/* ** SSA IR (Intermediate Representation) emitter. ** Copyright (C) 2005-2022 Mike Pall. See Copyright Notice in luajit.h */ #define lj_ir_c #define LUA_CORE /* For pointers to libc/libm functions. */ #include #include #include "lj_obj.h" #if LJ_HASJIT #include "lj_gc.h" #include "lj_str.h" #include "lj_tab.h" #include "lj_ir.h" #include "lj_jit.h" #include "lj_ircall.h" #include "lj_iropt.h" #include "lj_trace.h" #if LJ_HASFFI #include "lj_ctype.h" #include "lj_cdata.h" #include "lj_carith.h" #endif #include "lj_vm.h" #include "lj_strscan.h" #include "lj_lib.h" /* Some local macros to save typing. Undef'd at the end. */ #define IR(ref) (&J->cur.ir[(ref)]) #define fins (&J->fold.ins) /* Pass IR on to next optimization in chain (FOLD). */ #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) /* -- IR tables ----------------------------------------------------------- */ /* IR instruction modes. */ LJ_DATADEF const uint8_t lj_ir_mode[IR__MAX+1] = { IRDEF(IRMODE) 0 }; /* IR type sizes. */ LJ_DATADEF const uint8_t lj_ir_type_size[IRT__MAX+1] = { #define IRTSIZE(name, size) size, IRTDEF(IRTSIZE) #undef IRTSIZE 0 }; /* C call info for CALL* instructions. */ LJ_DATADEF const CCallInfo lj_ir_callinfo[] = { #define IRCALLCI(cond, name, nargs, kind, type, flags) \ { (ASMFunction)IRCALLCOND_##cond(name), \ (nargs)|(CCI_CALL_##kind)|(IRT_##type<irbuf + J->irbotlim; MSize szins = J->irtoplim - J->irbotlim; if (szins) { baseir = (IRIns *)lj_mem_realloc(J->L, baseir, szins*sizeof(IRIns), 2*szins*sizeof(IRIns)); J->irtoplim = J->irbotlim + 2*szins; } else { baseir = (IRIns *)lj_mem_realloc(J->L, NULL, 0, LJ_MIN_IRSZ*sizeof(IRIns)); J->irbotlim = REF_BASE - LJ_MIN_IRSZ/4; J->irtoplim = J->irbotlim + LJ_MIN_IRSZ; } J->cur.ir = J->irbuf = baseir - J->irbotlim; } /* Grow IR buffer at the bottom or shift it up. */ static void lj_ir_growbot(jit_State *J) { IRIns *baseir = J->irbuf + J->irbotlim; MSize szins = J->irtoplim - J->irbotlim; lua_assert(szins != 0); lua_assert(J->cur.nk == J->irbotlim); if (J->cur.nins + (szins >> 1) < J->irtoplim) { /* More than half of the buffer is free on top: shift up by a quarter. */ MSize ofs = szins >> 2; memmove(baseir + ofs, baseir, (J->cur.nins - J->irbotlim)*sizeof(IRIns)); J->irbotlim -= ofs; J->irtoplim -= ofs; J->cur.ir = J->irbuf = baseir - J->irbotlim; } else { /* Double the buffer size, but split the growth amongst top/bottom. */ IRIns *newbase = lj_mem_newt(J->L, 2*szins*sizeof(IRIns), IRIns); MSize ofs = szins >= 256 ? 128 : (szins >> 1); /* Limit bottom growth. */ memcpy(newbase + ofs, baseir, (J->cur.nins - J->irbotlim)*sizeof(IRIns)); lj_mem_free(G(J->L), baseir, szins*sizeof(IRIns)); J->irbotlim -= ofs; J->irtoplim = J->irbotlim + 2*szins; J->cur.ir = J->irbuf = newbase - J->irbotlim; } } /* Emit IR without any optimizations. */ TRef LJ_FASTCALL lj_ir_emit(jit_State *J) { IRRef ref = lj_ir_nextins(J); IRIns *ir = IR(ref); IROp op = fins->o; ir->prev = J->chain[op]; J->chain[op] = (IRRef1)ref; ir->o = op; ir->op1 = fins->op1; ir->op2 = fins->op2; J->guardemit.irt |= fins->t.irt; return TREF(ref, irt_t((ir->t = fins->t))); } /* Emit call to a C function. */ TRef lj_ir_call(jit_State *J, IRCallID id, ...) { const CCallInfo *ci = &lj_ir_callinfo[id]; uint32_t n = CCI_NARGS(ci); TRef tr = TREF_NIL; va_list argp; va_start(argp, id); if ((ci->flags & CCI_L)) n--; if (n > 0) tr = va_arg(argp, IRRef); while (n-- > 1) tr = emitir(IRT(IR_CARG, IRT_NIL), tr, va_arg(argp, IRRef)); va_end(argp); if (CCI_OP(ci) == IR_CALLS) J->needsnap = 1; /* Need snapshot after call with side effect. */ return emitir(CCI_OPTYPE(ci), tr, id); } /* -- Interning of constants ---------------------------------------------- */ /* ** IR instructions for constants are kept between J->cur.nk >= ref < REF_BIAS. ** They are chained like all other instructions, but grow downwards. ** The are interned (like strings in the VM) to facilitate reference ** comparisons. The same constant must get the same reference. */ /* Get ref of next IR constant and optionally grow IR. ** Note: this may invalidate all IRIns *! */ static LJ_AINLINE IRRef ir_nextk(jit_State *J) { IRRef ref = J->cur.nk; if (LJ_UNLIKELY(ref <= J->irbotlim)) lj_ir_growbot(J); J->cur.nk = --ref; return ref; } /* Intern int32_t constant. */ TRef LJ_FASTCALL lj_ir_kint(jit_State *J, int32_t k) { IRIns *ir, *cir = J->cur.ir; IRRef ref; for (ref = J->chain[IR_KINT]; ref; ref = cir[ref].prev) if (cir[ref].i == k) goto found; ref = ir_nextk(J); ir = IR(ref); ir->i = k; ir->t.irt = IRT_INT; ir->o = IR_KINT; ir->prev = J->chain[IR_KINT]; J->chain[IR_KINT] = (IRRef1)ref; found: return TREF(ref, IRT_INT); } /* The MRef inside the KNUM/KINT64 IR instructions holds the address of the ** 64 bit constant. The constants themselves are stored in a chained array ** and shared across traces. ** ** Rationale for choosing this data structure: ** - The address of the constants is embedded in the generated machine code ** and must never move. A resizable array or hash table wouldn't work. ** - Most apps need very few non-32 bit integer constants (less than a dozen). ** - Linear search is hard to beat in terms of speed and low complexity. */ typedef struct K64Array { MRef next; /* Pointer to next list. */ MSize numk; /* Number of used elements in this array. */ TValue k[LJ_MIN_K64SZ]; /* Array of constants. */ } K64Array; /* Free all chained arrays. */ void lj_ir_k64_freeall(jit_State *J) { K64Array *k; for (k = mref(J->k64, K64Array); k; ) { K64Array *next = mref(k->next, K64Array); lj_mem_free(J2G(J), k, sizeof(K64Array)); k = next; } } /* Find 64 bit constant in chained array or add it. */ cTValue *lj_ir_k64_find(jit_State *J, uint64_t u64) { K64Array *k, *kp = NULL; TValue *ntv; MSize idx; /* Search for the constant in the whole chain of arrays. */ for (k = mref(J->k64, K64Array); k; k = mref(k->next, K64Array)) { kp = k; /* Remember previous element in list. */ for (idx = 0; idx < k->numk; idx++) { /* Search one array. */ TValue *tv = &k->k[idx]; if (tv->u64 == u64) /* Needed for +-0/NaN/absmask. */ return tv; } } /* Constant was not found, need to add it. */ if (!(kp && kp->numk < LJ_MIN_K64SZ)) { /* Allocate a new array. */ K64Array *kn = lj_mem_newt(J->L, sizeof(K64Array), K64Array); setmref(kn->next, NULL); kn->numk = 0; if (kp) setmref(kp->next, kn); /* Chain to the end of the list. */ else setmref(J->k64, kn); /* Link first array. */ kp = kn; } ntv = &kp->k[kp->numk++]; /* Add to current array. */ ntv->u64 = u64; return ntv; } /* Intern 64 bit constant, given by its address. */ TRef lj_ir_k64(jit_State *J, IROp op, cTValue *tv) { IRIns *ir, *cir = J->cur.ir; IRRef ref; IRType t = op == IR_KNUM ? IRT_NUM : IRT_I64; for (ref = J->chain[op]; ref; ref = cir[ref].prev) if (ir_k64(&cir[ref]) == tv) goto found; ref = ir_nextk(J); ir = IR(ref); lua_assert(checkptr32(tv)); setmref(ir->ptr, tv); ir->t.irt = t; ir->o = op; ir->prev = J->chain[op]; J->chain[op] = (IRRef1)ref; found: return TREF(ref, t); } /* Intern FP constant, given by its 64 bit pattern. */ TRef lj_ir_knum_u64(jit_State *J, uint64_t u64) { return lj_ir_k64(J, IR_KNUM, lj_ir_k64_find(J, u64)); } /* Intern 64 bit integer constant. */ TRef lj_ir_kint64(jit_State *J, uint64_t u64) { return lj_ir_k64(J, IR_KINT64, lj_ir_k64_find(J, u64)); } /* Check whether a number is int and return it. -0 is NOT considered an int. */ static int numistrueint(lua_Number n, int32_t *kp) { int32_t k = lj_num2int(n); if (n == (lua_Number)k) { if (kp) *kp = k; if (k == 0) { /* Special check for -0. */ TValue tv; setnumV(&tv, n); if (tv.u32.hi != 0) return 0; } return 1; } return 0; } /* Intern number as int32_t constant if possible, otherwise as FP constant. */ TRef lj_ir_knumint(jit_State *J, lua_Number n) { int32_t k; if (numistrueint(n, &k)) return lj_ir_kint(J, k); else return lj_ir_knum(J, n); } /* Intern GC object "constant". */ TRef lj_ir_kgc(jit_State *J, GCobj *o, IRType t) { IRIns *ir, *cir = J->cur.ir; IRRef ref; lua_assert(!isdead(J2G(J), o)); for (ref = J->chain[IR_KGC]; ref; ref = cir[ref].prev) if (ir_kgc(&cir[ref]) == o) goto found; ref = ir_nextk(J); ir = IR(ref); /* NOBARRIER: Current trace is a GC root. */ setgcref(ir->gcr, o); ir->t.irt = (uint8_t)t; ir->o = IR_KGC; ir->prev = J->chain[IR_KGC]; J->chain[IR_KGC] = (IRRef1)ref; found: return TREF(ref, t); } /* Intern 32 bit pointer constant. */ TRef lj_ir_kptr_(jit_State *J, IROp op, void *ptr) { IRIns *ir, *cir = J->cur.ir; IRRef ref; lua_assert((void *)(intptr_t)i32ptr(ptr) == ptr); for (ref = J->chain[op]; ref; ref = cir[ref].prev) if (mref(cir[ref].ptr, void) == ptr) goto found; ref = ir_nextk(J); ir = IR(ref); setmref(ir->ptr, ptr); ir->t.irt = IRT_P32; ir->o = op; ir->prev = J->chain[op]; J->chain[op] = (IRRef1)ref; found: return TREF(ref, IRT_P32); } /* Intern typed NULL constant. */ TRef lj_ir_knull(jit_State *J, IRType t) { IRIns *ir, *cir = J->cur.ir; IRRef ref; for (ref = J->chain[IR_KNULL]; ref; ref = cir[ref].prev) if (irt_t(cir[ref].t) == t) goto found; ref = ir_nextk(J); ir = IR(ref); ir->i = 0; ir->t.irt = (uint8_t)t; ir->o = IR_KNULL; ir->prev = J->chain[IR_KNULL]; J->chain[IR_KNULL] = (IRRef1)ref; found: return TREF(ref, t); } /* Intern key slot. */ TRef lj_ir_kslot(jit_State *J, TRef key, IRRef slot) { IRIns *ir, *cir = J->cur.ir; IRRef2 op12 = IRREF2((IRRef1)key, (IRRef1)slot); IRRef ref; /* Const part is not touched by CSE/DCE, so 0-65535 is ok for IRMlit here. */ lua_assert(tref_isk(key) && slot == (IRRef)(IRRef1)slot); for (ref = J->chain[IR_KSLOT]; ref; ref = cir[ref].prev) if (cir[ref].op12 == op12) goto found; ref = ir_nextk(J); ir = IR(ref); ir->op12 = op12; ir->t.irt = IRT_P32; ir->o = IR_KSLOT; ir->prev = J->chain[IR_KSLOT]; J->chain[IR_KSLOT] = (IRRef1)ref; found: return TREF(ref, IRT_P32); } /* -- Access to IR constants ---------------------------------------------- */ /* Copy value of IR constant. */ void lj_ir_kvalue(lua_State *L, TValue *tv, const IRIns *ir) { UNUSED(L); lua_assert(ir->o != IR_KSLOT); /* Common mistake. */ switch (ir->o) { case IR_KPRI: setitype(tv, irt_toitype(ir->t)); break; case IR_KINT: setintV(tv, ir->i); break; case IR_KGC: setgcV(L, tv, ir_kgc(ir), irt_toitype(ir->t)); break; case IR_KPTR: case IR_KKPTR: case IR_KNULL: setlightudV(tv, mref(ir->ptr, void)); break; case IR_KNUM: setnumV(tv, ir_knum(ir)->n); break; #if LJ_HASFFI case IR_KINT64: { GCcdata *cd = lj_cdata_new_(L, CTID_INT64, 8); *(uint64_t *)cdataptr(cd) = ir_kint64(ir)->u64; setcdataV(L, tv, cd); break; } #endif default: lua_assert(0); break; } } /* -- Convert IR operand types -------------------------------------------- */ /* Convert from string to number. */ TRef LJ_FASTCALL lj_ir_tonumber(jit_State *J, TRef tr) { if (!tref_isnumber(tr)) { if (tref_isstr(tr)) tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0); else lj_trace_err(J, LJ_TRERR_BADTYPE); } return tr; } /* Convert from integer or string to number. */ TRef LJ_FASTCALL lj_ir_tonum(jit_State *J, TRef tr) { if (!tref_isnum(tr)) { if (tref_isinteger(tr)) tr = emitir(IRTN(IR_CONV), tr, IRCONV_NUM_INT); else if (tref_isstr(tr)) tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0); else lj_trace_err(J, LJ_TRERR_BADTYPE); } return tr; } /* Convert from integer or number to string. */ TRef LJ_FASTCALL lj_ir_tostr(jit_State *J, TRef tr) { if (!tref_isstr(tr)) { if (!tref_isnumber(tr)) lj_trace_err(J, LJ_TRERR_BADTYPE); tr = emitir(IRT(IR_TOSTR, IRT_STR), tr, 0); } return tr; } /* -- Miscellaneous IR ops ------------------------------------------------ */ /* Evaluate numeric comparison. */ int lj_ir_numcmp(lua_Number a, lua_Number b, IROp op) { switch (op) { case IR_EQ: return (a == b); case IR_NE: return (a != b); case IR_LT: return (a < b); case IR_GE: return (a >= b); case IR_LE: return (a <= b); case IR_GT: return (a > b); case IR_ULT: return !(a >= b); case IR_UGE: return !(a < b); case IR_ULE: return !(a > b); case IR_UGT: return !(a <= b); default: lua_assert(0); return 0; } } /* Evaluate string comparison. */ int lj_ir_strcmp(GCstr *a, GCstr *b, IROp op) { int res = lj_str_cmp(a, b); switch (op) { case IR_LT: return (res < 0); case IR_GE: return (res >= 0); case IR_LE: return (res <= 0); case IR_GT: return (res > 0); default: lua_assert(0); return 0; } } /* Rollback IR to previous state. */ void lj_ir_rollback(jit_State *J, IRRef ref) { IRRef nins = J->cur.nins; while (nins > ref) { IRIns *ir; nins--; ir = IR(nins); J->chain[ir->o] = ir->prev; } J->cur.nins = nins; } #undef IR #undef fins #undef emitir #endif