/* ** LuaJIT VM tags, values and objects. ** Copyright (C) 2005-2022 Mike Pall. See Copyright Notice in luajit.h ** ** Portions taken verbatim or adapted from the Lua interpreter. ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h */ #ifndef _LJ_OBJ_H #define _LJ_OBJ_H #include "lua.h" #include "lj_def.h" #include "lj_arch.h" /* -- Memory references (32 bit address space) ---------------------------- */ /* Memory size. */ typedef uint32_t MSize; /* Memory reference */ typedef struct MRef { uint32_t ptr32; /* Pseudo 32 bit pointer. */ } MRef; #define mref(r, t) ((t *)(void *)(uintptr_t)(r).ptr32) #define setmref(r, p) ((r).ptr32 = (uint32_t)(uintptr_t)(void *)(p)) #define setmrefr(r, v) ((r).ptr32 = (v).ptr32) /* -- GC object references (32 bit address space) ------------------------- */ /* GCobj reference */ typedef struct GCRef { uint32_t gcptr32; /* Pseudo 32 bit pointer. */ } GCRef; /* Common GC header for all collectable objects. */ #define GCHeader GCRef nextgc; uint8_t marked; uint8_t gct /* This occupies 6 bytes, so use the next 2 bytes for non-32 bit fields. */ #define gcref(r) ((GCobj *)(uintptr_t)(r).gcptr32) #define gcrefp(r, t) ((t *)(void *)(uintptr_t)(r).gcptr32) #define gcrefu(r) ((r).gcptr32) #define gcrefi(r) ((int32_t)(r).gcptr32) #define gcrefeq(r1, r2) ((r1).gcptr32 == (r2).gcptr32) #define gcnext(gc) (gcref((gc)->gch.nextgc)) #define setgcref(r, gc) ((r).gcptr32 = (uint32_t)(uintptr_t)&(gc)->gch) #define setgcrefi(r, i) ((r).gcptr32 = (uint32_t)(i)) #define setgcrefp(r, p) ((r).gcptr32 = (uint32_t)(uintptr_t)(p)) #define setgcrefnull(r) ((r).gcptr32 = 0) #define setgcrefr(r, v) ((r).gcptr32 = (v).gcptr32) /* IMPORTANT NOTE: ** ** All uses of the setgcref* macros MUST be accompanied with a write barrier. ** ** This is to ensure the integrity of the incremental GC. The invariant ** to preserve is that a black object never points to a white object. ** I.e. never store a white object into a field of a black object. ** ** It's ok to LEAVE OUT the write barrier ONLY in the following cases: ** - The source is not a GC object (NULL). ** - The target is a GC root. I.e. everything in global_State. ** - The target is a lua_State field (threads are never black). ** - The target is a stack slot, see setgcV et al. ** - The target is an open upvalue, i.e. pointing to a stack slot. ** - The target is a newly created object (i.e. marked white). But make ** sure nothing invokes the GC inbetween. ** - The target and the source are the same object (self-reference). ** - The target already contains the object (e.g. moving elements around). ** ** The most common case is a store to a stack slot. All other cases where ** a barrier has been omitted are annotated with a NOBARRIER comment. ** ** The same logic applies for stores to table slots (array part or hash ** part). ALL uses of lj_tab_set* require a barrier for the stored value ** *and* the stored key, based on the above rules. In practice this means ** a barrier is needed if *either* of the key or value are a GC object. ** ** It's ok to LEAVE OUT the write barrier in the following special cases: ** - The stored value is nil. The key doesn't matter because it's either ** not resurrected or lj_tab_newkey() will take care of the key barrier. ** - The key doesn't matter if the *previously* stored value is guaranteed ** to be non-nil (because the key is kept alive in the table). ** - The key doesn't matter if it's guaranteed not to be part of the table, ** since lj_tab_newkey() takes care of the key barrier. This applies ** trivially to new tables, but watch out for resurrected keys. Storing ** a nil value leaves the key in the table! ** ** In case of doubt use lj_gc_anybarriert() as it's rather cheap. It's used ** by the interpreter for all table stores. ** ** Note: In contrast to Lua's GC, LuaJIT's GC does *not* specially mark ** dead keys in tables. The reference is left in, but it's guaranteed to ** be never dereferenced as long as the value is nil. It's ok if the key is ** freed or if any object subsequently gets the same address. ** ** Not destroying dead keys helps to keep key hash slots stable. This avoids ** specialization back-off for HREFK when a value flips between nil and ** non-nil and the GC gets in the way. It also allows safely hoisting ** HREF/HREFK across GC steps. Dead keys are only removed if a table is ** resized (i.e. by NEWREF) and xREF must not be CSEd across a resize. ** ** The trade-off is that a write barrier for tables must take the key into ** account, too. Implicitly resurrecting the key by storing a non-nil value ** may invalidate the incremental GC invariant. */ /* -- Common type definitions --------------------------------------------- */ /* Types for handling bytecodes. Need this here, details in lj_bc.h. */ typedef uint32_t BCIns; /* Bytecode instruction. */ typedef uint32_t BCPos; /* Bytecode position. */ typedef uint32_t BCReg; /* Bytecode register. */ typedef int32_t BCLine; /* Bytecode line number. */ /* Internal assembler functions. Never call these directly from C. */ typedef void (*ASMFunction)(void); /* Resizable string buffer. Need this here, details in lj_str.h. */ typedef struct SBuf { char *buf; /* String buffer base. */ MSize n; /* String buffer length. */ MSize sz; /* String buffer size. */ } SBuf; /* -- Tags and values ----------------------------------------------------- */ /* Frame link. */ typedef union { int32_t ftsz; /* Frame type and size of previous frame. */ MRef pcr; /* Overlaps PC for Lua frames. */ } FrameLink; /* Tagged value. */ typedef LJ_ALIGN(8) union TValue { uint64_t u64; /* 64 bit pattern overlaps number. */ lua_Number n; /* Number object overlaps split tag/value object. */ struct { LJ_ENDIAN_LOHI( union { GCRef gcr; /* GCobj reference (if any). */ int32_t i; /* Integer value. */ }; , uint32_t it; /* Internal object tag. Must overlap MSW of number. */ ) }; struct { LJ_ENDIAN_LOHI( GCRef func; /* Function for next frame (or dummy L). */ , FrameLink tp; /* Link to previous frame. */ ) } fr; struct { LJ_ENDIAN_LOHI( uint32_t lo; /* Lower 32 bits of number. */ , uint32_t hi; /* Upper 32 bits of number. */ ) } u32; } TValue; typedef const TValue cTValue; #define tvref(r) (mref(r, TValue)) /* More external and GCobj tags for internal objects. */ #define LAST_TT LUA_TTHREAD #define LUA_TPROTO (LAST_TT+1) #define LUA_TCDATA (LAST_TT+2) /* Internal object tags. ** ** Internal tags overlap the MSW of a number object (must be a double). ** Interpreted as a double these are special NaNs. The FPU only generates ** one type of NaN (0xfff8_0000_0000_0000). So MSWs > 0xfff80000 are available ** for use as internal tags. Small negative numbers are used to shorten the ** encoding of type comparisons (reg/mem against sign-ext. 8 bit immediate). ** ** ---MSW---.---LSW--- ** primitive types | itype | | ** lightuserdata | itype | void * | (32 bit platforms) ** lightuserdata |ffff| void * | (64 bit platforms, 47 bit pointers) ** GC objects | itype | GCRef | ** int (LJ_DUALNUM)| itype | int | ** number -------double------ ** ** ORDER LJ_T ** Primitive types nil/false/true must be first, lightuserdata next. ** GC objects are at the end, table/userdata must be lowest. ** Also check lj_ir.h for similar ordering constraints. */ #define LJ_TNIL (~0u) #define LJ_TFALSE (~1u) #define LJ_TTRUE (~2u) #define LJ_TLIGHTUD (~3u) #define LJ_TSTR (~4u) #define LJ_TUPVAL (~5u) #define LJ_TTHREAD (~6u) #define LJ_TPROTO (~7u) #define LJ_TFUNC (~8u) #define LJ_TTRACE (~9u) #define LJ_TCDATA (~10u) #define LJ_TTAB (~11u) #define LJ_TUDATA (~12u) /* This is just the canonical number type used in some places. */ #define LJ_TNUMX (~13u) /* Integers have itype == LJ_TISNUM doubles have itype < LJ_TISNUM */ #if LJ_64 #define LJ_TISNUM 0xfffeffffu #else #define LJ_TISNUM LJ_TNUMX #endif #define LJ_TISTRUECOND LJ_TFALSE #define LJ_TISPRI LJ_TTRUE #define LJ_TISGCV (LJ_TSTR+1) #define LJ_TISTABUD LJ_TTAB /* -- String object ------------------------------------------------------- */ /* String object header. String payload follows. */ typedef struct GCstr { GCHeader; uint8_t reserved; /* Used by lexer for fast lookup of reserved words. */ uint8_t unused; MSize hash; /* Hash of string. */ MSize len; /* Size of string. */ } GCstr; #define strref(r) (&gcref((r))->str) #define strdata(s) ((const char *)((s)+1)) #define strdatawr(s) ((char *)((s)+1)) #define strVdata(o) strdata(strV(o)) #define sizestring(s) (sizeof(struct GCstr)+(s)->len+1) /* -- Userdata object ----------------------------------------------------- */ /* Userdata object. Payload follows. */ typedef struct GCudata { GCHeader; uint8_t udtype; /* Userdata type. */ uint8_t unused2; GCRef env; /* Should be at same offset in GCfunc. */ MSize len; /* Size of payload. */ GCRef metatable; /* Must be at same offset in GCtab. */ uint32_t align1; /* To force 8 byte alignment of the payload. */ } GCudata; /* Userdata types. */ enum { UDTYPE_USERDATA, /* Regular userdata. */ UDTYPE_IO_FILE, /* I/O library FILE. */ UDTYPE_FFI_CLIB, /* FFI C library namespace. */ UDTYPE__MAX }; #define uddata(u) ((void *)((u)+1)) #define sizeudata(u) (sizeof(struct GCudata)+(u)->len) /* -- C data object ------------------------------------------------------- */ /* C data object. Payload follows. */ typedef struct GCcdata { GCHeader; uint16_t ctypeid; /* C type ID. */ } GCcdata; /* Prepended to variable-sized or realigned C data objects. */ typedef struct GCcdataVar { uint16_t offset; /* Offset to allocated memory (relative to GCcdata). */ uint16_t extra; /* Extra space allocated (incl. GCcdata + GCcdatav). */ MSize len; /* Size of payload. */ } GCcdataVar; #define cdataptr(cd) ((void *)((cd)+1)) #define cdataisv(cd) ((cd)->marked & 0x80) #define cdatav(cd) ((GCcdataVar *)((char *)(cd) - sizeof(GCcdataVar))) #define cdatavlen(cd) check_exp(cdataisv(cd), cdatav(cd)->len) #define sizecdatav(cd) (cdatavlen(cd) + cdatav(cd)->extra) #define memcdatav(cd) ((void *)((char *)(cd) - cdatav(cd)->offset)) /* -- Prototype object ---------------------------------------------------- */ #define SCALE_NUM_GCO ((int32_t)sizeof(lua_Number)/sizeof(GCRef)) #define round_nkgc(n) (((n) + SCALE_NUM_GCO-1) & ~(SCALE_NUM_GCO-1)) typedef struct GCproto { GCHeader; uint8_t numparams; /* Number of parameters. */ uint8_t framesize; /* Fixed frame size. */ MSize sizebc; /* Number of bytecode instructions. */ GCRef gclist; MRef k; /* Split constant array (points to the middle). */ MRef uv; /* Upvalue list. local slot|0x8000 or parent uv idx. */ MSize sizekgc; /* Number of collectable constants. */ MSize sizekn; /* Number of lua_Number constants. */ MSize sizept; /* Total size including colocated arrays. */ uint8_t sizeuv; /* Number of upvalues. */ uint8_t flags; /* Miscellaneous flags (see below). */ uint16_t trace; /* Anchor for chain of root traces. */ /* ------ The following fields are for debugging/tracebacks only ------ */ GCRef chunkname; /* Name of the chunk this function was defined in. */ BCLine firstline; /* First line of the function definition. */ BCLine numline; /* Number of lines for the function definition. */ MRef lineinfo; /* Compressed map from bytecode ins. to source line. */ MRef uvinfo; /* Upvalue names. */ MRef varinfo; /* Names and compressed extents of local variables. */ } GCproto; /* Flags for prototype. */ #define PROTO_CHILD 0x01 /* Has child prototypes. */ #define PROTO_VARARG 0x02 /* Vararg function. */ #define PROTO_FFI 0x04 /* Uses BC_KCDATA for FFI datatypes. */ #define PROTO_NOJIT 0x08 /* JIT disabled for this function. */ #define PROTO_ILOOP 0x10 /* Patched bytecode with ILOOP etc. */ /* Only used during parsing. */ #define PROTO_HAS_RETURN 0x20 /* Already emitted a return. */ #define PROTO_FIXUP_RETURN 0x40 /* Need to fixup emitted returns. */ /* Top bits used for counting created closures. */ #define PROTO_CLCOUNT 0x20 /* Base of saturating 3 bit counter. */ #define PROTO_CLC_BITS 3 #define PROTO_CLC_POLY (3*PROTO_CLCOUNT) /* Polymorphic threshold. */ #define PROTO_UV_LOCAL 0x8000 /* Upvalue for local slot. */ #define PROTO_UV_IMMUTABLE 0x4000 /* Immutable upvalue. */ #define proto_kgc(pt, idx) \ check_exp((uintptr_t)(intptr_t)(idx) >= ~(uintptr_t)(pt)->sizekgc+1u, \ gcref(mref((pt)->k, GCRef)[(idx)])) #define proto_knumtv(pt, idx) \ check_exp((uintptr_t)(idx) < (pt)->sizekn, &mref((pt)->k, TValue)[(idx)]) #define proto_bc(pt) ((BCIns *)((char *)(pt) + sizeof(GCproto))) #define proto_bcpos(pt, pc) ((BCPos)((pc) - proto_bc(pt))) #define proto_uv(pt) (mref((pt)->uv, uint16_t)) #define proto_chunkname(pt) (strref((pt)->chunkname)) #define proto_chunknamestr(pt) (strdata(proto_chunkname((pt)))) #define proto_lineinfo(pt) (mref((pt)->lineinfo, const void)) #define proto_uvinfo(pt) (mref((pt)->uvinfo, const uint8_t)) #define proto_varinfo(pt) (mref((pt)->varinfo, const uint8_t)) /* -- Upvalue object ------------------------------------------------------ */ typedef struct GCupval { GCHeader; uint8_t closed; /* Set if closed (i.e. uv->v == &uv->u.value). */ uint8_t immutable; /* Immutable value. */ union { TValue tv; /* If closed: the value itself. */ struct { /* If open: double linked list, anchored at thread. */ GCRef prev; GCRef next; }; }; MRef v; /* Points to stack slot (open) or above (closed). */ uint32_t dhash; /* Disambiguation hash: dh1 != dh2 => cannot alias. */ } GCupval; #define uvprev(uv_) (&gcref((uv_)->prev)->uv) #define uvnext(uv_) (&gcref((uv_)->next)->uv) #define uvval(uv_) (mref((uv_)->v, TValue)) /* -- Function object (closures) ------------------------------------------ */ /* Common header for functions. env should be at same offset in GCudata. */ #define GCfuncHeader \ GCHeader; uint8_t ffid; uint8_t nupvalues; \ GCRef env; GCRef gclist; MRef pc typedef struct GCfuncC { GCfuncHeader; lua_CFunction f; /* C function to be called. */ TValue upvalue[1]; /* Array of upvalues (TValue). */ } GCfuncC; typedef struct GCfuncL { GCfuncHeader; GCRef uvptr[1]; /* Array of _pointers_ to upvalue objects (GCupval). */ } GCfuncL; typedef union GCfunc { GCfuncC c; GCfuncL l; } GCfunc; #define FF_LUA 0 #define FF_C 1 #define isluafunc(fn) ((fn)->c.ffid == FF_LUA) #define iscfunc(fn) ((fn)->c.ffid == FF_C) #define isffunc(fn) ((fn)->c.ffid > FF_C) #define funcproto(fn) \ check_exp(isluafunc(fn), (GCproto *)(mref((fn)->l.pc, char)-sizeof(GCproto))) #define sizeCfunc(n) (sizeof(GCfuncC)-sizeof(TValue)+sizeof(TValue)*(n)) #define sizeLfunc(n) (sizeof(GCfuncL)-sizeof(GCRef)+sizeof(GCRef)*(n)) /* -- Table object -------------------------------------------------------- */ /* Hash node. */ typedef struct Node { TValue val; /* Value object. Must be first field. */ TValue key; /* Key object. */ MRef next; /* Hash chain. */ MRef freetop; /* Top of free elements (stored in t->node[0]). */ } Node; LJ_STATIC_ASSERT(offsetof(Node, val) == 0); typedef struct GCtab { GCHeader; uint8_t nomm; /* Negative cache for fast metamethods. */ int8_t colo; /* Array colocation. */ MRef array; /* Array part. */ GCRef gclist; GCRef metatable; /* Must be at same offset in GCudata. */ MRef node; /* Hash part. */ uint32_t asize; /* Size of array part (keys [0, asize-1]). */ uint32_t hmask; /* Hash part mask (size of hash part - 1). */ } GCtab; #define sizetabcolo(n) ((n)*sizeof(TValue) + sizeof(GCtab)) #define tabref(r) ((GCtab *)gcref((r))) #define noderef(r) (mref((r), Node)) #define nextnode(n) (mref((n)->next, Node)) /* -- State objects ------------------------------------------------------- */ /* VM states. */ enum { LJ_VMST_INTERP, /* Interpreter. */ LJ_VMST_C, /* C function. */ LJ_VMST_GC, /* Garbage collector. */ LJ_VMST_EXIT, /* Trace exit handler. */ LJ_VMST_RECORD, /* Trace recorder. */ LJ_VMST_OPT, /* Optimizer. */ LJ_VMST_ASM, /* Assembler. */ LJ_VMST__MAX }; #define setvmstate(g, st) ((g)->vmstate = ~LJ_VMST_##st) /* Metamethods. ORDER MM */ #ifdef LJ_HASFFI #define MMDEF_FFI(_) _(new) #else #define MMDEF_FFI(_) #endif #if LJ_52 || LJ_HASFFI #define MMDEF_PAIRS(_) _(pairs) _(ipairs) #else #define MMDEF_PAIRS(_) #define MM_pairs 255 #define MM_ipairs 255 #endif #define MMDEF(_) \ _(index) _(newindex) _(gc) _(mode) _(eq) _(len) \ /* Only the above (fast) metamethods are negative cached (max. 8). */ \ _(lt) _(le) _(concat) _(call) \ /* The following must be in ORDER ARITH. */ \ _(add) _(sub) _(mul) _(div) _(mod) _(pow) _(unm) \ /* The following are used in the standard libraries. */ \ _(metatable) _(tostring) MMDEF_FFI(_) MMDEF_PAIRS(_) typedef enum { #define MMENUM(name) MM_##name, MMDEF(MMENUM) #undef MMENUM MM__MAX, MM____ = MM__MAX, MM_FAST = MM_len } MMS; /* GC root IDs. */ typedef enum { GCROOT_MMNAME, /* Metamethod names. */ GCROOT_MMNAME_LAST = GCROOT_MMNAME + MM__MAX-1, GCROOT_BASEMT, /* Metatables for base types. */ GCROOT_BASEMT_NUM = GCROOT_BASEMT + ~LJ_TNUMX, GCROOT_IO_INPUT, /* Userdata for default I/O input file. */ GCROOT_IO_OUTPUT, /* Userdata for default I/O output file. */ GCROOT_MAX } GCRootID; #define basemt_it(g, it) ((g)->gcroot[GCROOT_BASEMT+~(it)]) #define basemt_obj(g, o) ((g)->gcroot[GCROOT_BASEMT+itypemap(o)]) #define mmname_str(g, mm) (strref((g)->gcroot[GCROOT_MMNAME+(mm)])) typedef struct GCState { MSize total; /* Memory currently allocated. */ MSize threshold; /* Memory threshold. */ uint8_t currentwhite; /* Current white color. */ uint8_t state; /* GC state. */ uint8_t nocdatafin; /* No cdata finalizer called. */ uint8_t unused2; MSize sweepstr; /* Sweep position in string table. */ GCRef root; /* List of all collectable objects. */ MRef sweep; /* Sweep position in root list. */ GCRef gray; /* List of gray objects. */ GCRef grayagain; /* List of objects for atomic traversal. */ GCRef weak; /* List of weak tables (to be cleared). */ GCRef mmudata; /* List of userdata (to be finalized). */ MSize stepmul; /* Incremental GC step granularity. */ MSize debt; /* Debt (how much GC is behind schedule). */ MSize estimate; /* Estimate of memory actually in use. */ MSize pause; /* Pause between successive GC cycles. */ } GCState; /* Global state, shared by all threads of a Lua universe. */ typedef struct global_State { GCRef *strhash; /* String hash table (hash chain anchors). */ MSize strmask; /* String hash mask (size of hash table - 1). */ MSize strnum; /* Number of strings in hash table. */ lua_Alloc allocf; /* Memory allocator. */ void *allocd; /* Memory allocator data. */ GCState gc; /* Garbage collector. */ SBuf tmpbuf; /* Temporary buffer for string concatenation. */ Node nilnode; /* Fallback 1-element hash part (nil key and value). */ GCstr strempty; /* Empty string. */ uint8_t stremptyz; /* Zero terminator of empty string. */ uint8_t hookmask; /* Hook mask. */ uint8_t dispatchmode; /* Dispatch mode. */ uint8_t vmevmask; /* VM event mask. */ GCRef mainthref; /* Link to main thread. */ TValue registrytv; /* Anchor for registry. */ TValue tmptv, tmptv2; /* Temporary TValues. */ GCupval uvhead; /* Head of double-linked list of all open upvalues. */ int32_t hookcount; /* Instruction hook countdown. */ int32_t hookcstart; /* Start count for instruction hook counter. */ lua_Hook hookf; /* Hook function. */ lua_CFunction wrapf; /* Wrapper for C function calls. */ lua_CFunction panic; /* Called as a last resort for errors. */ volatile int32_t vmstate; /* VM state or current JIT code trace number. */ BCIns bc_cfunc_int; /* Bytecode for internal C function calls. */ BCIns bc_cfunc_ext; /* Bytecode for external C function calls. */ GCRef jit_L; /* Current JIT code lua_State or NULL. */ MRef jit_base; /* Current JIT code L->base. */ MRef ctype_state; /* Pointer to C type state. */ GCRef gcroot[GCROOT_MAX]; /* GC roots. */ } global_State; #define mainthread(g) (&gcref(g->mainthref)->th) #define niltv(L) \ check_exp(tvisnil(&G(L)->nilnode.val), &G(L)->nilnode.val) #define niltvg(g) \ check_exp(tvisnil(&(g)->nilnode.val), &(g)->nilnode.val) /* Hook management. Hook event masks are defined in lua.h. */ #define HOOK_EVENTMASK 0x0f #define HOOK_ACTIVE 0x10 #define HOOK_ACTIVE_SHIFT 4 #define HOOK_VMEVENT 0x20 #define HOOK_GC 0x40 #define hook_active(g) ((g)->hookmask & HOOK_ACTIVE) #define hook_enter(g) ((g)->hookmask |= HOOK_ACTIVE) #define hook_entergc(g) ((g)->hookmask |= (HOOK_ACTIVE|HOOK_GC)) #define hook_vmevent(g) ((g)->hookmask |= (HOOK_ACTIVE|HOOK_VMEVENT)) #define hook_leave(g) ((g)->hookmask &= ~HOOK_ACTIVE) #define hook_save(g) ((g)->hookmask & ~HOOK_EVENTMASK) #define hook_restore(g, h) \ ((g)->hookmask = ((g)->hookmask & HOOK_EVENTMASK) | (h)) /* Per-thread state object. */ struct lua_State { GCHeader; uint8_t dummy_ffid; /* Fake FF_C for curr_funcisL() on dummy frames. */ uint8_t status; /* Thread status. */ MRef glref; /* Link to global state. */ GCRef gclist; /* GC chain. */ TValue *base; /* Base of currently executing function. */ TValue *top; /* First free slot in the stack. */ MRef maxstack; /* Last free slot in the stack. */ MRef stack; /* Stack base. */ GCRef openupval; /* List of open upvalues in the stack. */ GCRef env; /* Thread environment (table of globals). */ void *cframe; /* End of C stack frame chain. */ MSize stacksize; /* True stack size (incl. LJ_STACK_EXTRA). */ }; #define G(L) (mref(L->glref, global_State)) #define registry(L) (&G(L)->registrytv) /* Macros to access the currently executing (Lua) function. */ #define curr_func(L) (&gcref((L->base-1)->fr.func)->fn) #define curr_funcisL(L) (isluafunc(curr_func(L))) #define curr_proto(L) (funcproto(curr_func(L))) #define curr_topL(L) (L->base + curr_proto(L)->framesize) #define curr_top(L) (curr_funcisL(L) ? curr_topL(L) : L->top) /* -- GC object definition and conversions -------------------------------- */ /* GC header for generic access to common fields of GC objects. */ typedef struct GChead { GCHeader; uint8_t unused1; uint8_t unused2; GCRef env; GCRef gclist; GCRef metatable; } GChead; /* The env field SHOULD be at the same offset for all GC objects. */ LJ_STATIC_ASSERT(offsetof(GChead, env) == offsetof(GCfuncL, env)); LJ_STATIC_ASSERT(offsetof(GChead, env) == offsetof(GCudata, env)); /* The metatable field MUST be at the same offset for all GC objects. */ LJ_STATIC_ASSERT(offsetof(GChead, metatable) == offsetof(GCtab, metatable)); LJ_STATIC_ASSERT(offsetof(GChead, metatable) == offsetof(GCudata, metatable)); /* The gclist field MUST be at the same offset for all GC objects. */ LJ_STATIC_ASSERT(offsetof(GChead, gclist) == offsetof(lua_State, gclist)); LJ_STATIC_ASSERT(offsetof(GChead, gclist) == offsetof(GCproto, gclist)); LJ_STATIC_ASSERT(offsetof(GChead, gclist) == offsetof(GCfuncL, gclist)); LJ_STATIC_ASSERT(offsetof(GChead, gclist) == offsetof(GCtab, gclist)); typedef union GCobj { GChead gch; GCstr str; GCupval uv; lua_State th; GCproto pt; GCfunc fn; GCcdata cd; GCtab tab; GCudata ud; } GCobj; /* Macros to convert a GCobj pointer into a specific value. */ #define gco2str(o) check_exp((o)->gch.gct == ~LJ_TSTR, &(o)->str) #define gco2uv(o) check_exp((o)->gch.gct == ~LJ_TUPVAL, &(o)->uv) #define gco2th(o) check_exp((o)->gch.gct == ~LJ_TTHREAD, &(o)->th) #define gco2pt(o) check_exp((o)->gch.gct == ~LJ_TPROTO, &(o)->pt) #define gco2func(o) check_exp((o)->gch.gct == ~LJ_TFUNC, &(o)->fn) #define gco2cd(o) check_exp((o)->gch.gct == ~LJ_TCDATA, &(o)->cd) #define gco2tab(o) check_exp((o)->gch.gct == ~LJ_TTAB, &(o)->tab) #define gco2ud(o) check_exp((o)->gch.gct == ~LJ_TUDATA, &(o)->ud) /* Macro to convert any collectable object into a GCobj pointer. */ #define obj2gco(v) ((GCobj *)(v)) /* -- TValue getters/setters ---------------------------------------------- */ #ifdef LUA_USE_ASSERT #include "lj_gc.h" #endif /* Macros to test types. */ #define itype(o) ((o)->it) #define tvisnil(o) (itype(o) == LJ_TNIL) #define tvisfalse(o) (itype(o) == LJ_TFALSE) #define tvistrue(o) (itype(o) == LJ_TTRUE) #define tvisbool(o) (tvisfalse(o) || tvistrue(o)) #if LJ_64 #define tvislightud(o) (((int32_t)itype(o) >> 15) == -2) #else #define tvislightud(o) (itype(o) == LJ_TLIGHTUD) #endif #define tvisstr(o) (itype(o) == LJ_TSTR) #define tvisfunc(o) (itype(o) == LJ_TFUNC) #define tvisthread(o) (itype(o) == LJ_TTHREAD) #define tvisproto(o) (itype(o) == LJ_TPROTO) #define tviscdata(o) (itype(o) == LJ_TCDATA) #define tvistab(o) (itype(o) == LJ_TTAB) #define tvisudata(o) (itype(o) == LJ_TUDATA) #define tvisnumber(o) (itype(o) <= LJ_TISNUM) #define tvisint(o) (LJ_DUALNUM && itype(o) == LJ_TISNUM) #define tvisnum(o) (itype(o) < LJ_TISNUM) #define tvistruecond(o) (itype(o) < LJ_TISTRUECOND) #define tvispri(o) (itype(o) >= LJ_TISPRI) #define tvistabud(o) (itype(o) <= LJ_TISTABUD) /* && !tvisnum() */ #define tvisgcv(o) ((itype(o) - LJ_TISGCV) > (LJ_TNUMX - LJ_TISGCV)) /* Special macros to test numbers for NaN, +0, -0, +1 and raw equality. */ #define tvisnan(o) ((o)->n != (o)->n) #if LJ_64 #define tviszero(o) (((o)->u64 << 1) == 0) #else #define tviszero(o) (((o)->u32.lo | ((o)->u32.hi << 1)) == 0) #endif #define tvispzero(o) ((o)->u64 == 0) #define tvismzero(o) ((o)->u64 == U64x(80000000,00000000)) #define tvispone(o) ((o)->u64 == U64x(3ff00000,00000000)) #define rawnumequal(o1, o2) ((o1)->u64 == (o2)->u64) /* Macros to convert type ids. */ #if LJ_64 #define itypemap(o) \ (tvisnumber(o) ? ~LJ_TNUMX : tvislightud(o) ? ~LJ_TLIGHTUD : ~itype(o)) #else #define itypemap(o) (tvisnumber(o) ? ~LJ_TNUMX : ~itype(o)) #endif /* Macros to get tagged values. */ #define gcval(o) (gcref((o)->gcr)) #define boolV(o) check_exp(tvisbool(o), (LJ_TFALSE - (o)->it)) #if LJ_64 #define lightudV(o) \ check_exp(tvislightud(o), (void *)((o)->u64 & U64x(00007fff,ffffffff))) #else #define lightudV(o) check_exp(tvislightud(o), gcrefp((o)->gcr, void)) #endif #define gcV(o) check_exp(tvisgcv(o), gcval(o)) #define strV(o) check_exp(tvisstr(o), &gcval(o)->str) #define funcV(o) check_exp(tvisfunc(o), &gcval(o)->fn) #define threadV(o) check_exp(tvisthread(o), &gcval(o)->th) #define protoV(o) check_exp(tvisproto(o), &gcval(o)->pt) #define cdataV(o) check_exp(tviscdata(o), &gcval(o)->cd) #define tabV(o) check_exp(tvistab(o), &gcval(o)->tab) #define udataV(o) check_exp(tvisudata(o), &gcval(o)->ud) #define numV(o) check_exp(tvisnum(o), (o)->n) #define intV(o) check_exp(tvisint(o), (int32_t)(o)->i) /* Macros to set tagged values. */ #define setitype(o, i) ((o)->it = (i)) #define setnilV(o) ((o)->it = LJ_TNIL) #define setboolV(o, x) ((o)->it = LJ_TFALSE-(uint32_t)(x)) static LJ_AINLINE void setlightudV(TValue *o, void *p) { #if LJ_64 o->u64 = (uint64_t)p | (((uint64_t)0xffff) << 48); #else setgcrefp(o->gcr, p); setitype(o, LJ_TLIGHTUD); #endif } #if LJ_64 #define checklightudptr(L, p) \ (((uint64_t)(p) >> 47) ? (lj_err_msg(L, LJ_ERR_BADLU), NULL) : (p)) #define setcont(o, f) \ ((o)->u64 = (uint64_t)(void *)(f) - (uint64_t)lj_vm_asm_begin) #else #define checklightudptr(L, p) (p) #define setcont(o, f) setlightudV((o), (void *)(f)) #endif #define tvchecklive(L, o) \ UNUSED(L), lua_assert(!tvisgcv(o) || \ ((~itype(o) == gcval(o)->gch.gct) && !isdead(G(L), gcval(o)))) static LJ_AINLINE void setgcV(lua_State *L, TValue *o, GCobj *v, uint32_t itype) { setgcref(o->gcr, v); setitype(o, itype); tvchecklive(L, o); } #define define_setV(name, type, tag) \ static LJ_AINLINE void name(lua_State *L, TValue *o, type *v) \ { \ setgcV(L, o, obj2gco(v), tag); \ } define_setV(setstrV, GCstr, LJ_TSTR) define_setV(setthreadV, lua_State, LJ_TTHREAD) define_setV(setprotoV, GCproto, LJ_TPROTO) define_setV(setfuncV, GCfunc, LJ_TFUNC) define_setV(setcdataV, GCcdata, LJ_TCDATA) define_setV(settabV, GCtab, LJ_TTAB) define_setV(setudataV, GCudata, LJ_TUDATA) #define setnumV(o, x) ((o)->n = (x)) #define setnanV(o) ((o)->u64 = U64x(fff80000,00000000)) #define setpinfV(o) ((o)->u64 = U64x(7ff00000,00000000)) #define setminfV(o) ((o)->u64 = U64x(fff00000,00000000)) static LJ_AINLINE void setintV(TValue *o, int32_t i) { #if LJ_DUALNUM o->i = (uint32_t)i; setitype(o, LJ_TISNUM); #else o->n = (lua_Number)i; #endif } static LJ_AINLINE void setint64V(TValue *o, int64_t i) { if (LJ_DUALNUM && LJ_LIKELY(i == (int64_t)(int32_t)i)) setintV(o, (int32_t)i); else setnumV(o, (lua_Number)i); } #if LJ_64 #define setintptrV(o, i) setint64V((o), (i)) #else #define setintptrV(o, i) setintV((o), (i)) #endif /* Copy tagged values. */ static LJ_AINLINE void copyTV(lua_State *L, TValue *o1, const TValue *o2) { *o1 = *o2; tvchecklive(L, o1); } /* -- Number to integer conversion ---------------------------------------- */ #if LJ_SOFTFP LJ_ASMF int32_t lj_vm_tobit(double x); #endif static LJ_AINLINE int32_t lj_num2bit(lua_Number n) { #if LJ_SOFTFP return lj_vm_tobit(n); #else TValue o; o.n = n + 6755399441055744.0; /* 2^52 + 2^51 */ return (int32_t)o.u32.lo; #endif } #if LJ_TARGET_X86 && !defined(__SSE2__) #define lj_num2int(n) lj_num2bit((n)) #else #define lj_num2int(n) ((int32_t)(n)) #endif /* ** This must match the JIT backend behavior. In particular for archs ** that don't have a common hardware instruction for this conversion. ** Note that signed FP to unsigned int conversions have an undefined ** result and should never be relied upon in portable FFI code. ** See also: C99 or C11 standard, 6.3.1.4, footnote of (1). */ static LJ_AINLINE uint64_t lj_num2u64(lua_Number n) { #if LJ_TARGET_X86ORX64 || LJ_TARGET_MIPS int64_t i = (int64_t)n; if (i < 0) i = (int64_t)(n - 18446744073709551616.0); return (uint64_t)i; #else return (uint64_t)n; #endif } static LJ_AINLINE int32_t numberVint(cTValue *o) { if (LJ_LIKELY(tvisint(o))) return intV(o); else return lj_num2int(numV(o)); } static LJ_AINLINE lua_Number numberVnum(cTValue *o) { if (LJ_UNLIKELY(tvisint(o))) return (lua_Number)intV(o); else return numV(o); } /* -- Miscellaneous object handling --------------------------------------- */ /* Names and maps for internal and external object tags. */ LJ_DATA const char *const lj_obj_typename[1+LUA_TCDATA+1]; LJ_DATA const char *const lj_obj_itypename[~LJ_TNUMX+1]; #define lj_typename(o) (lj_obj_itypename[itypemap(o)]) /* Compare two objects without calling metamethods. */ LJ_FUNC int lj_obj_equal(cTValue *o1, cTValue *o2); #endif