IRCALL_ldexp); break; case IR_MIN: asm_min_max(as, ir, 0); break; case IR_MAX: asm_min_max(as, ir, 1); break; case IR_FPMATH: if (ir->op2 == IRFPM_EXP2 && asm_fpjoin_pow(as, ir)) break; if (ir->op2 == IRFPM_SQRT && (as->flags & JIT_F_SQRT)) asm_fpunary(as, ir, PPCI_FSQRT); else asm_callid(as, ir, IRCALL_lj_vm_floor + ir->op2); break; /* Overflow-checking arithmetic ops. */ case IR_ADDOV: asm_arithov(as, ir, PPCI_ADDO); break; case IR_SUBOV: asm_arithov(as, ir, PPCI_SUBFO); break; case IR_MULOV: asm_arithov(as, ir, PPCI_MULLWO); break; /* Memory references. */ case IR_AREF: asm_aref(as, ir); break; case IR_HREF: asm_href(as, ir, 0); break; case IR_HREFK: asm_hrefk(as, ir); break; case IR_NEWREF: asm_newref(as, ir); break; case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break; case IR_FREF: asm_fref(as, ir); break; case IR_STRREF: asm_strref(as, ir); break; /* Loads and stores. */ case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD: asm_ahuvload(as, ir); break; case IR_FLOAD: asm_fload(as, ir); break; case IR_XLOAD: asm_xload(as, ir); break; case IR_SLOAD: asm_sload(as, ir); break; case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break; case IR_FSTORE: asm_fstore(as, ir); break; case IR_XSTORE: asm_xstore(as, ir, 0); break; /* Allocations. */ case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break; case IR_TNEW: asm_tnew(as, ir); break; case IR_TDUP: asm_tdup(as, ir); break; case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break; /* Write barriers. */ case IR_TBAR: asm_tbar(as, ir); break; case IR_OBAR: asm_obar(as, ir); break; /* Type conversions. */ case IR_CONV: asm_conv(as, ir); break; case IR_TOBIT: asm_tobit(as, ir); break; case IR_TOSTR: asm_tostr(as, ir); break; case IR_STRTO: asm_strto(as, ir); break; /* Calls. */ case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break; case IR_CALLXS: asm_callx(as, ir); break; case IR_CARG: break; default: setintV(&as->J->errinfo, ir->o); lj_trace_err_info(as->J, LJ_TRERR_NYIIR); break; } } /* -- Trace setup --------------------------------------------------------- */ /* Ensure there are enough stack slots for call arguments. */ static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci) { IRRef args[CCI_NARGS_MAX*2]; uint32_t i, nargs = (int)CCI_NARGS(ci); int nslots = 2, ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR; asm_collectargs(as, ir, ci, args); for (i = 0; i < nargs; i++) if (args[i] && irt_isfp(IR(args[i])->t)) { if (nfpr > 0) nfpr--; else nslots = (nslots+3) & ~1; } else { if (ngpr > 0) ngpr--; else nslots++; } if (nslots > as->evenspill) /* Leave room for args in stack slots. */ as->evenspill = nslots; return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET); } static void asm_setup_target(ASMState *as) { asm_exitstub_setup(as, as->T->nsnap + (as->parent ? 1 : 0)); } /* -- Trace patching ------------------------------------------------------ */ /* Patch exit jumps of existing machine code to a new target. */ void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target) { MCode *p = T->mcode; MCode *pe = (MCode *)((char *)p + T->szmcode); MCode *px = exitstub_trace_addr(T, exitno); MCode *cstart = NULL; MCode *mcarea = lj_mcode_patch(J, p, 0); int clearso = 0, patchlong = 1; for (; p < pe; p++) { /* Look for exitstub branch, try to replace with branch to target. */ uint32_t ins = *p; if ((ins & 0xfc000000u) == 0x40000000u && ((ins ^ ((char *)px-(char *)p)) & 0xffffu) == 0) { ptrdiff_t delta = (char *)target - (char *)p; if (((ins >> 16) & 3) == (CC_SO&3)) { clearso = sizeof(MCode); delta -= sizeof(MCode); } /* Many, but not all short-range branches can be patched directly. */ if (p[-1] == PPC_NOPATCH_GC_CHECK) { patchlong = 0; } else if (((delta + 0x8000) >> 16) == 0) { *p = (ins & 0xffdf0000u) | ((uint32_t)delta & 0xffffu) | ((delta & 0x8000) * (PPCF_Y/0x8000)); if (!cstart) cstart = p; } } else if ((ins & 0xfc000000u) == PPCI_B && ((ins ^ ((char *)px-(char *)p)) & 0x03ffffffu) == 0) { ptrdiff_t delta = (char *)target - (char *)p; lua_assert(((delta + 0x02000000) >> 26) == 0); *p = PPCI_B | ((uint32_t)delta & 0x03ffffffu); if (!cstart) cstart = p; } } /* Always patch long-range branch in exit stub itself. Except, if we can't. */ if (patchlong) { ptrdiff_t delta = (char *)target - (char *)px - clearso; lua_assert(((delta + 0x02000000) >> 26) == 0); *px = PPCI_B | ((uint32_t)delta & 0x03ffffffu); } if (!cstart) cstart = px; lj_mcode_sync(cstart, px+1); if (clearso) { /* Extend the current trace. Ugly workaround. */ MCode *pp = J->cur.mcode; J->cur.szmcode += sizeof(MCode); *--pp = PPCI_MCRXR; /* Clear SO flag. */ J->cur.mcode = pp; lj_mcode_sync(pp, pp+1); } lj_mcode_patch(J, mcarea, 1); }